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Abstract: In this paper, based on the L2-1σ scheme and nonconforming EQrot
1 finite element method

(FEM), a numerical approximation is presented for a class of two-dimensional time-fractional diffusion
equations involving variable coefficients. A novel and detailed analysis of the equations with an
initial singularity is described on anisotropic meshes. The fully discrete scheme is shown to be
unconditionally stable, and optimal second-order accuracy for convergence and superconvergence
can be achieved in both time and space directions. Finally, the obtained numerical results are
compared with the theoretical analysis, which verifies the accuracy of the proposed method.
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1. Introduction

The development of fractional calculus has marked a significant impact on partial
differential equations involving fractional differential operators. Especially in recent years,
the applications of fractional partial differential equations have emerged in viscoelastic
(See [1,2]), electromagnetic (See [3,4]), fluid dynamics (See [5]), control theory (See [6]),
image processing (See [7]), ion-channel gating dynamics in some proteins (See [8]), airfoil
theory, tumor development (See [9]), etc. For example, several fractional models have
been successfully used to describe physical phenomena (See [10]). Furthermore, sufficient
conditions for the existence of solutions to fractional differential equations involving Ca-
puto derivatives were discussed in [11]. The analytical solutions of fractional differential
equations are difficult to calculate using mathematical or analytical methods due to the
complexity of fractional differential equations. Therefore, it is essential to develop efficient
numerical methods and conduct rigorous numerical analysis for fractional partial differen-
tial equations, especially the time-fractional diffusion equation (See [12,13]), which is very
useful in modeling physical and biological systems.

Some efforts have been devoted to time-fractional diffusion equations. Using the first-
order finite difference scheme in both time and space directions, Liu et al. derived some
stability conditions for the time-fractional diffusion equation in [14]. Lin et al. applied the
backward differentiation and collocation method to numerically solve the time-fractional
diffusion problem over finite fields, spatial exponential convergence and temporal 2− α
order accuracy can be obtained, where α (0 < α < 1) represents the order of the fractional
derivative (See [15]). Two finite difference/element methods were proposed in [16] for
time-fractional diffusion equations with Dirichlet boundary conditions. Based on the spatial
mixed FEM and the classical L1 time step method, Zhao et al. established an unconditionally
stable fully discrete approximation scheme for the time-fractional diffusion equation, and
the global superconvergence result was derived (See [17]). By constructing a higher-order
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L2-1σ scheme for the Caputo fractional derivative, [18] investigated the time-fractional
variable coefficient diffusion equation and demonstrated the stability and convergence
in the L2-norm. Using the L2-1σ format and an unconditionally stable difference scheme,
Gao et al. numerically solved the multi-term and distributed-order time-fractional diffusion
equations (See [19]). Ref. [20] proposed a linear quasi-compact finite difference scheme
for semi-linear space-fractional diffusion equations with time delays. And the time-space
fractional nonlinear diffusion equation received attention in [21,22].

Furthermore, Refs. [23,24] discussed the regularity of the solution to the time-fractional
diffusion problem and suggested that a key consideration in solving the time-fractional
diffusion problem is the nonsmoothness of the solution at the initial time. As a result,
some researchers mainly focus on initial singularity. Jin et al. revisited the L1 format error
analysis and established O(τ) order convergence results for smooth and nonsmooth initial
data (See [25]). Using graded meshes is one way to deal with initial singularity (See [26]). By
combining the L1 scheme and spatial standard finite difference method on graded meshes,
Ref. [27] presented a new analysis of stability and convergence for the time-fractional
reaction-diffusion problem. Through complementary discrete convolution kernels, the
global consistency error of fractional derivatives on graded meshes was deduced in [28],
and the convergence analysis of the L1-FEM for the time-fractional reaction-diffusion
equation was provided. The results in [27,28] showed that optimal 2− α order convergence
can be achieved by choosing the suitable temporal mesh parameter. In addition, combining
the L2-1σ scheme and the bilinear FEM, the L2-norm error analysis of the time-fractional
diffusion equation was described in [29]. With the aid of the time-space splitting technique,
[30] established H1-norm error estimates of two finite difference methods for the time-
fractional reaction-diffusion problem on graded meshes. Refs. [31,32] presented fully
discrete schemes of L2-1σ FE/spectral method on graded meshes for the time-fractional
reaction-diffusion equations, and stability and convergence were deduced.

In the above analysis of smooth or nonsmooth data, the researchers were committed to
developing a more efficient and accurate method. It is well known that superconvergence
is an effective method for improving the accuracy of FE approximation. For example,
Ref. [33] provided L∞(H1) error estimates and superconvergence results for the multi-term
time-fractional diffusion problem utilizing the L1-FEM on graded meshes. Moreover, by
combining the L2-1σ scheme on graded meshes and the nonconforming Wilson FEM, the su-
perconvergence analysis of the time-fractional diffusion equation was demonstrated in [34].
However, it appears that the temporal accuracy in the analysis of [34] is reduced by rα/2.
As a result, we re-analyzed the two-dimensional time fractional diffusion equation with
variable coefficients to achieve optimal accuracy. The nonconforming FEM is an economical
and flexible numerical method and is popular for its better convergence behavior. To the
best of our knowledge, there has been limited research on the optimal superconvergence
analysis of the two-dimensional time-fractional diffusion equation without sacrificing tem-
poral accuracy. Therefore, the goal of this paper is to perform the optimal H1-norm error
estimation and superconvergence analysis of the L2-1σ nonconforming EQrot

1 FEM for the
time-fractional variable coefficient diffusion equation.

The two-dimensional time-fractional variable coefficient diffusion equation can be
described as:

Dα
t u(x, t)−∇ · (J(x)∇u) = f (x, t), (x, t) ∈ Ω× (0, T] (1)

with a Dirichlet boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T]

and a initial condition
u(x, 0) = u0(x), x ∈ Ω,

Ω ⊂ R2 is a rectangular domain with a boundary ∂Ω. The divergence operator and the
gradient operator are represented by the symbol ∇· and the symbol ∇, respectively. J(x) is
a smooth, bounded diffusion coefficient that satisfies 0 < J−1

1 ≤ J(x) ≤ J1, where J1 is a
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positive constant. u0(x) and f (x, t) are the initial value function and the right-side source
term, respectively. The operator Dα

t is the α-order left-sided Caputo fractional derivative
with respect to t. For α ∈ (0, 1), Dα

t u(x, t) is defined as

Dα
t u(x, t) =

1
Γ(1− α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
,

where Γ(·) is the Gamma function.
In this paper, it is assumed that there is a solution u(x, t) to Equation (1) such that

|∂l
tu(x, t)| . 1 + tα−l (l = 0, 1, 2, 3). It should be noted that this is a reasonable assump-

tion satisfied by the typical problem solution (1). In addition, [24] illustrated that if the
solution u(x, t) of Equation (1) is not as singular as assumed, that is, |∂l

tu(x, t)| . 1 + tγ−l

(l = 0, 1, 2, 3) for γ > α. Then the initial condition u0 will be uniquely defined by the other
data of the equation, which is obviously restrictive.

The rest of this paper is organized as follows. In Section 2, the L2-1σ scheme and
some lemmas are introduced. Section 3 is devoted to the spatial discretization of the
nonconforming EQrot

1 FEM. The fully discrete scheme and unconditional stability are
discussed in Section 4. In Section 5, the L2-norm error estimate and the suboptimal H1-norm
estimate are derived. The optimal H1-norm estimation is supplemented in Section 6.
In Section 7, the interpolation postprocessing technique is introduced and the H1-norm
global superconvergence result is presented. Section 8 implements numerical experiments
to demonstrate the accuracy of our theoretical analysis. Finally, a brief conclusion completes
our work.

2. L2-1σ Approximation on Graded Meshes

Notations. a . b denotes a 6 Cb. The existence of a . b and b . a is described by
a w b. C is a positive constant and independent of mesh parameters, it can take various
values in different locations.

2.1. Direct Error Analysis for L2-1σ Time-Stepping Scheme

Select the graded meshes tn = T(n/N)r(r ≥ 1) at n = 0, . . . , N, and N is a positive
integer. Then the time step τn = tn − tn−1 and tn+σ = tn + στn+1 (0 ≤ σ ≤ 1). For the
function v(t) defined on [0, T], we denote

vn = v(tn), vn+σ = v(tn+σ), vn̄ = σvn+1 + (1− σ)vn and δtvn = (vn+1 − vn)/τn+1.

The properties of the graded meshes {tn}N
n=0 are described in Lemma 1 below.

Lemma 1. For the graded meshes {tn}N
n=0, we have

tn ≥
tn+1

2r and τn w T
1
r N−1t1− 1

r
n .

Proof. From the definition of {tn}N
n=0, we can deduce

tn

tn+1
=
( n

n + 1

)r
≥ 1

2r .

That is, for n = 1, 2 . . . , N − 1, tn ≥
tn+1

2r .
Furthermore, we derive the time step

τn = tn − tn−1 = T
nr − (n− 1)r

Nr = T1− 1
r

( n
N

)r−1
T

1
r

( n
N

)1−r nr − (n− 1)r

Nr = t1− 1
r

n T
1
r N−1 j1−r(jr − (j− 1)r).

j1−r(jr − (j − 1)r) can be discussed in two situations. For j = 1, the equation
j1−r(jr − (j− 1)r) = 1 is established.
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Using the Cauchy mean value theorem, we have

j1−r(jr − (j− 1)r) =
jr − (j− 1)r

jr−1 =
r (j− θj)

r−1

jr−1 = r
( j− θj

j

)r−1
= r

(
1−

θj

j

)r−1
for j ≥ 2, θj ∈ (0, 1).

It is not difficult to obtain τn w T
1
r N−1t1− 1

r
n for n = 1, 2 . . . , N with the help of

r
(1

2

)r−1
≤ r

(
1− 1

2

)r−1
≤ r

(
1−

θj

j

)r−1
≤ r.

The L2-1σ time step scheme proposed in [18] is used in this paper to approximate the
Caputo fractional derivative Dα

t vn+σ:

Dα
t vn+σ ≈ δα

t vn+σ =
n

∑
k=0

An+1
n−k(v

k+1 − vk), n = 0, . . . N − 1.

Lemma 2 ([18]). For a function v(x, t) and the L2-1σ approximation δα
t vn+σ on the graded meshes

{tn}N
n=0, we have

2(vn̄, δα
t vn+σ) ≥ δα

t ‖vn+σ‖2, n = 0, . . . , N − 1.

In this article, (·, ·) is the inner product in the space L2(Ω), and ‖ · ‖ denotes the
L2-norm. For each q ∈ N,N = {1, 2, 3, . . .}, the symbol Hq(Ω) represents the standard
Sobolev space with the corresponding norm ‖ · ‖q and semi-norm | · |q. L∞(0, T; Hm(Ω))
expresses the space of the measurable function v : (0, T) → Hm(Ω), and v satisfies
‖v‖L∞(Hm) = ess sup

0≤t≤T
‖v(t)‖m < +∞.

Lemma 3 ([32]). Assume that 1− α/2 ≤ σ ≤ 1. For a function v(t) defined on the graded meshes
{tk}N

k=0, we have

|vn+1| ≤ |v0|+ Γ(1− α) max
k=0,...,n

{tα
k+σδα

t |vk+σ|}, n = 0, . . . , N − 1.

Remark 1. Similar to the derivation of Lemma 3 in [32], replacing | · | with ‖ · ‖ and the conclusion
is still valid.

Lemma 4. For a function v(x, t) defined on the graded meshes {tn}N
n=0, assuming σ = 1− α/2

and ‖∂l
tv(x, t)‖q1 . 1 + tα−l (q1 = 0, 1) for l = 0, 1, 2, 3, we have

tα
n+σ‖δα

t vn+σ − Dα
t vn+σ‖q1 . N−min{rα,3−α}, n = 0, . . . , N − 1.

Proof. We know from the result in [32] that tα
n+σ|δα

t vn+σ − Dα
t vn+σ| . N−min{rα,3−α} is

true for the function v(t) that satisfy v(t) ∈ C([0, T]) ∩ C3((0, T]) and |v(l)(t)| . 1 + tα−l

(l = 0, 1, 2, 3).
Furthermore, for the function v(x, t), if ‖∂l

tv(x, t)‖q1 . 1 + tα−l (q1 = 0, 1) for
l = 0, 1, 2, 3, the conclusion presented in Lemma 4 is not difficult to deduce.

Lemma 5. Assume the function v(x, t) ∈ L∞(0, T; H1
0(Ω)

⋂
H2+q2(Ω)) and ‖∂l

tv(x, t)‖2+q2 .
1 + tα−l (q2 = 0, 1, 2) f or l = 0, 1, 2, 3, we have

tα
n+σ‖∇ · (J(x)∇(vn̄ − vn+σ))‖q2 . N−min{rα,2}.
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Proof. Using Taylor’s theorem, it is easy to derive

|vn̄ − vn+σ| ≤ 1
8

τ2
n+1 max

t∈(tn ,tn+1)
|v′′(t)| for v(t) ∈ C2((0, T]). (2)

Using the result of (2), we have tα
σ ‖∇ · (J(x)∇(vn̄ − vn+σ))‖q2 . tα

1 . TαN−rα for n = 0.
Combining Lemma 1, (2), and ‖∂2

t u(x, t)‖2+q2 . tα−2 yields the following result

tα
n+σ‖∇ · (J(x)∇(vn̄ − vn+σ))‖q2 . tα

n+στ2
n+1tα−2

n . tα
n+1T

2
r N−2t2− 2

r
n+1 2−r(α−2)tα−2

n+1 . N−2t2α− 2
r

n+1 for n ≥ 1.

Furthermore,

tα
n+σ‖∇ · (J(x)∇(vn̄ − vn+σ))‖q2 .

{
N−2, for n = 1, . . . , N − 1 if r ≥ 1

α ,

N−2t2α− 2
r

1 . N−2N−2rα+2 w N−2rα, for n = 1, . . . , N − 1 if 1
α ≥ r ≥ 1

is established as a more precise result.
The preceding analysis indicates that obtaining the desired result is not difficult.

2.2. Global Consistency Error Analysis for L2-1σ Time-Stepping Scheme

In this section, we introduce complementary discrete convolution kernels

pn+1
0 =

1
An+1

0

, pn+1
n−j =

1

Aj+1
0

n

∑
k=j+1

(Ak+1
k−j−1 − Ak+1

k−j )pn+1
n−k , 0 ≤ j ≤ n− 1.

And
n

∑
j=k

pn+1
n−j Aj+1

j−k ≡ 1 is established for the convolution kernels pn+1
n−j .

In Lemma 6, we present the modified discrete fractional Grönwall inequality, which is
based on the results in [30,31].

Lemma 6. For given non-negative sequences {ωn−k}N−1
k=0 , {εk+1}N−1

k=0 and {ζk+1}N−1
k=0 , there is

a constant ω independent of the time step, such that ∑N−1
k=0 {ωn−k} ≤ ω. If the non-negative

functions {vk+1}N−1
k=0 defined on graded meshes satisfy

n

∑
k=0

An+1
n−k
(
(vk+1)2 − (vk)2) ≤ n

∑
k=0

ωn−k(vn̄)2 + vn̄εn+1 + (ζn+1)2 f or 0 ≤ n ≤ N − 1,

then

vn+1 ≤ 2Eα

(8
3

ωtα
n+1

)(
v0 + max

0≤k≤n

k

∑
j=0

pk+1
k−j εj+1 +

√
4Γ(1− α)/3 max

0≤k≤n
tα/2
k+1ζk+1

)
is true, where Mittag-Leffler function Eα(ς) = Σ∞

k=0ςk/Γ(1 + kς).

The following Lemma 7 plays an important role in the error estimation in this paper.

Lemma 7. Assuming ‖∂l
tv(x, t)‖q1 . 1 + tα−l (q1 = 2, 3) holds for l = 0, 1, 2, 3, we can infer

the result
n

∑
j=0

pn+1
n−j ‖v

n̄ − vn+σ‖q1 . τmin{λα,2}, 0 ≤ n ≤ N − 1. (3)

In addition, if ‖∂l
tv(x, t)‖q2 . 1 + tα−l (q2 = 0, 1) and σ = 1− α/2, we have

n

∑
j=0

pn+1
n−j ‖δ

α
t vn+σ − Dα

t vn+σ‖q2 . τmin{λα,2}, 0 ≤ n ≤ N − 1. (4)
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Proof. According to Lemmas 3.6 and 3.8 in [31], if v(t) ∈ C2((0, T]) and
|v′′(t)| . 1 + tα−2, then

n

∑
j=0

pn+1
n−j |v

n̄ − vn+σ| . τmin{λα,2}, 0 ≤ n ≤ N − 1

is established. Furthermore, if σ = 1 − α/2, v(t) ∈ C([0, T]) ∩ C3((0, T]), and
|v(l)(t)| . 1 + tα−l (l = 0, 1, 2, 3), we have

n

∑
j=0

pn+1
n−j |δ

α
t vn+σ − Dα

t vn+σ| . τmin{λα,2}, 0 ≤ n ≤ N − 1.

Inspired by the idea in [31], we assume ‖∂l
tv(x, t)‖q1 . 1 + tα−l (q1 = 2, 3) and

‖∂l
tv(x, t)‖q2 . 1 + tα−l (q2 = 0, 1) for l = 0, 1, 2, 3, the results (3) and (4) can be obtained,

respectively.

3. Nonconforming EQrot
1 FEM in Space

Let Γh represent a family of anisotropic rectangular meshes on Ω with Ω̄ = ∪e∈Γh e
that do not need to satisfy the regularity or quasi-uniformity assumptions. Assume that Oe
is the center of e for each e ∈ Γh. The four vertices of e are

A1 = (xe − hx,e, ye − hy,e), A2 = (xe + hx,e, ye − hy,e), A3 = (xe + hx,e, ye + hy,e), and A4 = (xe − hx,e, ye + hy,e).

Oe = (xe, ye), where hx,e and hy,e are the perpendicular distances between Oe and two sides
of e that are parallel to the two coordinate planes. Let li = Ai Ai+1(i = 1, 2, 3, 4.mod(4)),
he = max{hx,e, hy,e} and h = max

e∈Γh
{he}.

The FE space is defined as

Vh = {vh; vh|e ∈ {1, x, y, x2, y2},
∫

F
〈vh〉ds = 0, F ⊂ ∂e, ∀e ∈ Γh},

where 〈vh〉 represents for the jump of vh across the edge F if F is an internal edge, and
〈vh〉 = vh if F is a boundary edge.

Let Ih : v ∈ H1(Ω)→ Ihv ∈ Vh be the associated interpolation operator satisfying

Ih|e = Ie,
∫

li
(v− Iev)ds = 0, i = 1, 2, 3, 4,

∫
e
(v− Iev)dxdy = 0.

From [35,36], we can obtain the following estimation results of the interpolation
operator Ih.

Lemma 8. Assuming the function v ∈ H1
0(Ω) ∩ H2(Ω) on anisotropic meshes, we obtain

‖v− Ihv‖+ h‖v− Ihv‖1 . h2‖v‖2

and
(∇(v− Ihv),∇vh) = 0, ∀vh ∈ Vh.

The Ritz projection operator Rh : H1
0(Ω) → Vh is then defined, which satisfies

(J(x)∇(v − Rhv),∇vh) = 0, ∀vh ∈ Vh. It is not difficult to conclude Lemma 9 from the
results in Lemma 8, the definition of Rh, and the literature [37].

Lemma 9. For any function v ∈ H1
0(Ω) ∩ H2(Ω), we have

‖Rhv− Ihv‖1 . h2‖v‖2 (5)
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and
‖Rhv− v‖+ h‖∇(Rhv− v)‖ . h2‖v‖2. (6)

Combining the results in Lemma 8 and 9 with the proof in [38], the expected result is
given in Lemma 10.

Lemma 10. If the function v ∈ H1
0(Ω) ∩ H4(Ω), we have∣∣∣∑

e

∫
∂e

J(x)
∂v
∂n

vhds
∣∣∣ . h2‖v‖4‖vh‖, ∀vh ∈ Vh,

where | · | is the absolute value and n is the unit normal vector on ∂e.

4. Stability in L2-Norm and H1-Norm

Combining the L2-1σ scheme and the nonconforming EQrot
1 FEM, the fully discrete

scheme of (1) can be expressed as : find {un
h}

N
n=0 ∈ Vh such that{ (

δα
t un+σ

h , vh
)
+
(

J(x)∇uh
n̄,∇vh

)
=
(

f n+σ, vh
)
, ∀vh ∈ Vh,

(u0
h, vh

)
= (u0, vh

)
, x ∈ Ω.

(7)

The unconditional stability of the fully discrete scheme (7) is described in Theorem 1.

Theorem 1. Let {un+1
h }N−1

n=0 represent the solutions of (7). If the function f ∈ L∞(0, T; L2(Ω)),
we have

‖un+1
h ‖2 ≤ ‖u0

h‖
2 +

Γ(1− α)J1Tα

2
max

k=0,...,N−1
‖ f k+σ‖2

and

‖∇un+1
h ‖2 ≤ J2

1‖∇u0
h‖

2 +
Γ(1− α)J1Tα

2
max

k=0,...,N−1
‖ f k+σ‖2.

Proof. Taking vh = 2uh
n̄ in (7), (7) can be rewritten as

(δα
t un+σ

h , 2uh
n̄) + (J(x)∇uh

n̄, 2∇uh
n̄) = ( f n+σ, 2uh

n̄). (8)

From Lemma 2, we know that

(δα
t un+σ

h , 2uh
n̄) ≥ δα

t ‖uh
n+σ‖2. (9)

With the aid of (9) and the condition 0 < J−1
1 ≤ J(x) ≤ J1, applying the Cauchy-

Schwartz inequality and Young’s inequality, (8) can be converted to

δα
t ‖uh

n+σ‖2 +
2
J1
‖∇uh

n̄‖2 ≤ 2‖ f n+σ‖ ‖∇uh
n̄‖ ≤ J1

2
‖ f n+σ‖2 +

2
J1
‖∇uh

n̄‖2,

that is δα
t ‖uh

n+σ‖2 ≤ J1

2
‖ f n+σ‖2. Remark 1 implies that

‖un+1
h ‖2 ≤ ‖u0

h‖
2 + Γ(1− α) max

k=0,...,n
{tα

k+σ δα
t ‖uh

k+σ‖2}

≤ ‖u0
h‖

2 +
Γ(1− α)J1Tα

2
max

k=0,...,N−1
‖ f k+σ‖2.

Choosing vh = 2δα
t uh

n+σ in (7) to estimate ‖∇un+1
h ‖, we have

(δα
t uh

n+σ, 2δα
t uh

n+σ) + (J(x)∇uh
n̄, 2δα

t∇uh
n+σ) = ( f n+σ, 2δα

t uh
n+σ). (10)
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Lemma 2 means that

(J(x)∇uh
n̄, 2δα

t∇uh
n+σ) ≥ δα

t ‖∇(J
1
2 (x)uh

n+σ)‖2. (11)

Combining (11) with (10), we have

2‖δα
t uh

n+σ‖2 + δα
t ‖∇(J

1
2 (x)uh

n+σ)‖2 ≤ 2‖ f n+σ‖ ‖δα
t uh

n+σ‖ ≤ 1
2
‖ f n+σ‖2 + 2‖δα

t uh
n+σ‖2. (12)

Then (12) can be rewritten as δα
t ‖∇(J

1
2 (x)uh

n+σ)‖2 ≤ 1
2
‖ f n+σ‖2. Using Remark 1, we

obtain that

‖∇(J
1
2 (x)un+1

h )‖2 ≤ ‖∇(J
1
2 (x)u0

h)‖
2 +

Γ(1− α)Tα

2
max

k=0,...,N−1
‖ f k+σ‖2. (13)

Further, inequality (13) can be simplified to

‖∇un+1
h ‖2 ≤ J2

1‖∇u0
h‖

2 +
Γ(1− α)J1Tα

2
max

k=0,...,N−1
‖ f k+σ‖2.

5. Error Estimates in Optimal L2-Norm and Suboptimal H1-Norm

Subtracting (7) from (1) yields the error equation

(δα
t (u

n+σ − uh
n+σ), vh) + (J(x)∇(un̄ − uh

n̄),∇vh)

= −(Rn+σ
1 , vh) + (∇ · (J(x)∇Rn+σ

2 ), vh) + ∑
e

∫
∂e

J(x)
∂un̄

∂n
vhds−∑

e

∫
∂e

J(x)
∂Rn+σ

2
∂n

vhds, ∀vh ∈ Vh,

where Rn+σ
1 = Dα

t un+σ − δα
t un+σ, Rn+σ

2 = un+σ − un̄.
Denoting un − uh

n = un − Rhun + Rhun − un
h = ηn + ξn, the error equation has the

following form:

(
δα

t ξn+σ, vh
)
+
(

J(x)∇ξ n̄,∇vh
)

= −
(
δα

t ηn+σ, vh
)
−
(

J(x)∇ηn̄,∇vh
)
−
(

Rn+σ
1 , vh

)
+
(
∇ · (J(x)∇Rn+σ

2 ), vh
)

+∑
e

∫
∂e

J(x)
∂un̄

∂n
vhds−∑

e

∫
∂e

J(x)
∂Rn+σ

2
∂n

vhds.
(14)

By using the error equation, we present the convergence and superclose results of the
fully discrete scheme in Theorems 2 and 3, respectively.

Theorem 2. Let u represent the solution of (1), and {un
h}

N
n=0 represent the solutions of the fully

discrete scheme (7) on graded meshes. Specify the parameter σ = 1 − α/2. If u ∈ L∞(0, T;
H1

0(Ω)
⋂

H2(Ω)
⋂

H4(Ω)), Dα
t u ∈ L∞(0, T; H2(Ω)) and ‖∂l

tu(x, t)‖4 . 1 + tα−l hold for
l = 0, 1, 2, 3, we can deduce

max
1≤n≤N

‖un − uh
n‖ . h2 + N−min{rα,2}.

Proof. Choosing vh = 2ξ n̄ in (14), we have(
δα

t ξn+σ, 2ξ n̄)+ (J(x)∇ξ n̄, 2∇ξ n̄) = −
(
δα

t ηn+σ, 2ξ n̄)− (J(x)∇ηn̄, 2∇ξ n̄)− (Rn+σ
1 , 2ξ n̄)

+
(
∇ · (J(x)∇Rn+σ

2 ), 2ξ n̄)+ 2 ∑
e

∫
∂e

J(x)
∂un̄

∂n
ξ n̄ds

−2 ∑
e

∫
∂e

J(x)
∂Rn+σ

2
∂n

ξ n̄ds.

(15)
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Lemma 2 implies
(δα

t ξn+σ, 2ξ n̄) ≥ δα
t ‖ξn+σ‖2. (16)

Applying the Lemma 10, we know that

− (J(x)∇ηn̄, 2∇ξ n̄) + 2 ∑
e

∫
∂e

J(x)
∂un̄

∂n
ξ n̄ds− 2 ∑

e

∫
∂e

J(x)
∂Rn+σ

2
∂n

ξ n̄ds . 2h2(‖un̄‖4 + ‖Rn+σ
2 ‖4)‖ξ n̄‖. (17)

Equation (15) can be simplified to

δα
t ‖ξn+σ‖2 . 2(‖δα

t ηn+σ‖+ ‖Rn+σ
1 ‖+ ‖∇ · (J(x)∇Rn+σ

2 )‖+ h2‖un̄‖4 + h2‖Rn+σ
2 ‖4)‖ξ n̄‖

by substituting (16) and (17) into (15) and applying the Cauchy-Schwartz inequality. Using
the result of Remark 1, we can easily determine that

max
n=1,...,N

‖ξn‖2 . 2 Γ(1− α) max
k=0,...,N−1

{
tα
k+σ(‖δ

α
t ηk+σ‖+ ‖Rk+σ

1 ‖+ ‖∇ · (J(x)∇Rk+σ
2 )‖

+h2‖uk̄‖4 + h2‖Rk+σ
2 ‖4)

}
max

s=0,...,N
‖ξs‖.

(18)

Inequality (18) can be converted to

max
n=1,...,N

‖ξn‖ . 2 Γ(1− α) max
k=0,...,N−1

{
tα
k+σ(‖δ

α
t ηk+σ‖+ ‖Rk+σ

1 ‖+ ‖∇ · (J(x)∇Rk+σ
2 )‖

+h2‖uk̄‖4 + h2‖Rk+σ
2 ‖4)

} .
=

5

∑
i=1

Ei.
(19)

The next goal is to estimate ∑5
i=1 Ei. Based on the result of (6) in Lemma 9, we have

the following derivation

‖δα
t ηk+σ‖ ≤ ‖δα

t uk+σ − Dα
t uk+σ − Rh(δ

α
t uk+σ − Dα

t uk+σ)‖+ ‖Dα
t ηk+σ‖

. ‖Rk+σ
1 ‖+ ‖RhRk+σ

1 ‖+ h2‖Dα
t uk+σ‖2

. 2‖Rk+σ
1 ‖+ h2‖Dα

t u‖L∞(H2(Ω)).

(20)

Combine the results in Lemmas 4 and 5 with Dα
t u ∈ L∞(0, T; H2(Ω)), we have

E1 + E2 + E3 . h2 + N−min{rα,2}. E4 + E5 . h2 is established employing u ∈ L∞(0, T;
H1

0(Ω)
⋂

H4(Ω)).
The preceding derivations suffice to demonstrate that max

n=1,...,N
‖ξn‖ . h2 + N−min{rα,2}.

Finally, the desired result can be obtained by using the result of (6) in Lemma 9 and
the triangle inequality ‖un − un

h‖ ≤ ‖u
n − Rhun‖+ ‖Rhun − un

h‖.

Theorem 3. Suppose u is the solution of (1) and {un
h}

N
n=0 are solutions of the fully discrete

scheme (7) on graded meshes. If u ∈ L∞(0, T; H1
0(Ω)

⋂
H2(Ω)

⋂
H4(Ω)), Dα

t u ∈ L∞(0, T;
H2(Ω)) and ‖∂l

tu(x, t)‖4 . 1 + tα−l for l = 0, 1, 2, 3, choose σ = 1 − α/2, we have the
following result

‖∇(Ihun − un
h)‖ . h2 + N−min{ rα

2 ,2− rα
2 }.

Proof. Taking vh = 2δα
t ξn+σ in (14), we have

(δα
t ξn+σ, 2δα

t ξn+σ) + (J(x)∇ξ n̄, 2δα
t∇ξn+σ) = −(δα

t ηn+σ, 2δα
t ξn+σ)− (J(x)∇ηn̄, 2δα

t∇ξn+σ)

−(Rn+σ
1 , 2δα

t ξn+σ) + (∇ · (J(x)∇Rn+σ
2 ), 2δα

t ξn+σ) + 2 ∑
e

∫
∂e

J(x)
∂un̄

∂n
δα

t ξn+σds− 2 ∑
e

∫
∂e

J(x)
∂Rn+σ

2
∂n

δα
t ξn+σds.

(J(x)∇ξ n̄, 2δα
t∇ξn+σ) ≥ δα

t ‖J
1
2 (x)∇ξn+σ‖2 can be found in Lemma 2.
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Applying the results of Lemma 10 and the Cauchy-Schwartz inequality, it is straight-
forward to obtain the following inequality

2‖δα
t ξn+σ‖2 + δα

t ‖λ
1
2 (x)∇ξn+σ‖2

. 2(‖δα
t ηn+σ‖+ ‖Rn+σ

1 ‖+ ‖∇ · (J(x)∇Rn+σ
2 )‖+ h2‖un̄‖4 + h2‖Rn+σ

2 ‖4)‖δα
t ξn+σ‖

.
1
2
(‖δα

t ηn+σ‖2 + ‖Rn+σ
1 ‖2 + ‖∇ · (J(x)∇Rn+σ

2 )‖2 + h4‖un̄‖2
4 + h4‖Rn+σ

2 ‖2
4) + 2‖δα

t ξn+σ‖2,

that is

δα
t ‖J

1
2 (x)∇ξn+σ‖2 .

1
2
(‖δα

t ηn+σ‖2 + ‖Rn+σ
1 ‖2 + ‖∇ · (J(x)∇Rn+σ

2 )‖2 + h4‖un̄‖2
4 + h4‖Rn+σ

2 ‖2
4).

Using Remark 1, we have

‖∇ξn+1‖2 .
Γ(1− α)J1

2
max

k=0,...,N−1

{
tα
k+σ(‖δ

α
t ηk+σ‖2 + ‖Rk+σ

1 ‖2 + ‖∇ · (J(x)∇Rk+σ
2 )‖2 + h4‖uk̄‖2

4 + h4‖Rk+σ
2 ‖2

4)
}

.
=

5

∑
i=1

Fi.

Similar to the estimation of (20), F1 + F2 .
Γ(1− α)J1tα

k+σ

2
(
‖Rk+σ

1 ‖2 + h4‖Dα
t u‖2

L∞(H2(Ω))

)
can be obtained.

A more precise estimate of tα
k+σ ‖R

k+σ
1 ‖2 is required, and the derivation from the

definitions of tk and tk+σ is as follows:

tα
k+σ‖R

k+σ
1 ‖2 = t−α

k+σ(t
α
k+σ‖R

k+σ
1 ‖)2 . t−α

1 N−2min{rα,3−α} . (T−αNrα)N−2min{rα,3−α} . T−αN−2min{ rα
2 ,3−α− rα

2 }. (21)

F1 + F2 . h4 + N−2min{ rα
2 ,3−α− rα

2 } can be inferred utilizing Dα
t u ∈ L∞(0, T; H2(Ω)) and (21).

By using the estimated result of Lemma 5 and (21), F3 . N−2min{ rα
2 ,2− rα

2 } is obtained.
The condition u ∈ L∞(0, T; H1

0(Ω)
⋂

H4(Ω)) means that F4 + F5 . h2. Based on
the above estimation of Fi(i = 1, 2, 3, 4, 5), we come to the conclusion ‖∇ξn‖ . h2 +

N−min{ rα
2 ,2− rα

2 }.
The superclose result is established by combining the result of (5) in Lemma 9, the trian-

gle inequality ‖∇(Ihun − un
h)‖ ≤ ‖∇(Ihun − Rhun)‖+ ‖∇(Rhun − un

h)‖, and the technique
of combining interpolation with projection.

6. The Optimal Error Estimate in H1-Norm

The H1-norm superclose result is derived in Theorem 5.2. However, the optimal time
accuracy was not attained. As a result, improving temporal precision will be addressed in
this section.

Due to analysis requirements, the L2-projection operator Ph : L2(Ω) −→ Vh and the
discrete Laplacian operator ∆h : Vh −→ Vh are introduced.

For ∀vh ∈ Vh, we have (Phv, vh) = (v, vh).
And for ∀v, vh ∈ Vh, the following formula is established:

(∆hv, vh) = −(J(x)∇v,∇vh). (22)

Therefore, the fully discrete format of (1) can take the form: find {un
h}

N
n=0 ∈ Vh

such that {
(δα

t un+σ
h , vh)− (∆huh

n̄, vh) = (Ph f n+σ, vh), 0 ≤ n ≤ N − 1,

(u0
h(x), vh) = (Phu0(x), vh), ∀vh ∈ Vh, x ∈ Ω.

(23)
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Using the property of the Ritz projection operator Rh, the following relationship
between between Rh, ∆h, and Ph can be obtained:

(∆hRhv, vh) = (Ph∇· (J(x))∇v), vh)−∑
e

∫
∂e

J(x)
∂v
∂n

vhds, ∀v ∈ H2(Ω) and vh ∈ Vh. (24)

The following equations can be derived by combining (22)–(24):

(δα
t ξn+σ, vh)− (∆hξ n̄, vh)

= (Rhδα
t un+σ, vh)− (δα

t un+σ
h , vh)− (∆hRhun̄, vh) + (∆huh

n̄, vh)

= (Rhδα
t un+σ, vh)− (Ph f n+σ, vh)− (Ph∇ · (J(x)∇un̄), vh) + ∑

e

∫
∂e

J(x)
∂un̄

∂n
vhds

= ((Rh − Ph) δα
t un+σ, vh) + (Phδα

t un+σ, vh)− (Ph f n+σ, vh)− (Ph∇ · (J(x)∇un̄), vh) + ∑
e

∫
∂e

J(x)
∂un̄

∂n
vhds

= −(Ph(I − Rh) δα
t un+σ, vh) + (Ph(Dα

t un+σ − Rn+σ
1 ), vh)− (Ph(∇ · (J(x)∇un+σ)−∇ · (J(x)∇Rn+σ

2 )), vh)

−(Ph f n+σ, vh) + ∑
e

∫
∂e

J(x)
∂un̄

∂n
vhds

= −(Phδα
t ηn+σ, vh) + (Ph(Dα

t un+σ − Rn+σ
1 ), vh)− (Ph(∇ · (J(x)∇un+σ)−∇ · (J(x)∇Rn+σ

2 )), vh)

−(Ph f n+σ, vh) + ∑
e

∫
∂e

J(x)
∂un̄

∂n
vhds

= −(Phδα
t ηn+σ, vh) + (Ph(∇ · (J(x)∇Rn+σ

2 )− Rn+σ
1 ), vh) + ∑

e

∫
∂e

J(x)
∂un̄

∂n
vhds.

(25)

Theorem 4. Suppose {un
h}

N
n=0 are the solutions of the fully discrete scheme (25) on graded meshes,

and u is the solution of (1). Let σ = 1 − α/2, if u ∈ L∞(0, T; H1
0(Ω)

⋂
H2(Ω)

⋂
H4(Ω)),

Dα
t u ∈ L∞(0, T; H2(Ω)) and ‖∂l

tu(x, t)‖3 . 1 + tα−l f or l = 0, 1, 2, 3, we have

‖Ihun+1 − un+1
h ‖1 . h2 + τmin{λα,2}.

Proof. Choosing vh = −2∆hξ n̄ in (25), we have

(J(x)δα
t∇ξn+σ, 2∇ξ n̄) + 2‖∆hξ n̄‖2 = (Phδα

t ηn+σ, 2∆hξ n̄)− (Ph(∇ · (J(x)∇Rn+σ
2 )− Rn+σ

1 ), 2∆hξ n̄)

−2 ∑
e

∫
∂e

J(x)
∂un̄

∂n
∆hξ n̄ds.

(26)

According to the result of Lemma 2, we know that

(J(x)δα
t∇ξn+σ, 2∇ξ n̄) ≥

n

∑
k=0

An+1
n−k
(
|J

1
2 (x)ξk+1|21 − |J

1
2 (x)ξk|21

)
. (27)

Combining Young’s inequality, the Cauchy-Schwartz inequality, and Lemma 9, the
following derivation can be presented as

(Phδα
t ηn+σ, 2∆hξ n̄) = −(Rn+σ

1 , 2∆hξ n̄) + (RhRn+σ
1 , 2∆hξ n̄) + (Dα

t ηn+σ, 2∆hξ n̄)

= (J(x)∇Rn+σ
1 , 2∇ξ n̄)− (J(x)∇RhRn+σ

1 , 2∇ξ n̄) + (Dα
t ηn+σ, 2∆hξ n̄)

≤ 2|J 1
2 (x)Rn+σ

1 |1|J
1
2 (x)ξ n̄|1 + 2|J 1

2 (x)RhRn+σ
1 |1|J

1
2 (x)ξ n̄|1 + 2‖Dα

t ηn+σ‖ ‖∆hξ n̄‖

≤ 2|J 1
2 (x)Rn+σ

1 |1|J
1
2 (x)ξ n̄|1 + 2|J 1

2 (x)Rn+σ
1 |1|J

1
2 (x)ξ n̄|1 + ‖Dα

t ηn+σ‖2 + ‖∆hξ n̄‖2

≤ 4|J 1
2 (x)Rn+σ

1 |1|J
1
2 (x)ξ n̄|1 + Ch4‖Dα

t un+σ‖2
2 + ‖∆hξ n̄‖2

≤ 4|J 1
2 (x)Rn+σ

1 |1|J
1
2 (x)ξ n̄|1 + Ch4 + ‖∆hξ n̄‖2

(28)
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and

(Ph(∇ · (J(x)∇Rn+σ
2 )− Rn+σ

1 ), 2∆hξ n̄) ≤ 2
(
‖J

1
2 (x)Rn+σ

2 ‖3 + |J
1
2 (x)Rn+σ

1 |1
)
|J

1
2 (x)ξ n̄|1. (29)

Referring to Lemma 10, we can know∣∣∣− 2 ∑
e

∫
∂e

J(x)
∂un̄

∂n
∆hξ n̄ds

∣∣∣ ≤ 2Ch2‖un̄‖4‖∆hξ n̄‖ ≤ Ch4 + ‖∆hξ n̄‖2. (30)

Substituting (27)–(30) into (26), we have

n

∑
k=0

An+1
n−k
(
|J

1
2 (x)ξk+1|21 − |J

1
2 (x)ξk|21

)
≤
(
6|J

1
2 (x)Rn+σ

1 |1 + 2‖J
1
2 (x)Rn+σ

2 ‖3
)
|J

1
2 (x)ξ n̄|1 + 2Ch4. (31)

The result in Lemma 6 shows that

|J 1
2 (x)ξn+1|1 ≤ 2Eα

(16
3

ktα
n+1

)(
|J

1
2 (x)ξ0|1 + max

0≤k≤n

k

∑
j=0

Qk+1
k−j
(
6|J

1
2 (x)Rj+σ

1 |1 + 2|J
1
2 (x)Rj+σ

2 |3
)

+ Ch2 max
0≤k≤n

tα/2
k+1

√
4(2 + k2)Γ(1− α)/3

)
.

(32)

In addition, (32) can be converted to

|ξn+1|1 ≤ 2Eα

(16
3

ktα
n+1

)(
J1|ξ0|1 + max

0≤k≤n

k

∑
j=0

Qk+1
k−j
(
6J1|R

j+σ
1 |1 + 2J1|R

j+σ
2 |3

)
+ Ch2 max

0≤k≤n
tα/2
k+1

√
4J1(2 + k2)Γ(1− α)/3

)
.

The result of Lemma 7 implies that

|ξn+1|1 . h2 + τmin{λα,2}.

It is not difficult to obtain

‖Ihun+1 − un+1
h ‖1 ≤ Ch2‖un+1‖2 + ‖ξn+1‖+ |ξn+1|1 . h2 + τmin{λα,2}

from Lemma 9 and u ∈ L∞(0, T; H1
0(Ω)

⋂
H3(Ω)).

7. Interpolation Postprocessing Technology

In this section, superconvergent results are derived by reconstructing a series of meshes
Γ2h. For ∀ẽ ∈ Γ2h (see Figure 1), it contains four adjacent small elements belonging to Γh.
Using the result in [39], the interpolation operator I2hv|ẽ ∈ P2(ẽ) can be defined by∫

li
(I2hv− v)ds = 0, i = 1, 2, 3, 4,

∫
e1
⋃

e3

(I2hv− v)dxdy = 0,
∫

e2
⋃

e4

(I2hv− v)dxdy = 0,

where P2(ẽ) = span{1, x, y, xy, x2, y2} represents the quadratic polynomial space on the
element ẽ.

l1 l2

l12 l10

l5l6

l3

l4

l9

l11

l8

l7 e4

e1

e3

e2
ã1 ã2 ã3

ã8 ã9
ã4

ã7 ã6 ã5

Figure 1. New element ẽ.
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It has the following properties for the interpolation operator I2h:

I2h Ihv = I2hv,

‖I2hv− v‖1 . h2‖v‖3, ∀v ∈ H3(Ω),

‖I2hvh‖1 . ‖vh‖1, ∀vh ∈ Vh.

Theorem 5. The following global superconvergence result can be obtained under the assumption of
Theorem 4

‖I2huh
n − un‖1 . h2 + τmin{λα,2}.

Proof. Combining the properties of I2h and the result of Theorem 4, we have the following
derivation

‖I2huh
n − un‖1 ≤ ‖I2huh

n − I2h Ihun‖1 + ‖I2h Ihun − un‖1

= ‖I2h(uh
n − Ihun)‖1 + ‖I2hun − un‖1

. ‖∇(un
h − Ihun)‖+ h2‖un‖3.

That is,
‖I2huh

n − un‖1 . h2 + τmin{λα,2}.

8. Numerical Results

In this section, two numerical examples are provided to demonstrate the correctness
of our theoretical results.

Example 1. Consider problem (1) defined in the region Ω = [0, 1]× [0, 1] with diffusion coefficient
J(x) = x2y2 + 0.1, and final time T = 1. The function f (x, t) is chosen such that the exact solution
u(x, t) = tαy(1− x)(1− y)(1− e−

x
ε ), where x = (x, y).

Example 2. Consider equation (1) in the spatial domain Ω = [0, 1]× [0, 1] and the time interval
(0, T], choosing the source term f (x, t) with the exact solution u(x, t) = tα(1− x) sin πy(1− e−

x
ε ),

where T = 1, x = (x, y). In this example, we set the diffusion coefficient J(x) = x2y2 + 0.1.

The exact and numerical solutions for Examples 1 and 2 are shown in Figures 2–5.
As can be seen from Figures 2–5, the solution changes sharply in the x-direction, while
it changes gently in the y-direction. That is, the solution to the problem (1) has strong
anisotropy in the x-direction when the value of ε is very small. Further, comparing the
images of the numerical solution and the exact solution, it can be seen that the numerical
simulation is very perfect.
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Figure 2. Example 1.
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In addition, numerical experiments are performed on Examples 1 and 2 by choosing
α = 0.3, 0.5, 0.8. The errors and convergence orders in the time and space directions are
shown in Tables 1–10, where m1 and m2 represent the number of elements in the x-direction
and y-direction, respectively. The obtained numerical results are consistent with the theo-
retical analysis for different α values and r = 1, r = 2/α, r = (3− α)/α. The algorithm can
achieves optimal second-order accuracy in both time and space directions.
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Figure 3. Example 1.
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Table 1. Temporal numerical results of r = 1 on graded meshes to Example 1.

α = 0.8 ‖un−Un‖ ‖Ihun−Un‖1 ‖I2hUn− un‖1

N Error Rate Error Rate Error Rate

32 5.7510 × 10 −5 / 2.7571 × 10 −4 / 2.1860 × 10 −3 /
64 3.9133 × 10 −5 0.5554 1.8178 × 10 −4 0.6009 1.3213 × 10 −3 0.7262

128 2.4954 × 10 −5 0.6490 1.1372 × 10 −4 0.6767 7.2972 × 10 −4 0.8566
256 1.5227 × 10 −5 0.7125 6.8842 × 10 −5 0.7241 4.2070 × 10 −4 0.7945

Table 2. Temporal numerical results of ‖un −Un‖ on graded meshes to Example 1.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 1.5549 × 10 −3 / 1.5500 × 10 −3 / 1.5327 × 10 −3 /
r = 2/α 64 4.0089 × 10 −4 1.9556 3.9971 × 10 −4 1.9552 3.9571 × 10 −4 1.9536

128 1.0101 × 10 −4 1.9886 1.0072 × 10 −4 1.9885 9.9738 × 10 −5 1.9882
256 2.5304 × 10 −5 1.9971 2.5230 × 10 −5 1.9971 2.4985 × 10 −5 1.9970
32 1.5594 × 10 −3 / 1.5520 × 10 −3 / 1.5329 × 10 −3 /

r = (3− α)/α 64 4.0202 × 10 −4 1.9556 4.0021 × 10 −4 1.9553 3.9577 × 10 −4 1.9536
128 1.0130 × 10 −4 1.9885 1.0084 × 10 −4 1.9885 9.9752 × 10 −5 1.9882
256 2.5378 × 10 −5 1.9970 2.5263 × 10 −5 1.9971 2.4989 × 10 −5 1.9970

Table 3. Temporal numerical results of ‖Ihun − Un‖1on graded meshes to Example 1.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 4.1956 × 10 −3 / 4.1603 × 10 −3 / 4.0345 × 10 −3 /
r = 2/α 64 1.0385 × 10 −3 2.0143 1.0294 × 10 −3 2.0148 9.9788 × 10 −4 2.0154

128 2.5896 × 10 −4 2.0036 2.5665 × 10 −4 2.0039 2.4873 × 10 −4 2.0042
256 6.4708 × 10 −5 2.0007 6.4124 × 10 −5 2.0008 6.2139 × 10 −5 2.0010
32 4.2283 × 10 −3 / 4.1752 × 10 −3 / 4.0363 × 10 −3 /

r = (3− α)/α 64 1.0475 × 10 −3 2.0130 1.0334 × 10 −3 2.0144 9.9836 × 10 −4 2.0154
128 2.6133 × 10 −4 2.0030 2.5769 × 10 −4 2.0037 2.4885 × 10 −4 2.0042
256 6.5317 × 10 −5 2.0003 6.4388 × 10 −5 2.0007 6.2171 × 10 −5 2.0009

Table 4. Temporal numerical results of ‖I2hUn − un‖1 on graded meshes to Example 1.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 5.4900 × 10 −2 / 5.4901 × 10 −2 / 5.4903 × 10 −2 /
r = 2/α 64 1.5497 × 10 −2 1.8248 1.5500 × 10 −2 1.8245 1.5511 × 10 −2 1.8235

128 4.0019 × 10 −3 1.9532 4.0028 × 10 −3 1.9531 4.0060 × 10 −3 1.9530
256 1.0110 × 10 −3 1.9848 1.0112 × 10 −3 1.9848 1.0121 × 10 −3 1.9848
32 5.4900 × 10 −2 / 5.4901 × 10 −2 / 5.4903 × 10 −2 /

r = (3− α)/α 64 1.5494 × 10 −2 1.8250 1.5499 × 10 −2 1.8246 1.5511 × 10 −2 1.8236
128 4.0011 × 10 −3 1.9532 4.0025 × 10 −3 1.9532 4.0060 × 10 −3 1.9530
256 1.0108 × 10 −3 1.9848 1.0111 × 10 −3 1.9847 1.0121 × 10 −3 1.9848

Table 5. Spatial numerical results of ε = 0.05 on anisotropic meshes to Example 1.

α = 0.5 ‖un−Un‖ ‖Ihun−Un‖1 ‖I2hUn− un‖1
m1×m2 Error Rate Error Rate Error Rate

32× 4 3.0272 × 10 −3 / 4.4043 × 10 −2 / 3.2801 × 10 −1 /
64× 8 6.7511 × 10 −4 2.1647 7.9701 × 10 −3 2.4662 8.0403 × 10 −2 2.0284

128× 16 1.6921 × 10 −4 1.9962 1.7240 × 10 −3 2.2088 1.9616 × 10 −2 2.0352
256× 32 4.4113 × 10 −5 1.9396 4.2518 × 10 −4 2.0196 4.8606 × 10 −3 2.0128
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Table 6. Temporal numerical results of r = 1 on graded meshes to Example 2.

α = 0.8 ‖un−Un‖ ‖Ihun−Un‖1 ‖I2hUn− un‖1
N Error Rate Error Rate Error Rate

32 2.2153 × 10 −4 / 1.0555 × 10 −3 / 7.7283 × 10 −3 /
64 1.5161 × 10 −4 0.5471 7.0104 × 10 −4 0.5904 4.5740 × 10 −3 0.7567
128 9.6726 × 10 −5 0.6484 4.3974 × 10 −4 0.6729 2.5582 × 10 −3 0.8383
256 5.9023 × 10 −5 0.7126 2.6636 × 10 −4 0.7233 1.4706 × 10 −3 0.7987

Table 7. Temporal numerical results of ‖un −Un‖ on graded meshes to Example 2.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 6.0099 × 10 −3 / 5.9916 × 10 −3 / 5.9280 × 10 −3 /
r = 2/α 64 1.5456 × 10 −3 1.9591 1.5411 × 10 −3 1.9589 1.5257 × 10 −3 1.9581

128 3.8922 × 10 −4 1.9895 3.8809 × 10 −4 1.9895 3.8426 × 10 −4 1.9893
256 9.7486 × 10 −5 1.9973 9.7201 × 10 −5 1.9973 9.6244 × 10 −5 1.9973
32 6.0267 × 10 −3 / 5.9992 × 10 −3 / 5.9289 × 10 −3 /

r = (3− α)/α 64 1.5499 × 10 −3 1.9591 1.5430 × 10 −3 1.9590 1.5259 × 10 −3 1.9581
128 3.9036 × 10 −4 1.9894 3.8858 × 10 −4 1.9895 3.8431 × 10 −4 1.9893
256 9.7777 × 10 −5 1.9972 9.7326 × 10 −5 1.9973 9.6258 × 10 −5 1.9972

Table 8. Temporal numerical results of ‖Ihun − Un‖1on graded meshes to Example 2.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 1.5736 × 10 −2 / 1.5599 × 10 −2 / 1.5114 × 10 −2 /
r = 2/α 64 3.9176 × 10 −3 2.0060 3.8820 × 10 −3 2.0066 3.7582 × 10 −3 2.0078

128 9.7884 × 10 −4 2.0008 9.6976 × 10 −4 2.0011 9.3855 × 10 −4 2.0015
256 2.4471 × 10 −4 1.9999 2.4242 × 10 −4 2.0001 2.3459 × 10 −4 2.0002
32 1.5864 × 10 −2 / 1.5657 × 10 −2 / 1.512146× 10−2 /

r = (3− α)/α 64 3.9529 × 10 −3 2.0047 3.8977 × 10 −3 2.0061 3.7600 × 10 −3 2.0077
128 9.8811 × 10 −4 2.0002 9.7381 × 10 −4 2.0009 9.3903 × 10 −4 2.0015
256 2.4709 × 10 −4 1.9996 2.4345 × 10 −4 1.9999 2.3471 × 10 −4 2.0002

Table 9. Temporal numerical results of ‖I2hUn − un‖1 on graded meshes to Example 2.

T = 1 α = 0.3 α = 0.5 α = 0.8
N Error Rate Error Rate Error Rate

32 1.9200 × 10 −1 / 1.9201 × 10 −1 / 1.9202 × 10 −1 /
r = 2/α 64 5.3623 × 10 −2 1.8402 5.3635 × 10 −2 1.8399 5.3676 × 10 −2 1.8389

128 1.3846 × 10 −2 1.9534 1.3849 × 10 −2 1.9533 1.3862 × 10 −2 1.9532
256 3.4994 × 10 −3 1.9843 3.5003 × 10 −3 1.9843 3.5034 × 10 −3 1.9842
32 1.9199 × 10 −1 / 1.9200 × 10 −1 / 1.9202 × 10 −1 /

r = (3− α)/α 64 5.3613 × 10 −2 1.8404 5.3629 × 10 −2 1.8400 5.3675 × 10 −2 1.8389
128 1.3843 × 10 −2 1.9534 1.3848 × 10 −2 1.9533 1.3861 × 10 −2 1.9532
256 3.4985 × 10 −3 1.9843 3.4999 × 10 −3 1.9843 3.5033 × 10 −3 1.9843

Table 10. Spatial numerical results of ε = 0.05 on anisotropic meshes to Example 2.

α = 0.5 ‖un−Un‖ ‖Ihun−Un‖1 ‖I2hUn− un‖1
m1×m2 Error Rate Error Rate Error Rate

32× 4 9.6520 × 10 −3 / 1.1496 × 10 −1 / 9.3686 × 10 −1 /
64× 8 2.2893 × 10 −3 2.0759 2.1546 × 10 −2 2.4157 2.1937 × 10 −1 2.0944

128× 16 5.7768 × 10 −4 1.9865 4.8736 × 10 −3 2.1444 5.3944 × 10 −2 2.0238
256× 32 1.5132 × 10 −4 1.9326 1.2299 × 10 −3 1.9864 1.3432 × 10 −2 2.0058

9. Conclusions

In this paper, we analyze a class of two-dimensional time-fractional variable coeffi-
cient diffusion equation using a high-precision L2-1σ scheme on graded meshes with an
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anisotropic nonconforming FEM. Unconditional stability, optimal H1-norm error estimates
and global superconvergence result are rigorously derived. The results show that by se-
lecting a suitable mesh parameter r, the optimal second-order accuracy can be achieved
in time and space. Next we will focus on the superconvergence analysis of high-precision
approximation schemes for nonlinear equations.
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