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Abstract: In this paper, based on the L2-1, scheme and nonconforming EQ’”" finite element method
(FEM), a numerical approximation is presented for a class of two-dimensional time-fractional diffusion
equations involving variable coefficients. A novel and detailed analysis of the equations with an
initial singularity is described on anisotropic meshes. The fully discrete scheme is shown to be
unconditionally stable, and optimal second-order accuracy for convergence and superconvergence
can be achieved in both time and space directions. Finally, the obtained numerical results are
compared with the theoretical analysis, which verifies the accuracy of the proposed method.

Keywords: time-fractional diffusion equation; initial singularity; L2-1, scheme; nonconforming
EQ'°! element; convergence and superconvergence; anisotropic meshes

1. Introduction

The development of fractional calculus has marked a significant impact on partial
differential equations involving fractional differential operators. Especially in recent years,
the applications of fractional partial differential equations have emerged in viscoelastic
(See [1,2]), electromagnetic (See [3,4]), fluid dynamics (See [5]), control theory (See [6]),
image processing (See [7]), ion-channel gating dynamics in some proteins (See [8]), airfoil
theory, tumor development (See [9]), etc. For example, several fractional models have
been successfully used to describe physical phenomena (See [10]). Furthermore, sufficient
conditions for the existence of solutions to fractional differential equations involving Ca-
puto derivatives were discussed in [11]. The analytical solutions of fractional differential
equations are difficult to calculate using mathematical or analytical methods due to the
complexity of fractional differential equations. Therefore, it is essential to develop efficient
numerical methods and conduct rigorous numerical analysis for fractional partial differen-
tial equations, especially the time-fractional diffusion equation (See [12,13]), which is very
useful in modeling physical and biological systems.

Some efforts have been devoted to time-fractional diffusion equations. Using the first-
order finite difference scheme in both time and space directions, Liu et al. derived some
stability conditions for the time-fractional diffusion equation in [14]. Lin et al. applied the
backward differentiation and collocation method to numerically solve the time-fractional
diffusion problem over finite fields, spatial exponential convergence and temporal 2 — &
order accuracy can be obtained, where « (0 < a < 1) represents the order of the fractional
derivative (See [15]). Two finite difference/element methods were proposed in [16] for
time-fractional diffusion equations with Dirichlet boundary conditions. Based on the spatial
mixed FEM and the classical L1 time step method, Zhao et al. established an unconditionally
stable fully discrete approximation scheme for the time-fractional diffusion equation, and
the global superconvergence result was derived (See [17]). By constructing a higher-order
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L2-1, scheme for the Caputo fractional derivative, [18] investigated the time-fractional
variable coefficient diffusion equation and demonstrated the stability and convergence
in the L2-norm. Using the L2-1, format and an unconditionally stable difference scheme,
Gao et al. numerically solved the multi-term and distributed-order time-fractional diffusion
equations (See [19]). Ref. [20] proposed a linear quasi-compact finite difference scheme
for semi-linear space-fractional diffusion equations with time delays. And the time-space
fractional nonlinear diffusion equation received attention in [21,22].

Furthermore, Refs. [23,24] discussed the regularity of the solution to the time-fractional
diffusion problem and suggested that a key consideration in solving the time-fractional
diffusion problem is the nonsmoothness of the solution at the initial time. As a result,
some researchers mainly focus on initial singularity. Jin et al. revisited the L1 format error
analysis and established O(T) order convergence results for smooth and nonsmooth initial
data (See [25]). Using graded meshes is one way to deal with initial singularity (See [26]). By
combining the L1 scheme and spatial standard finite difference method on graded meshes,
Ref. [27] presented a new analysis of stability and convergence for the time-fractional
reaction-diffusion problem. Through complementary discrete convolution kernels, the
global consistency error of fractional derivatives on graded meshes was deduced in [28],
and the convergence analysis of the L1-FEM for the time-fractional reaction-diffusion
equation was provided. The results in [27,28] showed that optimal 2 — & order convergence
can be achieved by choosing the suitable temporal mesh parameter. In addition, combining
the L.2-1, scheme and the bilinear FEM, the L2-norm error analysis of the time-fractional
diffusion equation was described in [29]. With the aid of the time-space splitting technique,
[30] established H'-norm error estimates of two finite difference methods for the time-
fractional reaction-diffusion problem on graded meshes. Refs. [31,32] presented fully
discrete schemes of L2-1, FE/spectral method on graded meshes for the time-fractional
reaction-diffusion equations, and stability and convergence were deduced.

In the above analysis of smooth or nonsmooth data, the researchers were committed to
developing a more efficient and accurate method. It is well known that superconvergence
is an effective method for improving the accuracy of FE approximation. For example,
Ref. [33] provided L®(H") error estimates and superconvergence results for the multi-term
time-fractional diffusion problem utilizing the L1-FEM on graded meshes. Moreover, by
combining the L.2-1, scheme on graded meshes and the nonconforming Wilson FEM, the su-
perconvergence analysis of the time-fractional diffusion equation was demonstrated in [34].
However, it appears that the temporal accuracy in the analysis of [34] is reduced by ra /2.
As a result, we re-analyzed the two-dimensional time fractional diffusion equation with
variable coefficients to achieve optimal accuracy. The nonconforming FEM is an economical
and flexible numerical method and is popular for its better convergence behavior. To the
best of our knowledge, there has been limited research on the optimal superconvergence
analysis of the two-dimensional time-fractional diffusion equation without sacrificing tem-
poral accuracy. Therefore, the goal of this paper is to perform the optimal H!-norm error
estimation and superconvergence analysis of the L2-1, nonconforming EQ}*! FEM for the
time-fractional variable coefficient diffusion equation.

The two-dimensional time-fractional variable coefficient diffusion equation can be
described as:

pu(x,t) = V- (J(x)Vu) = f(x,t), (x,t) € Qx (0, T] ©)

with a Dirichlet boundary condition
u(x,t) =0, (x,t) € 90Q x (0, T]

and a initial condition
u(x,0) =u(x), x € Q,

Q C R? is a rectangular domain with a boundary 9Q. The divergence operator and the
gradient operator are represented by the symbol V- and the symbol V, respectively. J(x) is
a smooth, bounded diffusion coefficient that satisfies 0 < J;° 1< J(x) < J;, where J; is a
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positive constant. u%(x) and f(x, t) are the initial value function and the right-side source
term, respectively. The operator Dy is the a-order left-sided Caputo fractional derivative
with respect to t. For « € (0,1), Dfu(x, t) is defined as

« _ 1 Pou(x, ;) dy
R S

where T'(-) is the Gamma function.

In this paper, it is assumed that there is a solution u(x, t) to Equation (1) such that
|0bu(x, t)] S 1+t*F (1 =0,1,2,3). It should be noted that this is a reasonable assump-
tion satisfied by the typical problem solution (1). In addition, [24] illustrated that if the
solution u(x, t) of Equation (1) is not as singular as assumed, that is, |dlu(x, )| <1+ 77/
(I1=0,1,2,3) for 7 > a. Then the initial condition u" will be uniquely defined by the other
data of the equation, which is obviously restrictive.

The rest of this paper is organized as follows. In Section 2, the L2-1, scheme and
some lemmas are introduced. Section 3 is devoted to the spatial discretization of the
nonconforming EQ{’" FEM. The fully discrete scheme and unconditional stability are
discussed in Section 4. In Section 5, the L2-norm error estimate and the suboptimal H'-norm
estimate are derived. The optimal H!-norm estimation is supplemented in Section 6.
In Section 7, the interpolation postprocessing technique is introduced and the H'-norm
global superconvergence result is presented. Section 8 implements numerical experiments
to demonstrate the accuracy of our theoretical analysis. Finally, a brief conclusion completes
our work.

2. L2-1, Approximation on Graded Meshes

Notations. a < b denotes a < Cb. The existence of a S b and b < a is described by
a = b. Cis a positive constant and independent of mesh parameters, it can take various
values in different locations.

2.1. Direct Error Analysis for L2-1, Time-Stepping Scheme

Select the graded meshes t, = T(n/N)"(r > 1) atn =0,...,N, and N is a positive
integer. Then the time step 7, = t, — t,—1 and ty1o = t, +0Ty4+1 (0 < 0 < 1). For the
function v(t) defined on [0, T], we denote

0" =0(ty), V" = v(tyio), 0" = 00"+ (1 - 0)0" and 60" = (VT —0") /1,41
The properties of the graded meshes {t, })_ are described in Lemma 1 below.

Lemma 1. For the graded meshes {t, }"_,, we have

1

t 1.._1,1—
tn > ”;1 and T, = TFN"t, ’.

Proof. From the definition of {t,})_,, we can deduce
ty _ ( n )f > l
t?‘l+1 n + 1 - 27

t
Thatis, forn =1,2...,N—1,t, > "errl
Furthermore, we derive the time step

n —(n—-1)" _iynNL i nNIret —(n—1)" -l a1 g, ,
=T () TR = e TN G
A77G" = (j — 1)) can be discussed in two situations. For j = 1, the equation

177(j" — (j — 1)") = 11is established.
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Using the Cauchy mean value theorem, we have

Aerrn 1 (-1 r(G—0)! j—0i\r—1 0.\r—1
PG -G =1 ]'Efj—l ) _ jr_{ :r(T]) :r(1—7,]) forj >2,6; € (0,1).

_1
It is not difficult to obtain T, =« T% N *1t,11 "forn =1,2..., N with the help of

()0 e ) e

O

The L2-1, time step scheme proposed in [18] is used in this paper to approximate the
Caputo fractional derivative D" 7:

n
D" a2 5p0" 0 = Y AT (oM — k), n=0,...N—1.
k=0

Lemma 2 ([18]). For a function v(x,t) and the L2-1, approximation §%v"*7 on the graded meshes
{ta 3D, we have
2(0", 880" ) > 5|0, n=0,...,N — 1.

In this article, (-, -) is the inner product in the space L?(Q), and || - || denotes the
L?>-norm. For each g € N,N = {1,2,3,...}, the symbol H7(Q) represents the standard
Sobolev space with the corresponding norm || - ||; and semi-norm | - [;. L*(0, T; H" (Q)))
expresses the space of the measurable function v : (0,T) — H™(Q), and v satisfies

[0l oo (rmy = ess sup [[v(t)|[m < +oo.
0<t<T

Lemma 3 ([32]). Assume that1—wa/2 < o < 1. Fora function v(t) defined on the graded meshes
{ti} N, we have

[0 < [0+ T(1 — @) max (8, OF [}, n=0,...,N—1.
=0,...,n

Remark 1. Similar to the derivation of Lemma 3 in [32], replacing | - | with || - || and the conclusion
is still valid.

Lemma 4. For a function v(x,t) defined on the graded meshes {t,})\_,, assuming o =1 —a/2
and ||oko(x,1)|lg, S 1+t (91 =0,1) for I = 0,1,2,3, we have

~

o 670" = Do |, S N =0, N - 1.

Proof. We know from the result in [32] that %, |0¢0"+7 — Do to| < N-minfras-a} g
true for the function v(t) that satisfy v(t) € C([0, T]) N C3((0, T]) and [0 ()| < 1 + 2
(1=0,1,2,3).

Furthermore, for the function v(x,t), if ||olo(x,t)]ls, S 14+t (1 = 0,1) for
1 =0,1,2,3, the conclusion presented in Lemma 4 is not difficult to deduce. O

Lemma 5. Assume the function v(x,t) € L*(0, T; H}(Q) N H*"92(Q))) and ||olo(x, t)[|21q, S
14 2! (2 =0,1,2) for1 =0,1,2,3, we have

IV - (J(x) V(@ = 0" ) ||y S N2},
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Proof. Using Taylor’s theorem, it is easy to derive

_ 1
|o" — "t < —TY%H max [0 (t)| for v(t) € C2((0, T)).
tE(tntuy1)

Using the result of (2), we have t§ ||V - (J(x)V (0" — 0"T9))|lg, S t§ S T*N~" for n = 0.

Combining Lemma 1, (2), and ||0?u(x, t) || 240 S t*~2 yields the following result
V- (J(x)V (0" =" )| B2 < TN, Fyrla2me2 < N2 g s g
n+o q2 N n+0 n+1 n+1 n+l ~ n+1
Furthermore,
N2 forn=1,...,N—1ifr>1

V- (J(x)V (0" ="t < T n2
well V-V Dlla N{ N2 T S NAIN 22 o N2 forp=1,...,N—1if L >r>1

is established as a more precise result.
The preceding analysis indicates that obtaining the desired result is not difficult.

2.2. Global Consistency Error Analysis for L2-1, Time-Stepping Scheme
In this section, we introduce complementary discrete convolution kernels

1 1 1

+1 _ +1 _ k+1 k+1 +1 :

p(r]l An+1’pZ—j - j+1 Z (Ak7] A )pZ k’ 0 S ] S n—1.
0 Ay k=il

And 2 p”HAﬁi = 1 is established for the convolution kernels p”Jrl

In Lemma 6, we present the modified discrete fractional Gronwall inequality, which is

based on the results in [30,31].

Lemma 6. For given non-negative sequences {wn,k},i_ol, {sk+1}£’:_()1 and {ék“}i\jz_ol, there is
a constant w independent of the time step, such that Z,I(\’:_Ol{wn,k} < w. If the non-negative

functions {vk+1} ! defined on graded meshes satisfy

n
ZAZt]l(( k+1 an k +vﬂ n+1 (€n+1)2 for 0 S n S N_l,
k=0

then

8
"t < 2E, (g“"ﬁﬂ) (v + o Z Pk+1€]+1 +4/4T(1 — 1x)/3 max t%ﬁgkﬁ)

is true, where Mittag-Leffler function E,(g) = £ ¢*/T (1 + kg).

The following Lemma 7 plays an important role in the error estimation in this paper.

Lemma 7. Assuming ||0}o(x,t)|q, S 1+t (g1 = 2,3) holds for | = 0,1,2,3, we can infer

the result
Z pn_;,_le n—',-(qu1 5 Tmin{)\a,Z}, 0<n<N-1.

In addition, if ||8£v(x, Ollg 14+t (g2 =0,1) and o = 1 — a/2, we have

Z P I0F "7 = DR gy £ T, 0 < < N -1,
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Proof. According to Lemmas 3.6 and 3.8 in [31], if o(t) € C2?((0,T]) and
10" (1) S 1+*2, then

n-j

n
Z pn+1|vn o vn+a| 5 Tmm{)\a,Z}, 0<n<N-1
j=0

is established. Furthermore, if ¢ = 1—a/2, v(t) € C([0,T]) N C3((O, T]), and
o (t)] <1+ (1=0,1,2,3), we have

n
Y prtlgtote — Do | < pnintn2) 0 < < N -1,
j=0

Inspired by the idea in [31], we assume [|d}v(x,t)[ls, < 1+ 7! (g1 = 2,3) and
Haiv(x, Bllg, ST+ ol (g2 =10,1) for = 0,1, 2,3, the results (3) and (4) can be obtained,
respectively. [

3. Nonconforming EQ’°" FEM in Space

Let I, represent a family of anisotropic rectangular meshes on Q) with ) = U,cr, e
that do not need to satisfy the regularity or quasi-uniformity assumptions. Assume that O,
is the center of e for each e € T},. The four vertices of e are

A = (xe - hx,e/ Ye — hy,e)/ Ay = (xe + hx,e/ Ye — hy,e)/ A3 = (xe + hx,e/ Ye + hy,e)/ and Ay = (xe - hx,e/ Ye + hy,e)~

O, = (x¢,Ye), where hy, and hy e are the perpendicular distances between O, and two sides
of e that are parallel to the two coordinate planes. Let I; = A;A;.1(i = 1,2,3,4.mo0d(4)),
he = max{hy,e, hy,} and h = m%x{he}.

ecly

The FE space is defined as
Vi, =A{oonle € {1, x,y, xz,yz},/@h)ds =0,F Cde, Ve e T}},
F

where (v},) represents for the jump of vj, across the edge F if F is an internal edge, and
(vp) = vy if F is a boundary edge.
Let I, : v € H(Q) — I,v € V}, be the associated interpolation operator satisfying

Tle = Ie,/l(v ~ Lo)ds = 0,i = 1,2,3,4,/(0 ~ Lw)dxdy = 0.
i e

From [35,36], we can obtain the following estimation results of the interpolation
operator Ij,.

Lemma 8. Assuming the function v € H}(Q) N H*(QY) on anisotropic meshes, we obtain
[0 — Lol + hllo = Lol < 2 {oll2

and
(V(Z) — Ihv), Vvh) =0, Vvh € Vh'

The Ritz projection operator R, : H}(Q) — Vj, is then defined, which satisfies
(J(x)V(v — Ryv), Voy,) = 0,Yu, € V. It is not difficult to conclude Lemma 9 from the
results in Lemma 8, the definition of R, and the literature [37].

Lemma 9. For any function v € H}(Q) N H?(QY), we have

IRy — Lyollr S 1ol 5)
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and
IRy — || + ||V (Ryo — o) || < H|[o]2. (6)

Combining the results in Lemma 8 and 9 with the proof in [38], the expected result is
given in Lemma 10.

Lemma 10. If the function v € H}(Q) N H*(QY), we have

*vhds S 2 ollallonll, You € Vi,

where | - | is the absolute value and n is the unit normal vector on de.

4. Stability in L2-Norm and H'-Norm

Combining the L2-1, scheme and the nonconforming EQ}’ FEM, the fully discrete
scheme of (1) can be expressed as : find {u/})_; € V}, such that

(S8ult,vp) + (J(x) V", Vo) = (f79,03), Vo, €V,
(ug,vh) (uo Uh) x € Q.

@)

The unconditional stability of the fully discrete scheme (7) is described in Theorem 1.

Theorem 1. Let {u} *'}\" ! represent the solutions of (7). If the function f € L*(0, T; L*(Q)),
we have

T(1— )T
n+1/2 2 k402
u < /7= m
and T(1— )T
n+1,2 < Yu 2 — )1 k+o 2.
[V, ™| BV up® + - 3 k:OH,.l.?I)\(lfl [

Proof. Taking v, = 2u;," in (7), (7) can be rewritten as
(Sfup ™, 2u,™) + (J(x) V", 2V ™) = (77, 2u,"). ®)
From Lemma 2, we know that
(S u ™, 2uy™) > OF [luy" 7 2. ©)

With the aid of (9) and the condition 0 < J;' < J(x) < J1, applying the Cauchy-
Schwartz inequality and Young’s inequality, (8) can be converted to

2 i i J1 2 .
8¢ "2 + A IVu™ 12 < 2 ) V|| < 5 £ )12 + I—ll\Vuh"I\2,

that is 6% [|u," 7712 < %Hf"*””z. Remark 1 implies that

T <l + T - a) max { o [l 1%}

—Uyeees

r(1—a) T K
< [lud]? + =———  max _|[|f

2 k=0,..,.N—1
Choosing vj, = 26{u;," 7 in (7) to estimate ||V}, "+, we have

(88up, ™7, 288w, 7) + (J(2) Vg™, 208 Vup,"T7) = (f"1, 287 up," 7). (10)
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Lemma 2 means that
(J(x) V", 268V, 747 > 65|V (72 (), ) |2 (11)

Combining (11) with (10), we have

1 1
2|8y N + O |V (72 ()uy™ ) < 2 N S+ < SIFONP 4 2 0y 2. (12)
Then (12) can be rewritten as J7 ||V (] %( Yu " |2 < %Hf”J”TH2 Using Remark 1, we
obtain that
1 1 rl—a)T
IV o IR < IVEEIE + FEGHT a1 )

Further, inequality (13) can be simplified to

rl—a) T
VunJrl 2 12 VMO 2 ma k+o 2.
Va2 < RITu 2 + = max £

O

5. Error Estimates in Optimal L>-Norm and Suboptimal H!-Norm
Subtracting (7) from (1) yields the error equation

((S;‘x(unﬂf - uthrtT)/ Uh) =+ (](X>V(Mﬁ - uhﬁ)/ VU}Z)
4M”wa<vo<wmwzm+z/ —ﬂm_z/
where R'lﬂ'a = Dfu"tT — §funte, Rg‘“f = ytto —yh,

Denoting u" — uj," = u" — Ryu" + Ryu" — uj} = n" + ¢", the error equation has the
following form:

vhds, Yo, € Vi,

(682" v,) + (J(x)VE™, Vo) = — (889", vh) = (J(x)Vy", Vvh) — (RY%,0) + (V- (J(x) VRET), vp,)
n+17 (14)
YL L e

vyds.
By using the error equation, we present the convergence and superclose results of the
fully discrete scheme in Theorems 2 and 3, respectively.

Theorem 2. Let u represent the solution of (1), and {u}l })\_ represent the solutions of the fully
discrete scheme (7) on graded meshes. Specify the pammeter oc=1—-wa/2.Ifu € L*(0,T;
H}(Q)NH*(Q)NH*(Q)),Dfu € L*(0,T; H*(Q)) and ||a§u(x, Hlla < 1+t hold for
1 =0,1,2,3, we can deduce

max [[u" — u,"|| < W+ N2},
1<n<N

Proof. Choosing v, = 2¢" in (14), we have

(688"17,2¢™) + (J(x)VE™,2VEN) = — (68", 28™) — (J(x)Vy",2VE™) — (R'W 2gﬁ)
(V- (J(x) VRIT), 28 +22/ an

. Z/ ) aRn+0

e Joe

(15)

¢"ds.
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Lemma 2 implies
(675", 287) = o . (16)

Applying the Lemma 10, we know that

n+0’
—2—gds S 212 (||u" |4 + [[RF ) [1E7]. (17)

— (v 2ve +2 1 [ I —é“d - 22/

Equation (15) can be simplified to
SN2 S 2(l1aFn™ N+ IR+ IV - (J(x) VRGO |+ 12| [l4 + B[RS+ [14)1]€™]

by substituting (16) and (17) into (15) and applying the Cauchy-Schwartz inequality. Using
the result of Remark 1, we can easily determine that

Jmax [@IF S2T(1—a) _max {5, (165N + IREY 4 V- () VRE)]| .
N 0, N— 18
P+ RIRE ) b max ).

Inequality (18) can be converted to

n < _ o w  k+o k+o . k+o
Jmax €] $2T(1-a) max {tW(H& |+ RS+ 19 - () VRE )|

(19)
12|+ P2 REF ) } = ZE

The next goal is to estimate Ei:l E;. Based on the result of (6) in Lemma 9, we have
the following derivation
loFn* el < [l6fuk T — DUt — Ry, (0ful+ — Dyuto)|| + || D+ |
SIRY | + [[RyRY* || + 17| D (20)
S2|REY | + B2 Dfull oo (112 -

Combine the results in Lemmas 4 and 5 with Dfu € L*(0,T; H*(Q)), we have
Ei+E+E3 < +N- min{ra.2} E, 4 Eo < K? is established employing u € L®(0,T;
H3(O) N HY (). |

The preceding derivations suffice to demonstrate that max e <K 4+ N —min{ra.2}

Finally, the desired result can be obtained by using the result of (6) in Lemma 9 and
the triangle inequality ||u" — uj|| < ||u" — Ryu™|| + ||Rpu” —upt||. O

Theorem 3. Suppose u is the solution of (1) and {ul'}N_, are solutions of the fully discrete
scheme (7) on graded meshes. If u € L*(0,T; H}(Q) NH?(Q) NH*(Q)), Dfu € L*(0,T;
H%2(Q)) and [|olu(x,t)|ls S 1+t for I = 0,1,2,3, choose 0 = 1 — oc/2, we have the
following result

IV (" — )| < 1?4 N7MTEAED,

Proof. Taking v, = 26{¢""7 in (14), we have
(5fc§n+t7’ ZéztxgnJra) + (](x)véﬁ’z(sztxvgwra) — _(5fcﬂn+a, 25?§n+0) _ (](x)VUﬁ,25f‘V€n+a)

RVH—(T

,(RZI+U,25?¢§n+0)+(V (]( )VRW—HT) 5zx€n+(r +22/ 504 n+(rds 22/ ycérn—&-ads

(J(x)VEM, 266V EMH0) > 6 172 (x)VE™ |2 can be found in Lemma 2.
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Applying the results of Lemma 10 and the Cauchy-Schwartz inequality, it is straight-
forward to obtain the following inequality

2|62 ||2 4 68 [| A2 (x) V|12

2[5 ™l + IRFFN A+ IV - T VR + B2 {[u? |y + K2 {IR[|) 67"+

< S UGy + (IRFFN2 4+ IV - (J(x) VREF)? + h* [ |+ B[RS FN1E) + 2l|67" 1%,

N\H

that is

1 _
52 (x)vV §”+”|\2< (IaEn™ N2 + IRFFNZ + 1V - (J(o) VRGO + ||| + HHIRS ).

Usmg Remark 1, we have

T(1-a)1 P
jvertt))r < ———= _max { b IS+ IREF)12 4+ ||V - (J(x) VRETO)||12 + 1 u¥||F + h4||Rl§+UHﬁ)}

r t
Similar to the estimation of (20), F; + F> < % (|| RET)1 + 1| DFul 2, Hz(Q)))
can be obtained.

A more precise estimate of £,
definitions of ¢, and t;, is as follows:

||R7{+‘7H2 is required, and the derivation from the

REF)2 = 1

k+¢7( k+UHRk+¢TH)2 < t—aN—me{rth o} < ( szrtx)N—2min{ra,3—zx} < T—aN—Zmin{%,SC—a—%}' (21)

vl
Fi + F < h* 4 N~2min{3 3-¢=%} can be inferred utilizing D¥u € L*(0, T; H2(Q)) and (21).
By using the estimated result of Lemma 5 and (21), F5 S N “2min{’32=5} is obtained.
The condition u € L®(0,T; H}(Q) N H*(Q))) means that Fy + F5 < h*. Based on

~

the above estimation of F;(i = 1,2,3,4,5), we come to the conclusion ||V&"|| < h? +
N—mm{“" 2- ]

The superclose result is established by combining the result of (5) in Lemma 9, the trian-
gle inequality ||V (Lu" —up)| < ||V(Iu" — Ryu™) ||+ |V (Ryu™ — up)||, and the technique
of combining interpolation with projection. [

6. The Optimal Error Estimate in H'-Norm

The H'-norm superclose result is derived in Theorem 5.2. However, the optimal time
accuracy was not attained. As a result, improving temporal precision will be addressed in
this section.

Due to analysis requirements, the L2-projection operator P, : L?(Q) — V}, and the
discrete Laplacian operator A, : Vj, — V}, are introduced.

For Vv, € V), we have (P,o,v,) = (v,vy).

And for Vv, v), € Vj, the following formula is established:

(Ahvl Uh) = _(I(x)vv/ VUh). (22)

Therefore, the fully discrete format of (1) can take the form: find {uh} 0 €W
such that

{ (6Fup™, o) — (Ayuy”, vp) = (P f"*%,0), 0<n<N-1, 23

(up(x), o) = (Puu®(x),0p), Yoy, € V), x € Q.
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Using the property of the Ritz projection operator Rj, the following relationship
between between Rj,, Ay, and Pj, can be obtained:

(AthU,Uh) = (PhV' (]( VU Uh 2/ —vhds Yo € Hz( )and v, € Vy,. (24)

The following equations can be derived by combining (22)—(24):

(858", op) — (ARC", o)

= (Rpdfu"7, vp) — (8Ful 7, vy) — (ApRyu™, vy) + (Apuay™, vy)

= (Rpdfu" %, v) = (Puf", o) — (PV - (J(x) V"), vy, +Z/ 7014615
= ((Ry, = Py) 65u"™7, 0y) + (Puofu" 7, vp) — (P f",0p) — (P, V - (J(x) V™), vp) + 2/ 70/1‘15
—(Py(I = Ry) 8fu™* Uh)+ (Ph(D?un+U—RT+U)rUh) — (P(V - (J(x)Vu" ) = V - (J(x) VRS ")), v3) (25)

— (P f", vy, +2/

— (Pl op) + (Py (D“ "Ry, o) — (Bu(V - (J(x) VU"TT) = V- (J(x) VR ), 1)

) +E

—(th5f‘77”+‘7,0h)+(l’h(v-(]( )VR3 ) = R{™), vy +Z/ 7?1;1115

Theorem 4. Suppose {ul! }I_ are the solutions of the fully discrete scheme (25) on graded meshes,
and u is the solution of (1). Let o = 1—w/2, ifu € L®(0,T; H}(Q) N H2(Q) N H*(QY)),
D*u € L*(0, T; H*(Q)) and ||aiu(x, Blls <1+t for 1 =0,1,2,3, we have

||Ihu”+1 —I—l Hl < K2 + Tmm{/\oc 2}
Proof. Choosing v, = —2A,¢" in (25), we have

(J(x)of Vg™, 2Ve™) + 2| A" |1> - = (Pudfy™*, ZAh‘:ﬁ) — (Pu(V - (J(x) VR ™) = RY™7),2,87)

26
2y IRl ) s, 20

According to the result of Lemma 2, we know that
(J(x)eF Ve, 2ve") > 2 AP @F ] = 112 (02 R)- (27)

Combining Young’s inequality, the Cauchy-Schwartz inequality, and Lemma 9, the
following derivation can be presented as

(Pudfn™,28,8") = —(RYT7,20,8™) 4 (RyRYT7,284,8™) + (Df "7, 285,6™)

= (J(x)VRIT?,2VE") — (J(x) VR, R, 2VE") + (D +7, 20,87
&1 +21J2 () Ry R[] 2 (2)E |1 + 21| D+ || ane” |
&1+ 2072 () RO (0)E" 1 + | DE |12 + [ g™
&y + | Dfum 1+ | A7 2
|1 + Ch* + [|ApE" |2

< 2|J2 ()R |2 (x
R¥+U|
R

N|—
NI—=

< 4] Tl

)
(%) J2(
<2|J3(x) )2 (x
(%) (x
(%) (

< 4|3 (X)RIFO|y ]2 (x)E

)
)
)
)
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and
(P(V - (J(x)VRE*) = RY*7),28987) < 2(||J2 (x)RE |13 + ]2 () RY ) 12 ()& . (29)
Referring to Lemma 10, we can know
28 [ ) 2 0S| < 20| 448" < CH 1 AR (30)
Substituting (27)-(30) into (26), we have
3 AL I @E R = A2 ) < (67 RY 7+ 21 RS ) ()¢ + 20K @)

k=0
The result in Lemma 6 shows that

1 k 1 ito 1 ito
el <ok (k) (1 )2+ max 3, QL (6172 (R; 1 2172 (x)R o) o
Kn £

+ Ch? max 12\ /a2 + R ~u)/3).

In addition, (32) can be converted to

6
&y < 2Ea ( Gkt ) (12 i+ max ZQ"“ (611" |1 +2h RS [3) + CI max t;;‘ﬁ¢411<2+k2)r(1w>/3).

The result of Lemma 7 implies that

|€n+1|1 5 W2 + Tmm{/\uc,2}.

It is not difficult to obtain

||Ihu1’l+l n+1||l < Ch2||un+lH2 + HgnJrlH + |€n+1|1 < K2 + Tmm{/\tx 2}
from Lemma 9 and u € L*(0, T; H} (Q) NH3(QY)). O

7. Interpolation Postprocessing Technology

In this section, superconvergent results are derived by reconstructing a series of meshes
I'p;,. For Ve € I'y, (see Figure 1), it contains four adjacent small elements belonging to I',.
Using the result in [39], the interpolation operator I;,v|; € P»(€) can be defined by

/(IZhv —0)ds =0,i=1,2,3,4, / (v —v)dxdy =0, / (v —v)dxdy =0,
1 JerUes e2Ueq

S

where P, (¢) = span{1,x,y, xy, x*,y*} represents the quadratic polynomial space on the

element e.
az le  ag Is as
I7 €4 Ih e Iy
1 = a.
8 hy  ag o 4
lg ly I
€1 ()
a1 ll 52 12 as

Figure 1. New element e.
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It has the following properties for the interpolation operator I

IthhZ) = Ith),
1 lanv = vlly S B?[[v]ls, Vo € H3(QQ),

I Lyoplly S llonll, Vou € Vi

Theorem 5. The following global superconvergence result can be obtained under the assumption of
Theorem 4

HIZhuhn — u”||1 < K2+ min{Aa,2}

Proof. Combining the properties of I, and the result of Theorem 4, we have the following

derivation
| Dpup” —u™llv - < || Lpup™ — DpIpu[|1 + || oy Inu™ — u[;
= |1 Lop (up™ = Ty [[1 + || Ippa™ — |4
SV (g — L) || + B2 {|u" |-
That is,
| Lopey™ — u|y S h2  gmin{Ae2},
O

8. Numerical Results

In this section, two numerical examples are provided to demonstrate the correctness
of our theoretical results.

Example 1. Consider problem (1) defined in the region Q) = [0, 1] x [0, 1] with diffusion coefficient
J(x) = x?y?> 4+ 0.1, and final time T = 1. The function f(x,t) is chosen such that the exact solution
u(x, t) = ty(1 —x)(1 —y)(1 — e <), where x = (x,y).

Example 2. Consider equation (1) in the spatial domain Q) = [0,1] x [0,1] and the time interval
(0, T, choosing the source term f(x, t) with the exact solution u(x,t) = t*(1 — x) sin ry(1 — e~ <),
where T = 1,x = (x,y). In this example, we set the diffusion coefficient J(x) = x?y* + 0.1.

The exact and numerical solutions for Examples 1 and 2 are shown in Figures 2-5.
As can be seen from Figures 2-5, the solution changes sharply in the x-direction, while
it changes gently in the y-direction. That is, the solution to the problem (1) has strong
anisotropy in the x-direction when the value of € is very small. Further, comparing the
images of the numerical solution and the exact solution, it can be seen that the numerical
simulation is very perfect.

Numerical solution for ¢ = 0.05

Figure 2. Example 1.
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In addition, numerical experiments are performed on Examples 1 and 2 by choosing
« = 0.3,0.5,0.8. The errors and convergence orders in the time and space directions are
shown in Tables 1-10, where 117 and m; represent the number of elements in the x-direction
and y-direction, respectively. The obtained numerical results are consistent with the theo-
retical analysis for different & values and r = 1, = 2/a,r = (3 — &) /a. The algorithm can
achieves optimal second-order accuracy in both time and space directions.

Exact solution for e = 0.05

Figure 3. Example 1.

Numerical solution for ¢ = 0.07

Figure 4. Example 2.

Exact solution for ¢ = 0.07

Figure 5. Example 2.
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Table 1. Temporal numerical results of ¥ = 1 on graded meshes to Example 1.
« =108 [lu" —u™|| | Ipu" — U™ |1 | U™ — u"||1
N Error Rate Error Rate Error Rate
32 5.7510 x 10 > / 2.7571 x 10 —* / 2.1860 x 10 —3 /
64 3.9133 x 10 ~° 0.5554 1.8178 x 10 —* 0.6009 1.3213 x 10 3 0.7262
128 2.4954 x 10 —° 0.6490 1.1372 x 10 4 0.6767 7.2972 x 10 ~* 0.8566
256 1.5227 x 10 —° 0.7125 6.8842 x 10 2 0.7241 42070 x 10 ~* 0.7945
Table 2. Temporal numerical results of ||u" — U"|| on graded meshes to Example 1.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 1.5549 x 10 —3 / 1.5500 x 10 —3 / 1.5327 x 10 3 /
r=2/a 64 40089 x 10 ¢ 1.9556 3.9971 x 10 4 1.9552 3.9571 x 10 4 1.9536
128 1.0101 x 10 ~* 1.9886 1.0072 x 10 4 1.9885 9.9738 x 10 —° 1.9882
256 2.5304 x 10 5 1.9971 2.5230 x 10 —° 1.9971 2.4985 x 10 5 1.9970
32 1.5594 x 10 —3 / 1.5520 x 10 —3 / 1.5329 x 10 3 /
r=0B-a)/a 64 4.0202 x 10 ~* 1.9556 4.0021 x 10 ~* 1.9553 3.9577 x 10 4 1.9536
128 1.0130 x 10 ~* 1.9885 1.0084 x 10 ~* 1.9885 9.9752 x 10 5 1.9882
256 25378 x 10 ~° 1.9970 25263 x 10 73 1.9971 2.4989 x 10 ~° 1.9970
Table 3. Temporal numerical results of || I,u" — U"||;on graded meshes to Example 1.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 41956 x 10 3 / 41603 x 10 3 / 4.0345 x 10 3 /
r=2/ua 64 1.0385 x 10 3 2.0143 1.0294 x 10 3 2.0148 9.9788 x 10 4 2.0154
128 2.5896 x 10 ~* 2.0036 2.5665 x 10 ~4 2.0039 24873 x 10 4 2.0042
256 6.4708 x 10 5 2.0007 6.4124 x 10 5 2.0008 6.2139 x 10 5 2.0010
32 42283 x 10 3 / 41752 x 10 3 / 40363 x 10 3 /
r=0B-a)/a 64 1.0475 x 10 3 2.0130 1.0334 x 10 3 2.0144 9.9836 x 10 4 2.0154
128 26133 x 10 4 2.0030 25769 x 10 ~4 2.0037 24885 x 10 4 2.0042
256 6.5317 x 10 5 2.0003 6.4388 x 10 5 2.0007 62171 x 10 5 2.0009
Table 4. Temporal numerical results of || I, U" — u"||; on graded meshes to Example 1.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 5.4900 x 10 2 / 5.4901 x 10 2 / 5.4903 x 10 2 /
r=2/u 64 1.5497 x 10 ~2 1.8248 1.5500 x 10 —2 1.8245 1.5511 x 10 2 1.8235
128 4.0019 x 10 3 1.9532 4.0028 x 10 3 1.9531 4.0060 x 10 —3 1.9530
256 1.0110 x 10 —3 1.9848 1.0112 x 10 —3 1.9848 1.0121 x 10 3 1.9848
32 5.4900 x 10 2 / 5.4901 x 10 2 / 5.4903 x 10 2 /
r=0B-a)/a 64 1.5494 x 10 ~2 1.8250 1.5499 x 10 ~2 1.8246 1.5511 x 10 ~2 1.8236
128 4.0011 x 10 3 1.9532 4.0025 x 10 3 1.9532 4.0060 x 10 3 1.9530
256 1.0108 x 10 —3 1.9848 1.0111 x 10 3 1.9847 1.0121 x 10 3 1.9848
Table 5. Spatial numerical results of € = 0.05 on anisotropic meshes to Example 1.
& =05 Ju — u| " — U " —
mq X myp Error Rate Error Rate Error Rate
32x4 3.0272 x 10 =3 / 4.4043 x 10 2 / 3.2801 x 10 1 /
64 x 8 6.7511 x 10 4 2.1647 7.9701 x 10 3 2.4662 8.0403 x 10 2 2.0284
128 x 16 1.6921 x 10 ~* 1.9962 1.7240 x 10 —3 2.2088 1.9616 x 10 ~2 2.0352
256 x 32 44113 x 10 > 1.9396 42518 x 10 ~* 2.0196 4.8606 x 10 3 2.0128
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Table 6. Temporal numerical results of ¥ = 1 on graded meshes to Example 2.
«=08 [l —u"|| ([T — U4 [ Iz U — u||1
N Error Rate Error Rate Error Rate
32 22153 x 10 4 / 1.0555 x 10 —3 / 7.7283 x 10 3 /
64 15161 x 10 ~* 0.5471 7.0104 x 10 4 0.5904 45740 x 10 3 0.7567
128 9.6726 x 10 —° 0.6484 43974 x 10 ~* 0.6729 2.5582 x 10 —3 0.8383
256 5.9023 x 10 =5 0.7126 2.6636 x 10 ~* 0.7233 1.4706 x 10 =3 0.7987
Table 7. Temporal numerical results of ||u" — U"|| on graded meshes to Example 2.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 6.0099 x 10 3 / 5.9916 x 10 =3 / 5.9280 x 10 =3 /
r=2/a 64 1.5456 x 10 —3 1.9591 1.5411 x 10 3 1.9589 1.5257 x 10 3 1.9581
128 3.8922 x 10 4 1.9895 3.8809 x 10 4 1.9895 3.8426 x 10 4 1.9893
256 9.7486 x 10 —° 1.9973 9.7201 x 10 —° 1.9973 9.6244 x 10 —° 1.9973
32 6.0267 x 10 3 / 5.9992 x 10 3 / 5.9289 x 10 =3 /
r=0B-a)/a 64 1.5499 x 10 —3 1.9591 1.5430 x 10 ~3 1.9590 1.5259 x 10 3 1.9581
128 3.9036 x 10 ~* 1.9894 3.8858 x 10 4 1.9895 3.8431 x 10 ¢ 1.9893
256 9.7777 x 10 ~5 1.9972 9.7326 x 10 5 1.9973 9.6258 x 10 5 1.9972
Table 8. Temporal numerical results of || I,u" — U"||;on graded meshes to Example 2.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 1.5736 x 10 ~2 / 1.5599 x 10 ~2 / 1.5114 x 10 2 /
r=2/a 64 3.9176 x 10 3 2.0060 3.8820 x 10 3 2.0066 3.7582 x 10 3 2.0078
128 9.7884 x 10 4 2.0008 9.6976 x 10 4 2.0011 9.3855 x 10 —4 2.0015
256 24471 x 10 4 1.9999 24242 x 10 4 2.0001 2.3459 x 10 4 2.0002
32 1.5864 x 10 ~2 / 1.5657 x 10 ~2 / 1.512146 x 1072 /
r=0B-a)/a 64 3.9529 x 10 ~3 2.0047 3.8977 x 10 ~3 2.0061 3.7600 x 10 =3 2.0077
128 9.8811 x 10 4 2.0002 9.7381 x 10 4 2.0009 9.3903 x 10 4 2.0015
256 24709 x 10 4 1.9996 24345 x 10 4 1.9999 2.3471 x 10 4 2.0002
Table 9. Temporal numerical results of || I, U" — u"||; on graded meshes to Example 2.
T=1 a = 0.3 a = 0.5 a = 0.8
N Error Rate Error Rate Error Rate
32 1.9200 x 10 ! / 1.9201 x 10 ! / 1.9202 x 10 ! /
r=2/ua 64 53623 x 10 2 1.8402 5.3635 x 10 2 1.8399 5.3676 x 10 2 1.8389
128 1.3846 x 10 ~2 1.9534 1.3849 x 10 2 1.9533 1.3862 x 10 2 1.9532
256 3.4994 x 10 3 1.9843 3.5003 x 10 3 1.9843 3.5034 x 10 3 1.9842
32 1.9199 x 10 1 / 1.9200 x 10 1 / 1.9202 x 10 1 /
r=0B-a)/a 64 5.3613 x 10 2 1.8404 5.3629 x 10 2 1.8400 5.3675 x 10 —2 1.8389
128 1.3843 x 10 2 1.9534 1.3848 x 10 2 1.9533 1.3861 x 10 2 1.9532
256 3.4985 x 10 3 1.9843 3.4999 x 10 3 1.9843 3.5033 x 10 3 1.9843
Table 10. Spatial numerical results of € = 0.05 on anisotropic meshes to Example 2.

a =05 [lu" — ™| ([Iu" — U"|| [ LU — 0|1
mi X my Error Rate Error Rate Error Rate

32 x4 9.6520 x 10 3 / 1.1496 x 10 ! / 9.3686 x 10 1 /

64 x 8 2.2893 x 10 3 2.0759 2.1546 x 10 2 2.4157 2.1937 x 10 1 2.0944
128 x 16 5.7768 x 10 4 1.9865 4.8736 x 10 3 2.1444 5.3944 x 10 2 2.0238
256 x 32 1.5132 x 10 ~* 1.9326 1.2299 x 10 —3 1.9864 1.3432 x 10 2 2.0058

9. Conclusions

In this paper, we analyze a class of two-dimensional time-fractional variable coeffi-
cient diffusion equation using a high-precision L2-1, scheme on graded meshes with an
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anisotropic nonconforming FEM. Unconditional stability, optimal H!'-norm error estimates
and global superconvergence result are rigorously derived. The results show that by se-
lecting a suitable mesh parameter r, the optimal second-order accuracy can be achieved
in time and space. Next we will focus on the superconvergence analysis of high-precision
approximation schemes for nonlinear equations.
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