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Abstract: The integer-order LCL (IOLCL) filter has excellent high-frequency harmonic attenuation
capability but suffers from resonance, which causes system instability in grid-connected inverter
applications. This paper studied a class of resonance-free fractional-order LCL (FOLCL) filters and
control problems of single-phase FOLCL-type grid-connected inverters (FOGCI). The Caputo frac-
tional calculus operator was used to describe the fractional-order inductor and capacitor. Compared
with the conventional IOLCL filter, by reasonably selecting the orders of the inductor and capac-
itor, the resonance peak of the FOLCL filter could be effectively avoided. In this way, the FOGCI
could operate stably without passive or active dampers, which simplified the design of control
system. Furthermore, compared with a single-phase integer-order grid-connected inverter (IOGCI)
controlled by an integer-order PI (IOPI) controller, the FOGCI, combined with a fractional-order
PI (FOPI) controller, could achieve greater gain and phase margins, which improved the system
performance. The correctness of the theoretical analyses was validated through both simulation and
hardware-in-the-loop experiments.

Keywords: fractional calculus; fractional-order; LCL filter; grid-connected inverter; resonance peak;
PI controller

1. Introduction

Distributed power generation systems (DPGSs) based on renewable energy such as
wind and solar energy are an effective way to alleviate the problems of energy shortage and
environmental pollution. As the power conversion interface between DPGSs and utility
grids, grid-connected inverters play an important role in injecting high-quality current
into the grid [1,2]. The use of high-frequency switches in voltage-source inverters (VSIs)
produces serious high-frequency harmonics in grid current that directly affect the grid
power quality and the system stability. To meet the relevant power quality standards [3,4],
a low-pass filter must be used to interface the VSI and the grid. L-type grid-connected
inverters are usually used to limit the current harmonics. However, because of the excessive
switching frequency, a single-inductor L-type GCI can worsen the system dynamics and
operating range of the system [5,6]. For the GCI, LCL filters are usually adopted, since they
have smaller size, lower cost, and better harmonic attenuation capability than L filters [7–9].
However, LCL filters produce a resonant peak and a −180◦ phase jump, which causes a
current oscillation, resulting in serious system instability [10–12].

To suppress the resonance peak, various passive- and active-damping solutions have
been proposed [13–15]. Passive damping suppresses the resonance by adding actual resis-
tors to the LCL filter [16]. Active-damping methods use the feedback of the state variables
to obtain the same effect as passive damping and modify the frequency characteristics
to eliminate the resonance peak [17,18]. Among active-damping methods, the propor-
tional feedback of the capacitor current has been widely used because of its simplicity and
effectiveness [14,15].
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Fractional calculus is developed by extending the calculus theory from integers to
nonintegers (i.e., fractions and irrational and complex numbers). The applications of
fractional-order calculus have flourished over the past two decades, and systems have
been found to exhibit non-integer-order dynamics, which has led to new approaches to
circuit and controller design [19–22]. For the inductors and capacitors used in power
converters, relevant studies have proven that they exhibit fractional-order characteristics,
so the actual converter system should be of fractional order [23–25]. Researchers have
studied the fractional behavior of inductors and capacitors. Fractional-order capacitors
were developed using different fractal structures, and different fractional-order inductors
were developed based on skin effects [26–28]. It is also possible to approximate fractional-
order inductors and capacitors by passive and active networks [29–32]. This makes it
possible for fractional-order components to be practically used in power converters.

In recent years, the fractional-order modeling of power converters has been paid
much attention by considering the fractional-order characteristics of inductors and
capacitors [33–39]. In [33], a boost converter in continuous conduction mode was modeled
and analyzed in fractional order. In [34], a fractional-order, state-space-averaging model of
a buck–boost dc/dc converter in discontinuous conduction mode was presented based on
the theory of fractional calculus. In [35], fractional-order, state-averaged models of a boost
converter under pseudocontinuous conduction mode were proposed. The results suggested
that the fractional-order models could increase in flexibility and degrees of freedom if the
fractional parameters were adjusted. In [36], the influence of fractional-order capacitors
on power factor correction converters was discussed. In [37], a fractional-order model of a
voltage-source converter was established and analyzed. The fractional-order characteristics
of inductors and capacitors were described in [38], and a fractional-order model of a three-
phase rectifier was established in three-phase static reference frame. However, control
problems were not involved in [37,38]. In [39], the working characteristics of a photovoltaic
LCαL filter-based grid-connected inverter were studied, parameters of the LCαL filter were
designed, and the results showed that the LCαL filter had a wider bandwidth than an LCL
filter. However, only the capacitor was considered as a fractional-order component, and
the two inductors were still of integer order. Furthermore, the design of the control system
was not discussed.

Based on a conventional integer-order PID controller, Podlubny proposed a fractional-
order PIλDµ controller in 1999, introducing two adjustable parameters: the integral order λ,
and the differential order µ. Compared with the integer-order PID controller, the fractional-
order PIλDµ controller was more flexible, and it was better to use a fractional-order con-
troller instead of an integer-order controller to control integer-order and fractional-order
systems [40–43]. A fractional-order model of a dc/dc converter in a photovoltaic power
generation system was established in [41], and a fractional-order PI regulator was used to
control the converter. A fractional-order PIλ controller was applied to a grid-connected
inverter in [42], and the results showed that the PIλ controller could effectively reduce the
current harmonics and obtain a better control effect than a PI controller. Moreover, the
fractional-order PI controller was applied to a three-level neutral point clamped (NPC)
shunt active power filter in [43].

In this paper, a fractional-order LCL-type grid-connected inverter was studied. First,
the fractional-order mathematical models of the inductor and capacitor were constructed
using the Caputo differential operator, and the resonant characteristics of the fractional-
order LCL filter were analyzed. The existence condition of resonance was given. If inductor
order α and capacitor order β satisfied the condition that α + β 6= 2, the FOLCL filter
had no resonance peak. Then, an FOGCI model was derived, and an FOPI regulator was
introduced to control the FOGCI. Compared with an IOGCI, the FOGCI featured a more
flexible design, and its system exhibited better performance. Moreover, the FOPI regulator
was more accurate than an IOPI regulator. The “FOGCI + FOPI” combination constructed
a full fractional-order system, which could obtain a lower THD for grid current than the
traditional integer-order system.
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The rest of this article is organized as follows. Caputo fractional calculus is intro-
duced in Section 2. Section 3 presents the construction of a mathematical model of the
fractional-order inductor and capacitor and analysis of the resonant characteristics of the
fractional-order LCL filter. In Section 4, an IOGCI model based on capacitor current pro-
portional feedback, an FOGCI model based on capacitor current proportional feedback,
and an FOGCI model without capacitor current proportional feedback are established. The
performance of the systems under integer-order PI control and fractional-order PI control
is analyzed. In Section 5, simulations and hardware-in-the-loop experiments conducted to
prove the validity of the theoretical analyses are discussed. Finally, conclusions are drawn
in Section 6.

2. Caputo Fractional Calculus

In the development and application of fractional calculus theory, different definitions
of fractional calculus have been emerged. Because of its significant advantages relative
to other definitions, such as integer-order initial states, the ease of the Laplace transform,
and the convenience of equation solving, the Caputo fractional calculus definition has been
widely used in engineering and scientific research [44–46]. Thus, in this paper, Caputo
fractional calculus was used to establish the fractional-order models of the FOLCL filter.

For a function f (t), the Caputo fractional differential is defined as:

C
t0

Dα
t f (t) =

dα

dtα
f (t) =

1
Γ(m− α)

∫ t
t0

f m(τ)

(t− τ)1+α−m dτ (1)

where m = [α] is an integer and Γ(·) represents the gamma function.
The Caputo fractional integral is defined as:

C
t0

D−γ
t f (t) =

∫ t
t0

f (τ)dτγ =
1

Γ(γ)
∫ t

t0

f (τ)

(t− τ)1−γ
dτ (2)

With an initial value of zero, the Laplace transform of Caputo fractional-order differ-
entiation can be expressed as:

L
{CDα

t f (t)
}
= sαF(s) (3)

The Laplace transform of the Caputo fractional integral is expressed as:

L
{

CD−γ
T f (t)

}
= s−γF(s) (4)

3. Fractional-Order LCL (FOLCL) Filter
3.1. Mathematical Model

Figure 1 shows the topology of an FOLCL filter, where L1 is an inverter-side fractional-
order inductor on the order of α1; L2 is a grid-side fractional-order inductor on the order
of α2; C is a fractional-order filter capacitor on the order of β; α1, α2, β ∈ (0, 2); ui is the
inverter voltage; uc is the capacitor voltage; ug is the grid-side voltage; i1 is the inverter
output current; ic is the capacitor current; and i2 is the grid current.
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Mathematical models of a fractional-order inductor and capacitor were constructed
using Caputo differential operators and were expressed as:

ui = L
dαiL
dtα

ic = C
dβuc

dtβ

(5)

According to the KVL and KCL laws, the time-domain mathematical model of the
FOLCL filter was obtained as: 

L1
dα1 i1
dtα1

= ui − uc

C
dβuc

dtβ
= i1 − i2

L1
dα2 i2
dtα2

= uc − ug

(6)

Performing Laplace transformation on (6), the model of the FOLCL filter in s-domain
was obtained as: 

L1sα1 i1(s) = ui(s)− uc(s)

Csβuc(s) = i1(s)− i2(s)

L2sα2 i2(s) = uc(s)− ug(s)
(7)

A block diagram of the single-phase FOLCL is shown in Figure 2.
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Figure 2. Block diagram of single-phase FOLCL filter.

In Figure 2, ZL1(s), Zc(s), and ZL2(s) are the impedances of L1, C, and L2, respectively.
Their expressions are:

ZL1(s) = L1sα1 , Zc(s) = 1
Csβ , ZL2(s) = L2sα2 (8)

The transfer function from ui to i2 can be derived as:

Gg f (s) =
i2(s)
ui(s)

=
1

L1L2Csα1+α2+β + L1sα1 + L2sα2
(9)

When α1 = α2 = β = 1, (9) can be written as:

Ggi(s) =
i2(s)
ui(s)

=
1

L1L2Cs3 + (L1 + L2)s
(10)

3.2. Characteristics Analysis
3.2.1. Theoretical Analysis

Compared with L-type filters, conventional IOLCL filters can achieve better high-
frequency harmonic attenuation capability. However, IOLCL filters have a resonant peak,
which leads to system instability. Passive and active damping methods are used to sup-
press the resonant peak. For FOLCL filters, the resonance can be avoided by adjusting the
component orders. From (9), the frequency domain expression of the FOLCL filter was
written as:
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Gg f (jω) =
1

L1L2C(jω)α1

1

(jω)α2+β + (jω)α2−α1

L1C + 1
L2C

(11)

To simplify the analysis, it was assumed that α1 = α2 = α and (jω)α = ejαπ/2 =

ωα cos
(απ

2

)
+ jωα sin

(
απ
2
)

was substituted into (11). With A = L1+L2
L1L2C set when α + β ∈

(0, 4), (11) could be expressed as:

Gg f (jω) =
1

L1L2Cωα
(
cos
(

απ
2
)
+ j sin

(
απ
2
)) 1

ωα+β cos
(

α+β
2

)
+ A + jωα+βsin (α+β)π

2
(12)

The magnitude–frequency and phase–frequency characteristics are expressed in (13)
and (14), respectively:

|Gg f (jω)| = 1
L1L2Cωα

1√
(ωα+β + A cos

(
(α+β)π

2

)
)

2
+ A2sin2 (α+β)π

2

(13)

∠Gg f (jω) = −arctan(tan
πα

2
)− arctan

ωα+β sin (α+β)π
2

ωα+β cos (α+β)π
2 + A

(14)

When (α + β) ∈ ((0, 1] ∪ [3, 4)), cos[(α + β)π/2] ≥ 0, the denominator of
∣∣∣Gg f (jω)

∣∣∣,
increases with the angular frequency, so

∣∣Ggi(jω)
∣∣ decreases. In this case, there is no reso-

nance in the magnitude–frequency characteristic. When α+ β ∈ (1, 3), cos[(α + β)π/2] < 0,

ω = ωr = [−A cos (α+β)π
2 ]

1
α+β , α + β ∈ (1, 3). At this time,

∣∣∣Gg f (jω)
∣∣∣ = 1/(L1L2Cωα

r )
A|sin[(α+β)π/2]| ,

α + β ∈ (1, 3). When α + β = 2,
∣∣Ggi(jω)

∣∣ = ∞. Thus, the magnitude–frequency char-
acteristic has a resonant peak. Substituting α + β = 2 back into (13), we had ωr = ω =√
(L1 + L2)/(L1L2C). The resonant frequency was determined only by the component

values of L1, L2, and C, independently of α and β.
To sum up:

• When the resonant peak existed in the FOLCL filter, the resonant frequency was
determined only by the values of L1, L2 and C, independently of α and β. The resonant
frequency was:

ωr = ω =

√
L1 + L2

L1L2C
(15)

• When α1 = α2 = α, the sufficient condition for the existence of resonance was α+ β = 2.
Compared with the IOLCL filter, the resonance could be effectively avoided by setting
α + β 6= 2.

• When α1 = α2 = α, α + β = 2 and α + α + β > 3, there was a +180◦ phase jump at the
resonance frequency. When α1 = α2 = α, α + β = 2, and α + α + β ≤ 3, there was a
−180◦ phase jump at the resonance frequency.

The characteristics of the IOLCL and FOLCL filters are listed in Table 1.

3.2.2. Simulation Analysis

The inductor order α was set to 0.8, 1.0, and 1.2, and the capacitor order β was set to
0.8, 1.0, and 1.2 for each of these three cases. The corresponding bode plots are shown in
Figure 3.
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Table 1. Characteristics comparison of IOLCL and FOLCL filters.

Characteristics IOLCL Filter FOLCL Filter Statement

Number of variables 3 (L1, L2, C ) 5 (L1, L2, C, α, β ) α is the order of the inductor and β is the
order of the capacitor

Ranges of α and β α = β = 1 α, β ∈ (0, 2) IOLCL is a special case of
FOLCL with α = β = 1

Transfer function Ggi(s) =
1

L1L2Cs
1

s2 + A
Gg f (s) =

1
L1L2Csα

1
sα+β + A

Resonance peak exists exists only when α + β = 2
α + β = 2 is a sufficient condition for the

existence of a resonance peak in the FOLCL
filter

Resonant frequency ωrp
√
(L1 + L2)/(L1L2C)

√
(L1 + L2)/(L1L2C)

The resonant frequency is determined
only by L1, L2,
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The capacitor order β was set to 0.8, 1.0, and 1.2, and the inductor order α was set to
0.8, 1.0, and 1.2 for each of these three cases. The bode plots are shown in Figure 4.
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As shown from Figures 3 and 4, when α1 = α2 = α, α + β = 2, and α + α + β ≤ 3
(for example, the combination of α and β was (0.8, 1.2) or (1.0, 1.0)), the magnitude–
frequency characteristic of the FOLCL filter had a resonant peak, and the phase–frequency
characteristic had a −180◦ phase jump. When α + β = 2 and α + α + β > 3 (for example,
the combination of α and β was (1.2, 0.8)), the magnitude–frequency characteristic of the
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FOLCL filter had a resonance peak, and the phase–frequency characteristic had a +180◦

phase jump. When α + β 6= 2 (for example, the combination of α and β was (0.8, 0.8),
(0.8, 1.0), (1.0, 0.8), (1.0, 1.2), (1.2, 1.0), or (1.2, 1.2)), the FOLCL filter showed no resonance
peak. The resonant frequency measured from the figure was ωrp = 28,900 rad/s, which was
basically equal to the theoretical value (ωrp = 28,867.5 rad/s). It was also proved that the
resonant frequency ωrp was independent of the inductor order α and the capacitor order β
and was determined only by the values of L1, L2, and C.

Figure 3 also showed that when the inductor order α was unchanged, and the capacitor
order β took different values, the frequency characteristics at low frequency bands were
almost the same, but those at high frequency bands became different. This means that the
capacitor order β affected the frequency characteristics of the FOLCL filter only at high
frequency bands. The inductor order α determined the low-frequency characteristics of the
FOLCL filter.

Similarly, Figure 4 showed that when the capacitor order β was unchanged, and the in-
ductor α took different values, the slopes of the magnitude–frequency characteristic curves
were different at all frequency bands. Furthermore, the phase–frequency characteristics
were different from each other. This further shows that the frequency characteristic of the
FOLCL filter at low frequency bands was determined by the inductor order α, while the
frequency characteristic at high frequency bands was determined by the orders α and β
together.

4. Single-Phase Grid-Connected Inverter (GCI) based on the FOLCL Filter
4.1. System Structure

Figure 5 shows the single-phase FOGCI and its control system, where L1 is the inverter-
side inductor, C is the filter capacitor, L2 is the grid-side inductor, and these three taken
together constitute a fractional-order LCL filter. For GCI, the primary goal is to control
the grid current i2, synchronize it with the grid voltage ug, and make its RMS value track
a given value Ire f . Since the dynamic of the voltage loop is much slower than that of the
grid current loop, the grid current loop could be analyzed separately. Hv and Hi2 are the
sampling coefficients of ug and i2, respectively. The sampled signal of i2 is compared with
its reference i2re f , and the error is fed into the current controller Gi(s). The active damping
of the resonance peak is achieved by capacitor current proportional feedback, and Hi1 is
the feedback coefficient. The capacitor current proportional feedback can be eliminated if
α + β 6= 2, so the capacitor current feedback loop is shown in red in Figures 5, 6 and 8 to
stress this problem. Subtracting the feedback signal uic from ur, the output of Gi(s), yields
the modulation wave um.
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4.2. FOGCI Based on Capacitor Current Proportional Feedback

According to Figure 5, the mathematical model of the LCL-type grid-connected in-
verter was obtained, as shown in Figure 6. Kpwm = Udc/Utri is the transfer function of the
modulation wave to the output voltage ui of the inverter bridge, where Udc is the input
voltage and Utri is the magnitude of the triangular carrier. ZL1(s), Zc(s), and ZL2(s) are the
impedances of L1, C, and L2, respectively, and their expressions are in (8). When α + β = 2,
as in the IOGCI, the capacitor current proportional feedback had to be used to damp the
resonance.
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𝑇𝑇𝐴𝐴𝐴𝐴(𝑠𝑠) = 𝐺𝐺𝑥𝑥1(𝑠𝑠)𝐺𝐺𝑥𝑥2(𝑠𝑠)𝐻𝐻𝑖𝑖2 =
𝐻𝐻𝑖𝑖2𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)

𝑠𝑠𝛼𝛼1+𝛼𝛼2+𝛽𝛽𝐿𝐿1𝐿𝐿2𝐶𝐶 + 𝑠𝑠𝛼𝛼2+𝛽𝛽𝐿𝐿2𝐶𝐶𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑠𝑠𝛼𝛼1𝐿𝐿1 + 𝑠𝑠𝛼𝛼2𝐿𝐿2
 (19) 

4.3. GCI without Capacitor Current Proportional Feedback 
 According to Figure 5, a control block diagram of a GCI without capacitor current 

proportional feedback when 𝛼𝛼 + 𝛽𝛽 ≠ 2 is shown in Figure 8. The capacitor current pro-
portional feedback could be eliminated. 

Figure 6. Block diagram of the FOGCI control system with capacitor current proportional feedback
(Capacitor current proportional feedback can be eliminated if α + β 6= 2).

In order to derive its transfer function, the block diagram method was used to simplify
the mathematical model, as shown in Figure 7.

Gx1(s) =
KPWMGi(s)ZC(s)

ZL1(s) + ZC(s) + Hi1KPWM
(16)

Gx2(s) =
ZL1(s) + ZC(s) + Hi1KPWM

ZL1(s)ZL2(s) + (ZL1(s) + ZL2(s))ZC(s) + Hi1KPWMZL2(s)
(17)
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𝐺𝐺𝑥𝑥1(𝑠𝑠) =
𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)𝑍𝑍𝐶𝐶(𝑠𝑠)

𝑍𝑍𝐿𝐿1(𝑠𝑠) + 𝑍𝑍𝐶𝐶(𝑠𝑠) + 𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃
 (16) 

𝐺𝐺𝑥𝑥2(𝑠𝑠) =
𝑍𝑍𝐿𝐿1(𝑠𝑠) + 𝑍𝑍𝐶𝐶(𝑠𝑠) + 𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃

𝑍𝑍𝐿𝐿1(𝑠𝑠)𝑍𝑍𝐿𝐿2(𝑠𝑠) + �𝑍𝑍𝐿𝐿1(𝑠𝑠) + 𝑍𝑍𝐿𝐿2(𝑠𝑠)�𝑍𝑍𝐶𝐶(𝑠𝑠) + 𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑍𝑍𝐿𝐿2(𝑠𝑠)  (17) 

 According to (16), (17), and Figure 7, the open-loop transfer function of the IOGCI 
was derived as: 

𝑇𝑇𝐴𝐴(𝑠𝑠) = 𝐺𝐺𝑥𝑥1(𝑠𝑠)𝐺𝐺𝑥𝑥2(𝑠𝑠)𝐻𝐻𝑖𝑖2 =
𝐻𝐻𝑖𝑖2𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)

𝑠𝑠3𝐿𝐿1𝐿𝐿2𝐶𝐶 + 𝑠𝑠2𝐿𝐿2𝐶𝐶𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑠𝑠(𝐿𝐿1 + 𝐿𝐿2)  (18) 

Similarly, the open-loop transfer function of the FOGCI was obtained as: 

𝑇𝑇𝐴𝐴𝐴𝐴(𝑠𝑠) = 𝐺𝐺𝑥𝑥1(𝑠𝑠)𝐺𝐺𝑥𝑥2(𝑠𝑠)𝐻𝐻𝑖𝑖2 =
𝐻𝐻𝑖𝑖2𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)

𝑠𝑠𝛼𝛼1+𝛼𝛼2+𝛽𝛽𝐿𝐿1𝐿𝐿2𝐶𝐶 + 𝑠𝑠𝛼𝛼2+𝛽𝛽𝐿𝐿2𝐶𝐶𝐻𝐻𝑖𝑖1𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑠𝑠𝛼𝛼1𝐿𝐿1 + 𝑠𝑠𝛼𝛼2𝐿𝐿2
 (19) 

4.3. GCI without Capacitor Current Proportional Feedback 
 According to Figure 5, a control block diagram of a GCI without capacitor current 

proportional feedback when 𝛼𝛼 + 𝛽𝛽 ≠ 2 is shown in Figure 8. The capacitor current pro-
portional feedback could be eliminated. 

Figure 7. Simplified block diagram of the GCI control system with capacitor current proportional
feedback.

According to (16), (17), and Figure 7, the open-loop transfer function of the IOGCI was
derived as:

TA(s) = Gx1(s)Gx2(s)Hi2 =
Hi2KPWMGi(s)

s3L1L2C + s2L2CHi1KPWM + s(L1 + L2)
(18)

Similarly, the open-loop transfer function of the FOGCI was obtained as:

TAF(s) = Gx1(s)Gx2(s)Hi2 =
Hi2KPWMGi(s)

sα1+α2+βL1L2C + sα2+βL2CHi1KPWM + sα1 L1 + sα2 L2
(19)

4.3. GCI without Capacitor Current Proportional Feedback

According to Figure 5, a control block diagram of a GCI without capacitor current pro-
portional feedback when α+ β 6= 2 is shown in Figure 8. The capacitor current proportional
feedback could be eliminated.
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𝐺𝐺𝑥𝑥3(𝑠𝑠) =
𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)𝑍𝑍𝐶𝐶(𝑠𝑠)
𝑍𝑍𝐿𝐿1(𝑠𝑠) + 𝑍𝑍𝐶𝐶(𝑠𝑠)  (20) 

𝐺𝐺𝑥𝑥4(𝑠𝑠) =
𝑍𝑍𝐿𝐿1(𝑠𝑠) + 𝑍𝑍𝐶𝐶(𝑠𝑠)
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 According to (20), (21), and Figure 9, the open-loop transfer function of the IOGCI 
was derived as: 

𝑇𝑇𝐴𝐴′(𝑠𝑠) = 𝐺𝐺𝑥𝑥3(𝑠𝑠)𝐺𝐺𝑥𝑥4(𝑠𝑠)𝐻𝐻𝑖𝑖2 =
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𝑠𝑠3𝐿𝐿1𝐿𝐿2𝐶𝐶 + 𝑠𝑠(𝐿𝐿1 + 𝐿𝐿2)
 (22) 

Similarly, the open-loop transfer function of the FOGCI was expressed as: 

𝑇𝑇𝐴𝐴𝐴𝐴′(𝑠𝑠) = 𝐺𝐺𝑥𝑥3(𝑠𝑠)𝐺𝐺𝑥𝑥4(𝑠𝑠)𝐻𝐻𝑖𝑖2 =
𝐻𝐻𝑖𝑖2𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝑖𝑖(𝑠𝑠)

𝑠𝑠𝛼𝛼1+𝛼𝛼2+𝛽𝛽𝐿𝐿1𝐿𝐿2𝐶𝐶 + 𝑠𝑠𝛼𝛼1𝐿𝐿1 + 𝑠𝑠𝛼𝛼2𝐿𝐿2
 (23) 

4.4. Characteristic Analyses of the GCI System 
 In order to analyze the performance of the IOGCI and FOGCI, as well as the control 

effect of the IOPI and FOPI controllers, in detail, the open-loop transfer functions of the 
“IOGCI + IOPI”, “IOGCI + FOPI”, “FOGCI + IOPI”, and “FOGCI + FOPI” systems with 
capacitor current proportional feedback and the open-loop transfer functions of the 
“FOGCI + FOPI” and “FOGCI + IOPI” systems without capacitor current proportional 
feedback were derived as shown below. 

The transfer functions of the IOPI and FOPI controllers are expressed in (24) and (25), 
respectively: 

Figure 8. Control block diagram of FOGCI without capacitor current proportional feedback (Capacitor
current proportional feedback was eliminated).

In order to derive the transfer function, the block diagram in Figure 8 was simplified
as shown in Figure 9, where Gx3(x) and Gx4(x) are expressed in (20) and (21), respectively.

Gx3(s) =
KPWMGi(s)ZC(s)

ZL1(s) + ZC(s)
(20)

Gx4(s) =
ZL1(s) + ZC(s)

ZL1(s)ZL2(s) + (ZL1(s) + ZL2(s))ZC(s)
(21)
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Figure 9. Simplified diagram of the GCI without capacitor current proportional feedback.

According to (20), (21), and Figure 9, the open-loop transfer function of the IOGCI was
derived as:

TA
′(s) = Gx3(s)Gx4(s)Hi2 =

Hi2KPWMGi(s)
s3L1L2C + s(L1 + L2)

(22)

Similarly, the open-loop transfer function of the FOGCI was expressed as:

TAF
′(s) = Gx3(s)Gx4(s)Hi2 =

Hi2KPWMGi(s)
sα1+α2+βL1L2C + sα1 L1 + sα2 L2

(23)

4.4. Characteristic Analyses of the GCI System

In order to analyze the performance of the IOGCI and FOGCI, as well as the control
effect of the IOPI and FOPI controllers, in detail, the open-loop transfer functions of the
“IOGCI + IOPI”, “IOGCI + FOPI”, “FOGCI + IOPI”, and “FOGCI + FOPI” systems with
capacitor current proportional feedback and the open-loop transfer functions of the “FOGCI
+ FOPI” and “FOGCI + IOPI” systems without capacitor current proportional feedback
were derived as shown below.

The transfer functions of the IOPI and FOPI controllers are expressed in (24) and (25),
respectively:

Gi(s) = Kp +
Ki
s (24)

Gλ
i(s) = Kp +

Ki
sλ (25)

where Kp and Ki are the proportional coefficient and integral coefficient, respectively, and λ

is the integral order, 0 < λ < 2.
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The open-loop transfer functions of the GCI systems based on proportional feedback
of capacitor current were as follows. The loop gain of the “IOGCI + IOPI” system was
deduced from (18) and (24) as:

Tii(s) =
Hi2kpwm

(
Kps + Ki

)
s
(
CL1L2s3 + L2CHi1kpwms2 + (L1 + L2

)
s1)

(26)

The loop gain of the “IOGCI + FOPI” system was deduced from (18) and (25) as:

Ti f (s) =
Hi2kpwm

(
Kpsλ + Ki

)
sλ
(
CL1L2s3 + L2CHi1kpwms2 + (L1 + L2

)
s)

(27)

The loop gain of the “FOGCI + IOPI” system was deduced from (19) and (24) as:

Tf i(s) =
Hi2kpwm

(
Kps + Ki

)
s
(
CL1L2s2α+β + L2CHi1kpwmsα+β + (L1 + L2

)
sα)

(28)

The loop gain of the “FOGCI + FOPI” system was deduced from (19) and (25) as:

Tf f (s) =
Hi2kpwm

(
Kpsλ + Ki

)
sλ
(
CL1L2s2α+β + L2CHi1kpwmsα+β + (L1 + L2

)
sα)

(29)

The open-loop transfer functions of the GCI systems without capacitor current propor-
tional feedback were as follows. The loop gain of the “FOGCI + IOPI” system was deduced
from (23) and (24) as:

Tf in(s) =
Hi2kpwm

(
Kps + Ki

)
s
(
CL1L2s2α+β + (L1 + L2

)
sα)

(30)

The loop gain of the “FOGCI + FOPI” system was deduced from (23) and (25) as:

Tf f n(s) =
Hi2kpwm

(
Kpsλ + Ki

)
sλ
(
CL1L2s2α+β + (L1 + L2

)
sα)

(31)

The bode plots of the loop gains in (26)–(31) are shown in Figure 10.
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Figure 10. Bode plots of the loop gains of the GCIs. 

Table 2 shows the magnitude margins and phase margins of the bode plots in Figure 
10. 𝑇𝑇𝑔𝑔𝑖𝑖(𝑠𝑠) had larger magnitude and phase margins than 𝑇𝑇𝑖𝑖𝑖𝑖(𝑠𝑠). Under IOPI control and 
capacitor current proportional feedback, the FOGCI could be more stable and achieve 
faster dynamic response than the IOGCI. Moreover, 𝑇𝑇𝑔𝑔𝑔𝑔(𝑠𝑠) had larger magnitude and 
phase margins than 𝑇𝑇𝑖𝑖𝑔𝑔(𝑠𝑠). This indicates that the FOGCI showed better performance 
than the IOGCI under FOPI control and capacitor current proportional feedback. 𝑇𝑇𝑖𝑖𝑔𝑔(𝑠𝑠) 
had larger magnitude and phase margins than 𝑇𝑇𝑖𝑖𝑖𝑖(𝑠𝑠). However, 𝑇𝑇𝑔𝑔𝑔𝑔(𝑠𝑠) had lower mag-
nitude and phase margins than 𝑇𝑇𝑔𝑔𝑖𝑖(𝑠𝑠). Compared with IOPI control, FOPI control could 
improve the system performance of the IOGCI but could not improve that of the FOGCI 
when α + β = 2. 

Table 2. Magnitude and phase margins of the loop gains. 

Loop Gain Magnitude Margin Phase Margin 
𝑇𝑇𝑖𝑖𝑖𝑖(𝑠𝑠) 4.29 dB 48.0° 
𝑇𝑇𝑖𝑖𝑔𝑔(𝑠𝑠) 4.42 dB 49.9° 
𝑇𝑇𝑔𝑔𝑖𝑖(𝑠𝑠) 11.4 dB 71.1° 
𝑇𝑇𝑔𝑔𝑔𝑔(𝑠𝑠) 9.91 dB 56.7° 
𝑇𝑇𝑔𝑔𝑖𝑖𝑠𝑠(𝑠𝑠) 5.03 dB 93.2° 
𝑇𝑇𝑔𝑔𝑔𝑔𝑠𝑠(𝑠𝑠) 10.1 dB 93.7° 

 
When α + β ≠ 2, the capacitor current proportional feedback could be removed. In 

this situation, 𝑇𝑇𝑔𝑔𝑔𝑔𝑠𝑠(𝑠𝑠) had larger magnitude and phase margins than 𝑇𝑇𝑔𝑔𝑖𝑖𝑠𝑠(𝑠𝑠). Both FOPI 
control and IOPI control could obtain better performance for the FOGCI.  

5. Simulation and Experimental Results 
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Table 2 shows the magnitude margins and phase margins of the bode plots in Figure 10.
Tf i(s) had larger magnitude and phase margins than Tii(s). Under IOPI control and
capacitor current proportional feedback, the FOGCI could be more stable and achieve
faster dynamic response than the IOGCI. Moreover, Tf f (s) had larger magnitude and phase
margins than Ti f (s). This indicates that the FOGCI showed better performance than the
IOGCI under FOPI control and capacitor current proportional feedback. Ti f (s) had larger
magnitude and phase margins than Tii(s). However, Tf f (s) had lower magnitude and
phase margins than Tf i(s). Compared with IOPI control, FOPI control could improve the
system performance of the IOGCI but could not improve that of the FOGCI when α + β = 2.

Table 2. Magnitude and phase margins of the loop gains.

Loop Gain Magnitude Margin Phase Margin

Tii(s) 4.29 dB 48.0◦

Ti f (s) 4.42 dB 49.9◦

Tf i(s) 11.4 dB 71.1◦

Tf f (s) 9.91 dB 56.7◦

Tf in(s) 5.03 dB 93.2◦

Tf f n(s) 10.1 dB 93.7◦

When α + β 6= 2, the capacitor current proportional feedback could be removed. In
this situation, Tf f n(s) had larger magnitude and phase margins than Tf in(s). Both FOPI
control and IOPI control could obtain better performance for the FOGCI.

5. Simulation and Experimental Results
5.1. Fractional-Order Component Approximation

Since the fractional-order differential operator sα is an irrational function and thus
cannot be directly implemented in numerical simulation, the improved Oustaloup filtering
method was used to approximate the fractional-order differential operator by integer-order
components. According to the fitted transfer function, fractance chain circuit models of
the fractional-order inductor and capacitor were built. The operators s0.9 and s−0.9 were
approximated by fractance chain circuits; their bode plots are shown in Figure 11. The
Oustaloup filtering method achieved good approximations at interesting frequency bands.
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5.2. Simulation Results

In order to verify the correctness of the theoretical analysis, single-phase IOGCI and
FOGCI simulation models with and without capacitor current proportional feedback were
constructed, and IOPI and FOPI controllers are used to control each GCI, respectively. The
main circuit parameters are shown in Table 3, and the controller parameters are shown in
Table 4. The reference RMS value of the grid current was I2re f = 27.27A.
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Table 3. Single-phase GCI parameters [47].

Parameters Symbols Numerical Value Parameters Symbols Numerical Value

DC input voltage Udc 360 V Filter capacitor C 10 µF
RMS value of grid voltage Ug 220 V Grid-side inductor L2 150 µH
Rated power of inverter Po 6 kW Carrier magnitude Vtri 3.05 V

Grid frequency fo 50 Hz Capacitor current
sampling coefficient Hi1 0.1 or 0

Switching frequency fsw 10 kHz Grid current sampling
coefficient Hi2 0.15

Inverter-side inductor L1 600 µH

Table 4. Controller parameters.

GCI Model Controller Kp Ki λ

FOGCI (α + β = 2, capacitor current
proportional feedback was used)

IOPI 0.443 2250 1
FOPI 0.442 2248 0.90

IOGCI (capacitor current proportional
feedback was used)

IOPI 0.450 2200 1
FOPI 0.450 2582 1.01

FOGCI (α + β 6= 2, capacitor current
proportional feedback was not used)

IOPI
FOPI

0.630
0.550

2500
2400

1
0.90

5.2.1. IOGCI and FOGCI with Capacitor Current Proportional Feedback

For the IOGCI, the orders of both the inductor and capacitor were equal to 1. The
capacitor current feedback coefficient Hi1 = 0.1. First, the IOPI controller was used to
regulate the grid current; the results are shown in Figure 12. The RMS value of i2 was
27.30 A, and the THD was 4.14%. Then, the FOPI was employed to control the grid current
and the integral order λ = 0.95; the simulation results are shown in Figure 13. The RMS
value of i2 was 27.30 A, and the THD was 1.93%.
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For the FOGCI, the inductor order α = 1.2 and the capacitor order β = 0.8 (α + β = 2).
The capacitor current feedback coefficient Hi1 = 0.1. First, the IOPI controller was used to
regulate the grid current; the results are shown in Figure 14. The system was stable, the
RMS value of i2 was 27.34 A, and the THD was 1.40%. Then, the FOPI was employed to
control the grid current, and the integral order λ = 0.9; the simulation results are shown in
Figure 15. The system was stable, too, as the RMS value of i2 was 27.30 A and the THD was
0.94%.
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Figure 15. Simulation results of the “FOGCI + FOPI” system with α + β = 2.

The simulation results showed that each system had small stable-state error and that
the grid current THD of the FOGCI was lower than that of the IOGCI under both IOPI and
FOPI control.

5.2.2. FOGCI without Capacitor Current Proportional Feedback

For the FOGCI, the capacitor current proportional feedback was omitted in this case.
The inductor order α = 0.8, and the capacitor order β = 0.8 (α + β 6= 2). First, the IOPI
controller was used to regulate the grid current; the results are shown in Figure 16. The
system was stable without active damping. The RMS value of i2 was 27.38 A, and the THD
was 1.26%. Then, the FOPI was employed to control the grid current, and the integral order
λ = 0.9; the simulation results are shown in Figure 17. The RMS value of i2 was 27.33 A,
and the THD was 0.91%.
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Figure 16. Simulation results of the “FOGCI + IOPI” system with α + β 6= 2.
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Figure 16. Simulation results of the “FOGCI + IOPI” system with α + β ≠ 2. 
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Figure 17. Simulation results of the “FOGCI + FOPI” system with α + β 6= 2.

For the FOGCI, α + β = 2 (α = 1.2, β = 0.8), and the IOPI controller was used to regulate
the grid current at the beginning. The capacitor current feedback coefficient Hi1 = 0.1.
When t = 0.05 s, Hi1 was set to 0, and the system became unstable, as shown in Figure 18.
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The simulation results showed that under FOPI control, the FOGCI without capacitor
current proportional feedback had lower THD than it did under IOPI control. Compared
with the results of the GCI with capacitor current proportional feedback, the FOGCI
without capacitor current proportional feedback had slightly increased stable-state error
but a smaller grid current THD.

Some conclusions were drawn according to the simulation results:
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• With or without capacitor current proportional feedback, the FOGCI showed better
system performance than the IOGCI.

• For GCI systems, the overall control effect of the FOPI controller was better than that
of the IOPI controller.

• Compared with the FOGCI based on capacitor current proportional feedback when
α+ β = 2, the FOGCI without capacitor current proportional feedback when α+ β 6= 2
obtained lower grid current THD and simplified the control system.

• When α + β = 2, the FOGCI without capacitor current proportional feedback could
not guarantee system stability.

5.3. Experimental Results

A hardware-in-the-loop experimental instrument was used to test the circuit. The
experimental system consisted of a NI PXIe-1082 chassis, a computer, and an oscilloscope.
The computer downloaded a Simulink model to the chassis through the StarSim HIL
software (Version 4.6, Shanghai, China). Three cases were studied: (1) Case I: FOGCI
with capacitor current proportional feedback, where the inductor order and capacitor
order satisfy α + β = 2 (α = 1.2, β = 0.8); (2) Case II: FOGCI without capacitor current
proportional feedback, where α + β = 2 (α = 1.2, β = 0.8); (3) Case III: FOGCI without
capacitor current proportional feedback, where α + β 6= 2 (α = 0.8, β = 0.8). The results
are shown in Figure 19. The system was stable in cases I and III but unstable in case II.
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6. Conclusions

In this paper, the modeling and control problems of a grid-connected inverter based on
an FOLCL filter were studied. A mathematical model of the FOLCL filter was derived, and
its characteristics were analyzed. Then, the necessary and sufficient conditions of resonance
was determined. Based on this, by rationally selecting the inductor and capacitor orders, the
resonance of the FOLCL filter could be effectively avoided, which could allow eliminating
the damper in the control system. Moreover, through the analysis of six types of GCI
systems, it was found that compared with the “IOGCI + IOPI” system, the “FOGCI + FOPI”
system without capacitor current proportional feedback was simpler and had greater
magnitude and phase margins. In addition, the FOGCI had lower grid current THD than
the IOGCI. Simulation and hardware-in-the-loop experiments were conducted, and the
results were consistent with the theoretical analyses.
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