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Abstract: In this paper, we design two inertial iterative methods involving one and two inertial
steps for investigating a general quasi-variational inequality in a real Hilbert space. We establish an
existence result and a non-trivial example is furnished to substantiate our theoretical findings. We
discuss the convergence of the inertial iterative algorithms to approximate the solution of a general
quasi-variational inequality. Finally, we apply an inertial iterative scheme with two inertial steps
to investigate a delay differential equation. The results presented herein can be seen as substantial
generalizations of some known results.
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1. Introduction

Let K be a non-empty closed convex set in a real Hilbert spaceH and θ : H → H be
a non-linear mapping inH. The variational inequality problem is to find a point p∗ ∈ K,
such that:

〈θ(p∗), q∗ − p∗〉 ≥ 0, ∀q∗ ∈ K. (1)

It is well documented that the study of variational inequality, which was initiated by
Stampacchia [1] becomes a very productive and fruitful tool to examine several problems
arising in the natural sciences. Due to an application oriented nature, this field of research
has been expanded and generalized in several directions, see [2–8]. One of the pronounced
generalizations of variational inequality is quasi-variational inequality (QVI) which is to
find p∗ ∈ K(p∗), such that:

〈θ(p∗), q∗ − p∗〉 ≥ 0, ∀q∗ ∈ K(p∗), (2)

where K(p∗) is a closed convex-valued set inH. The QVI (2) was coined for the first time
by Bensoussan and Lions [9] to deal with impulse control problems. The quasi-variational
inequalities are variational inequalities in which the admissible space or the involved
potentials depend on the solution of the problem. Quasi-variational inequalities bring
forth a consolidated platform for variation inequalities, as well as integrated modelling of
various physical problems of significance. The resulting applications of quasi-variational
inequalities include game theory [10], continuum and solid mechanics [11–13], transporta-
tion [14,15], superconductivity, thermoplasticity, or electrostatics [16–18].

It is well known that numerous physical problems occurring in non-linear analysis and
related fields can be represented in the template of fixed point problem. Let T : H → H be a
non-linear mapping. The fixed point of T is to locate a point p∗ ∈ H, such that T(p∗) = p∗.
The set of fixed points is denoted as Fix(T) = {p∗ ∈ H : T(p∗) = p∗}. One of the most
abundantly studied techniques for figuring out fixed points of non-expansive mappings in
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Banach and Hilbert spaces is known as Mann iterative technique, proposed by Mann [19]
as follows:

xn+1 = (1− αn)xn + αnTxn, n ∈ N, (3)

where αn ∈ [0, 1] and T : K → K is a nonexpansive mapping on a closed convex subset K
of a given Banach space. For some recently developed iterative methods, we refer [20–27].
Recently, Ali et al. [28] have constructed a new scheme. For initial p0 ∈ D and {an} in
(0, 1), the sequence {pn} generated by this scheme is defined as:

rn = T[(1− an)pn + anTpn],
qn = Trn,
pn+1 = Tqn.

(4)

The authors demonstrated that their scheme converges faster than some noted iterative
methods, such as S, Picard-S, Gursoy and Karakaya, and M-iteration schemes. To achieve
augmented convergence rate of iterative methods for non-linear problems is fascinating for
researchers. So far, numerous iterative techniques have been explored and examined for
obtaining an incremental convergence rate. In this progression, many multi-step iterative
algorithms are studied by adding initial term, see [29–32]. The inertial term is derived from
the heavy ball with friction method due to Polyak [33] to examine optimization problems
which were obtained by the discretizing of second order dynamical system for an oscillator
with damping and conservative restoring force:

u
′′
(t) + ζu

′
(t) +∇ω(u(t)) = 0, (5)

where u(t), ω(u(t)) and ζ > 0 represent time continuous trajectory, external gravitational
field and friction, respectively, and ω : H → R is differentiable. In fact, inertial type
iterative methods are generalization of proximal point algorithm as they are produced
by discretization of a second-order-in-time dissipative dynamical system. Alvarez [34]
have shown that ω : H → R is a smooth convex function then each trajectory t → u(t)
converges weakly to a minimizer of ω. The relaxation method introduced by Richard-
son [35] for solving linear systems is also a technique for augmentation of convergence
rate. Eckstein and Bertsekas [36] designed a relaxed proximal point scheme to accelerate
the proximal point algorithm. They reported that the rate of convergence is enhanced by
adding relaxation parameter. Alvarez [37] proposed an iterative scheme by combining
relaxation techniques and inertial term to examine monotone inclusion and convex opti-
mization problems. Maigne [38] added an inertial term to Krasnoselskii–Mann iteration and
designed the inertial Mann iterative method for calculating fixed points of a non-expansive
mapping in Hilbert spaces as following:{

yn = xn + θn(xn + xn−1),
xn+1 = (1− αn)yn + αnTyn, ∀n ∈ N,

(6)

where θn is a damping type term and αn is a relaxation factor.
Inspired and persuaded by the acknowledged facts in the above-mentioned references,

we introduce two inertial iterative methods. The first is based on (4) which includes one
inertial step and is defined as:

ωn = pn −Θn(pn − pn−1),
rn = T[(1− an)ωn + anTωn],
qn = Trn,
pn+1 = Tqn,

(7)

where {an} is a sequence in (0, 1). The second inertial scheme contains two inertial steps
which is to define the sequence {pn} with initial points p0, p1 ∈ H as below:
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
ωn = pn + µn(pn − pn−1),
qn = pn + νn(pn − pn−1),
pn+1 = (1− an − bn)qn + anT(qn) + bnωn,

(8)

where $ > 0 is a constant and {an}, {bn} are sequences in (0, 1). We deal with a class of
general quasi-variational inequalities (GQVI) by implementing newly established inertial
iterative methods. We prove an existence result and theoretical claims are verified by a non-
trivial example. Additionally, we establish the convergence of inertial iterative algorithms
involving one and two inertial steps. Finally, as an application of our proposed inertial
method, we investigate a delay differential equation.

2. Preliminaries

LetH be a Hilbert space over the real numbers with norm ‖ · ‖ and inner-product 〈·, ·〉,
and let C(H) denote the collection of non-empty closed convex subsets ofH. In addition,
let θ, φ : H → H be not necessarily linear mappings inH, and suppose that the set-valued
mapping K : H → C(H) assigns to every p∗ ∈ H a closed convex subset K(p∗) ofH.

We consider the problem of finding p∗ ∈ H : φ(p∗) ∈ K(p∗), such that:

〈θ(p∗), φ(q∗)− φ(p∗)〉 ≥ 0, ∀q∗ ∈ H, φ(q∗) ∈ K(p∗), (9)

called the general quasi-variational inequality (GQVI). It is chronicle that quasi-variational
inequalities are desperately applications oriented field of research. Several problems of
practical applications, such as modeling of stochastic impulsive control problems, free
boundary problems, mechanics, and economy, have been framed as a model of quasi-
variational inequalities, see [10,39–41]. We take into account the following third order
implicit obstacle boundary value problem (OBVP) of finding p, such that:

−p
′′′
(x) ≥ g(x), on D = [a1, a2]

p(x) ≥ C(p), on D = [a1, a2]

[−p
′′′
(x)− g(x)][p− C(p)] = 0, on D = [a1, a2]

p(a1) = 0, p
′
(a1) = 0, p

′
(a2) = 0,

(10)

where g(x) is a continuous function and C(p) stands for the cost (obstacle) function.
A typical form of this function in (10) is:

C(p) = s + inf
i
{pi}, (11)

where s represents switching cost and the cost function C provides the coupling between
unknowns p = (p1, p2, · · · , pi). It is positive or zero, if the unit is turned on or off,
respectively. To exhibit OBVP (10) as a quasi-variational inequality, we define:

K(p) = {q : q ∈ H2
0(D), q ≥ C(p), on D},

where H2
0(D) is a Sobolev space, see [42] and K is a closed convex set in H2

0(D). The
OBVP (10) can be imitated as the following energy functional:

E(q) = −
∫ a2

a1

( d2q
dx2

) dq
dx

dx− 2
∫ a2

a1

g(x)
dq
dx

dx,

=
∫ a2

a1

( dq
dx

)2
dx− 2

∫ a2

a1

g(x)
dq
dx

dx

= 〈θ(q), dq
dx
〉 − 2〈g,

dq
dx
〉, ∀ dq

dx
∈ K(p),

(12)
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where:

〈θ(p), q〉 = −
∫ a2

a1

(d3 p
dx3

)( dq
dx

)
dx =

∫ a2

a1

dp
dx

dq
dx

dx

〈g,
dq
dx
〉 =

∫ a2

a1

g(x)
dq
dx

dx.
(13)

Note that θ specified in (13) is linear, nonsymmetric, and g-positive. By implementing
the approach as in [43], we see that the minimum of energy functional E(q) on K(p) can be
represented as:

〈θ(p), φ(q)− φ(p)〉 ≥ 〈g, φ(q)− φ(p)〉, ∀q ∈ K(p), (14)

which is indeed GQVI (9), for more detail see [44]. The problem described in (9) is a
unification of several others. Some special cases of GQVI (9) are listed below.

1. For K(p∗) = K, GQVI (9) reduces to the general variational inequality introduced by
Noor [45] which is to find p∗ ∈ H : φ(p∗) ∈ K(p), such that:

〈θ(p∗), φ(q∗)− φ(p∗)〉 ≥ 0, ∀q∗ ∈ H, φ(q∗) ∈ K. (15)

2. Let for p∗0 ∈ H, the dual cone of K(p∗0) ⊂ H be represented by

K̄(p∗0) = {p∗ ∈ H : 〈p∗, q∗〉 ≥ 0, ∀q∗ ∈ K(p∗0)}.

Then problem (15) becomes a general complementarity problem, that is, to find
p∗ ∈ H, such that:

〈θ(p∗), φ(p∗)〉 ≥ 0, φ(p∗) ∈ K(p∗) and θ(p∗) ∈ K̄(p∗). (16)

3. For φ = I, GQVI (9) reduces to the classical quasi-variational inequality (2) introduced
in [9].

4. For φ = I and K(p∗) = K, GQVI (9) reduces to the classical variational inequality (1)
introduced by Stampacchia [1].

Next, we list some handy tools to accomplish our results.

Definition 1. A single-valued mapping θ : H → H is called:

(i) η-strongly monotone if for some η ≥ 0,

〈θ(p∗)− θ(q∗), p∗ − q∗〉 ≥ η‖p∗ − q∗‖2, ∀p∗, q∗ ∈ H;

(ii) relaxed (ς, τ)-cocoercive if for some ς, τ > 0,

〈θ(p∗)− θ(q∗), p∗ − q∗〉 ≥ −ς‖θ(p∗)− θ(q∗)‖2 + τ‖p∗ − q∗‖2, ∀p∗, q∗ ∈ H;

(iii) σ-Lipschitz continuous if for some σ > 0,

‖θ(p∗)− θ(q∗)‖ ≤ σ‖p∗ − q∗‖, ∀p∗, q∗ ∈ H;

(iv) g-positive if, and only if,

〈θ(p∗), g(p∗)〉 ≥ 0, ∀p∗ ∈ H.

Lemma 1 ([46]). Let {pn} and {qn} be sequences of non-negative real numbers, such that there
exists some r ∈ [0, 1) with the property that for each n ∈ N the inequality pn+1 ≤ rpn + qn is
satisfied. If lim

n→∞
qn = 0, then lim

n→∞
pn = 0.
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Lemma 2 ([47]). Let {pn} be a sequence of non-negative real numbers, such that

pn+1 ≤ (1− τn)pn + τnqn + rn, for all n ∈ N,

where the sequences {τn}, {qn} and {rn} accomplish the following conditions:

(i) the sequence {τn} is in [0, 1] such that ∑∞
n=1 τn = ∞;

(ii) lim supn→∞ qn ≤ 0;
(iii) rn ≥ 0 for all n ∈ N, such that ∑∞

n rn < ∞.

Then, lim
n→∞

pn = 0.

Let K be a closed convex subset ofH. It is known that for each p∗ ∈ H there exists a
unique point ΠK(p∗) in K, such that

‖p∗ −ΠK(p∗)‖ = min{‖p∗ − q∗‖ : q∗ ∈ K}.

Then, by definition, the surjective mapping p∗ 7−→ ΠK(p∗), p∗ ∈ H, is the metric
projection ΠK fromH onto K.

The following lemma is essential and plays a central role in achieving our goal.

Lemma 3. For any given r∗ ∈ H, p∗ ∈ K(p∗) and implicit projection ΠK(p∗) ofH ontoK(p∗) ⊂
H, we have 〈p∗ − r∗, q∗ − p∗〉 ≥ 0, ∀q∗ ∈ K(p∗) if p∗ = ΠK(p∗)(r∗).

Note that the implicit projection mapping ΠK(p∗) is non-expansive, that is,

‖ΠK(p∗)(q
∗)−ΠK(p∗)(r

∗)‖ ≤ ‖q∗ − r∗‖, ∀q∗, r∗ ∈ H.

Assumption 1 ([48]). For any p∗, q∗, r∗ ∈ H, the implicit projection mapping ΠK(p∗) satisfies
following characteristic condition

‖ΠK(p∗)(r
∗)−ΠK(q∗)(r

∗)‖ ≤ κ‖p∗ − q∗‖,

where κ > 0 is a constant.

Next, we remodel GQVI (9) into a fixed point problem by using the projection.

Lemma 4. The function p∗ ∈ H : φ(p∗) ∈ K(p∗) is a solution of GQVI (9) if, and only if, p∗ is
a fixed point of I − φ + ΠK(p∗)[φ− $θ], i.e.,

p∗ = p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)], (17)

where ΠK(p∗) is the projection ofH onto K(p∗) and $ > 0 is a constant.

Based on (17), we rewrite the algorithm (7) as under:
ωn = pn −Θn(pn − pn−1),
qn = ψ[(1− an)ωn + anψ(ωn)],
rn = ψqn,
pn+1 = ψrn,

(18)

where {an} is a sequence in (0, 1) and ψ : H → H is an operator defined as

ψ := I − φ + ΠK(p∗)[φ− $θ]. (19)
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3. Existence Result

Following theorem ensures the existence of unique solution of GQVI (9) which is
followed by a demonstrative numerical example to verify our theoretical claims.

Theorem 1. Let ΠK(p∗) : H → K(p∗) be a projection and θ, φ : H → H be non-linear mappings,
such that θ is relaxed (σ, τ)-cocoercive and ς-Lipschiz continuous and φ is γ-Lipschitz continuous
and η-strongly monotone. Suppose that assumption C holds and there exists $ > 0 complying with
the following condition

$ς2 <
2$τ + ϕ(ϕ− 2)

$ + 2σ
, (20)

where ϕ = 2
√

1− 2η + γ2 + κ. Then, GQVI (9) admits a unique solution.

Proof. From (19), assumption C and the non-expansiveness of ΠK(p∗), we acquire:

‖ψ(p∗)− ψ(q∗)‖
= ‖p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]− {q∗ − φ(q∗) + ΠK(p∗)[φ(q

∗)− $θ(q∗)]}‖
≤ ‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖+ ‖ΠK(p∗)[φ(p∗)− $θ(p∗)]−ΠK(q∗)[φ(q

∗)− $θ(q∗)]‖
≤ ‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖+ ‖ΠK(p∗)[φ(p∗)− $θ(p∗)]−ΠK(p∗)[φ(q

∗)− $θ(q∗)]‖
+ ‖ΠK(p∗)[φ(q

∗)− $θ(q∗)]−ΠK(q∗)[φ(q
∗)− $θ(q∗)]‖

≤ ‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖+ ‖φ(p∗)− φ(q∗)− $[θ(p∗)− θ(q∗)]‖+ κ‖p∗ − q∗‖
≤ 2‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖+ ‖p∗ − q∗ − $[θ(p∗)− θ(q∗)]‖+ κ‖p∗ − q∗‖.

(21)

Using the γ-Lipschitz continuity and the η-strongly monotone property of φ, we obtain

‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖2 = ‖p∗ − q∗‖2 + ‖φ(p∗)− φ(q∗)‖2 − 2〈p∗ − q∗, φ(p∗)− φ(q∗)〉
≤ ‖p∗ − q∗‖2 + γ2‖p∗ − q∗‖2 − 2η‖p∗ − q∗‖2

= [1− 2η + γ2]‖p∗ − q∗‖2,

which turns into

‖p∗ − q∗ − [φ(p∗)− φ(q∗)]‖ ≤
√

1− 2η + γ2‖p∗ − q∗‖. (22)

Additionally, from the relaxed (σ, τ)-cocoercivity and ς-Lipschiz continuity of θ,
we obtain:

‖p∗ − q∗ − $[θ(p∗)− θ(q∗)]‖2

= ‖p∗ − q∗‖2 + $2‖θ(p∗)− θ(q∗)‖2 − 2$〈p∗ − q∗, θ(p∗)− θ(q∗)〉
≤ ‖p∗ − q∗‖2 + $2ς2‖p∗ − q∗‖2 + 2$σ‖θ(p∗)− θ(q∗)‖2 − 2$τ‖p∗ − q∗‖2

≤ ‖p∗ − q∗‖2 + $2ς2‖p∗ − q∗‖2 + 2$σς2‖p∗ − q∗‖2 − 2$τ‖p∗ − q∗‖2

= [1− 2$(τ − σς2) + $2ς2]‖p∗ − q∗‖2,

which leads to:

‖p∗ − q∗ − $[θ(p∗)− θ(q∗)]‖ ≤
√

1− 2$(τ − σς2) + $2ς2‖p∗ − q∗‖. (23)

Thus, from (22)–(23), (21) turns into

‖ψ(p∗)− ψ(q∗)‖ ≤ Φ‖p∗ − q∗‖, (24)
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where Φ = ϕ + ∆($), ϕ = 2
√

1− 2η + γ2 + κ and ∆($) =
√

1− 2$(τ − σς2) + $2ς2.
From (20), it follows that Φ < 1 and, hence, ψ : H → H is a contraction mapping. Therefore,
ψ(p∗) = p∗ and hence p∗ ∈ H : φ(p∗) ∈ K(p∗) is a unique solution of GQVI (9).

4. Convergence Results

Now, we inspect the convergence of inertial iterative methods to figure out the ap-
proximate solution of GQVI (9). By means of (19), we can redesign (18) as below:

Next, we prove the following lemma, which plays a deciding role in establishing
the convergence.

Lemma 5. Under the assumptions of the Theorem 1, the sequence {ζn‖pn − pn−1‖} norm conver-
gence in the Hilbert spaceH to 0. Here, the sequence {ζn}∞

n=1 is given by:

ζn =


min

{ n− 1
n− 1 + c

,
εn

‖pn − pn−1‖

}
, if pn 6= pn−1,

n− 1
n− 1 + c

, if pn = pn−1,
(25)

for all n ∈ N, c ≥ 3 and εn ∈ (0, ∞), such that lim
n→∞

εn = 0.

Proof. We give a proof of Lemma 5 by considering four different cases.
Case (1). If pn = pn−1, then there is nothing to show because ζn‖pn − pn−1‖ is zero.
Next, we consider the cases, when pn 6= pn−1.

Case (2). Suppose that for all n ∈ N, ζn =
n− 1

n− 1 + c
, then from (25), we acquire 0 ≤ ζn =

n− 1
n− 1 + c

≤ εn

‖pn − pn−1‖
and hence 0 ≤ ζn‖pn − pn−1‖ ≤ εn.

Case (3). Suppose that for all n ∈ N, ζn =
εn

‖pn − pn−1‖
, then from (25), we obtain:

0 ≤ ζn =
εn

‖pn − pn−1‖
≤ n− 1

n− 1 + c
and hence 0 ≤ ζn‖pn − pn−1‖ = εn.

Case (4). Suppose that for some n ∈ N, ζn =
n− 1

n− 1 + c
=

εn

‖pn − pn−1‖
, then from (25), we

obtain 0 ≤ ζn‖pn − pn−1‖ = εn.
Thus, for all n ∈ N, we have 0 ≤ ζn‖pn − pn−1‖ ≤ εn. Since lim

n→∞
εn = 0 and, hence,

{ζn‖pn − pn−1‖} converges to 0.

Theorem 2. Suppose that mappings ΠK(p∗), θ and φ : H → H are the same and comply with
all the assumptions of Theorem 1. Suppose the sequence {pn} initiated by Algorithm 1 with the
updating parameter ζn represented by (25) with |Θn| ≤ ζn, for all n ∈ N and {an} is in (0, 1).
Let {εn} be a sequence given in (25), such that lim

n→∞
εn = 0. Then {pn} converges strongly to the

unique solution p∗ of GQVI (9).

Algorithm 1. Define the sequence {pn} with arbitrary initial point p0 as below:

ωn = pn −Θn(pn − pn−1), (26)

zn = (1− an)ωn + anψ(ωn), (27)

qn = zn − φ(zn) + ΠK(zn)[φ(zn)− $θ(zn)], (28)

rn = qn − φ(qn) + ΠK(qn)[φ(qn)− $θ(qn)], (29)

pn+1 = rn − φ(rn) + ΠK(rn)[φ(rn)− $θ(rn)], (30)

where {an} is a sequence in (0, 1).
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Proof. It follows from (30), (17), assumption C and the non-expansiveness of ΠK(p∗) that:

‖pn+1 − p∗‖ = ‖rn − φ(rn) + ΠK(rn)[φ(rn)− $θ(rn)]

− {p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]}‖
≤ ‖rn − p∗ − [φ(rn)− φ(p∗)]‖
+ ‖ΠK(rn)[φ(rn)− $θ(rn)]−ΠK(p∗)[φ(p∗)− $θ(p∗)]‖
≤ ‖rn − p∗ − [φ(rn)− φ(p∗)]‖
+ ‖ΠK(rn)[φ(rn)− $θ(rn)]−ΠK(rn)[φ(p∗)− $θ(p∗)]‖
+ ‖ΠK(rn)[φ(p∗)− $θ(p∗)]−ΠK(p∗)[φ(p∗)− $θ(p∗)]‖
≤ ‖rn − p∗ − [φ(rn)− φ(p∗)]‖
+ ‖φ(rn)− φ(p∗)− $[θ(rn)− θ(p∗)]‖+ κ‖rn − p∗‖
≤ 2‖rn − p∗ − [φ(rn)− φ(p∗)]‖
+ ‖rn − p∗ − $[θ(rn)− θ(p∗)]‖+ κ‖rn − p∗‖.

(31)

Utilizing the γ-Lipschitz continuity and η-strongly monotone property of φ, we obtain:

‖rn − p∗ − [φ(rn)− φ(p∗)]‖2

= ‖rn − p∗‖2 + ‖φ(rn)− φ(p∗)‖2 − 2〈rn − p∗, φ(rn)− φ(p∗)〉
≤ ‖rn − p∗‖2 + γ2‖rn − p∗‖2 − 2η‖rn − p∗‖2

= [1− 2η + γ2]‖rn − p∗‖2.

(32)

It follows from the relaxed (σ, τ)-cocoercivity and ς-Lipschitz continuity of θ that:

‖rn − p∗ − $[θ(rn)− θ(p∗)]‖2

= ‖rn − p∗‖2 + $2‖θ(rn)− θ(p∗)‖2 − 2$〈rn − p∗, θ(rn)− θ(p∗)〉
≤ ‖rn − p∗‖2 + $2ς2‖rn − p∗‖2 + 2$σ‖θ(rn)− θ(p∗)‖2 − 2$τ‖rn − p∗‖2

≤ ‖rn − p∗‖2 + $2ς2‖rn − p∗‖2 + 2$σς2‖rn − p∗‖2 − 2$τ‖rn − p∗‖2

= [1− 2$(τ − σς2) + $2ς2]‖rn − p∗‖2.

(33)

Thus, from (31)–(33), we obtain

‖pn+1 − p∗‖ ≤ Φ‖rn − p∗‖, (34)

where Φ = [ϕ + ∆($)], ϕ = 2
√

1− 2η + γ2 + κ and ∆($) =
√

1− 2$(τ − σς2) + $2ς2.
In a similar fashion to (29) and (17), we can obtain:

‖rn − p∗‖ = ‖qn − φ(qn) + ΠK(qn)[φ(qn)− $θ(qn)]

− {p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]}‖
≤ Φ‖qn − p∗‖.

(35)

In the same way as in (28) and (17), we obtain:

‖qn − p∗‖ = ‖zn − φ(zn) + ΠK(zn)[φ(zn)− $θ(zn)]

− {p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]}‖
≤ Φ‖zn − p∗‖.

(36)
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Similarly, from (27) and (17), we have

‖zn − p∗‖ = ‖ωn − φ(ωn) + ΠK(ωn)[φ(ωn)− $θ(ωn)]

− {p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]}‖
≤ Φ‖ωn − p∗‖.

(37)

Now from (26) and (17), we obtain:

‖ωn − p∗‖ = ‖pn −Θn(pn − pn−1)− p∗)‖
≤ ‖pn − p∗‖+ Θn‖pn − pn−1‖.

(38)

By using (38) and (37), we deduce that:

‖zn − p∗‖ ≤ Φ‖ωn − p∗‖ ≤ Φ[‖pn − p∗‖+ Θn‖pn − pn−1‖]. (39)

Taking (39) and (36) into account, we have:

‖qn − p∗‖ ≤ Φ‖zn − p∗‖ ≤ Φ2[‖pn − p∗‖+ Θn‖pn − pn−1‖]. (40)

By using (40) and (35) we can write:

‖rn − p∗‖ ≤ Φ‖qn − p∗‖ ≤ Φ3[‖pn − p∗‖+ Θn‖pn − pn−1‖]. (41)

Additionally, from (41) and (34), we obtain:

‖pn+1 − p∗‖ ≤ Φ‖rn − p∗‖ ≤ Φ4[‖pn − p∗‖+ Θn‖pn − pn−1‖]
≤ Φ4‖pn − p∗‖+ ζn‖pn − pn−1‖

(42)

From (20), we know that Φ < 1 and from Lemma 5, ζn‖pn − pn−1‖ → 0 as n → ∞.
Hence, from Lemma 1, we obtain that lim

n→∞
pn = p∗.

Next, we put forward a more prevalent inertial iterative algorithm for approximating
GQVI (9), which contains two inertial terms. By making use of (19), (8) can be redesigned
as follows:

Theorem 3. Suppose that the mappings ΠK(p∗), θ and φ : H → H are the same and comply
with all the assumptions of Theorem 1. Suppose that the sequence {pn} initiated by Algorithm 2
with the updating parameter ζn represented by (24) with |νn| + |µn| ≤ ζn, for all n ∈ N and
the sequences {an}, {bn} are in (0, 1), such that 0 < an + bn < 1, for all n ∈ N. Let {εn} be a
sequence given in (25), such that lim

n→∞
εn = 0. Then {pn} converges strongly to the unique solution

p∗ of GQVI (9).

Algorithm 2. Define the sequence {pn} with initial points p0, p1 ∈ H as below:

ωn = pn + µn(pn − pn−1), (43)

qn = pn + νn(pn − pn−1), (44)

pn+1 = (1− an − bn)qn + an
(
qn − φ(qn) + ΠK(qn)[φ(qn)− $θ(qn)]

)
+ bnωn, (45)

where $ > 0 is a constant and {an}, {bn} are sequences in (0, 1).

Proof. It is proved in Theorem 1 that GQVI (9) has a unique solution p∗. Next, it remains to
substantiate that the sequence {pn} converges to p∗ under the assumption of Algorithm 2.
It follows from (17) that:

p∗ = p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)].
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By utilizing assumption C, the non-expansiveness of the mapping ΠK(p∗) and follow-
ing the steps as in (21), we obtain:

‖qn − φ(qn) + ΠK(qn)(φ(qn)− $θ(qn))− p∗‖
= ‖qn − φ(qn) + ΠK(qn)(φ(qn)− $θ(qn))

− {p∗ − φ(p∗) + ΠK(p∗)[φ(p∗)− $θ(p∗)]}‖
≤ 2‖qn − p∗ − [φ(qn)− φ(p∗)]‖
+ ‖qn − p∗ − $[θ(qn)− θ(p∗)]‖+ κ‖qn − p∗‖.

(46)

Since φ is γ-Lipschitz continuous, η-strongly monotone and θ is relaxed (σ, τ)-cocoercive,
ς-Lipschitz continuous, then adopting the approach as in (22)–(24), we can write:

‖qn − φ(qn) + ΠK(qn)(φ(qn)− $θ(qn))− p∗‖ ≤ Φ‖qn − p∗‖. (47)

From (45) and (47), we can conclude that:

‖pn+1 − p∗‖ = ‖(1− an − bn)qn + an[qn − φ(qn)

+ ΠK(qn)(φ(qn)− $θ(qn))] + bnωn − p∗‖
≤ (1− an − bn)‖qn − p∗‖+ an‖qn − φ(qn)

+ ΠK(qn)(φ(qn)− $θ(qn))− p∗‖+ bn‖ωn − p∗‖
≤ (1− an − bn + anΦ)‖qn − p∗‖+ bn‖ωn − p∗‖.

(48)

Since {an} is in (0, 1), then for all n ∈ N, one can find a constant a ∈ R, such that
a ≤ an. It follows from (20) that Φ < 1 and utilizing (43), (44), we can write:

‖pn+1 − p∗‖ ≤ (1− an − bn + anΦ)‖qn − p∗‖+ bn‖ωn − p∗‖
≤ (1− an − bn + anΦ)[‖pn − p∗‖+ |νn|‖pn − pn−1‖]
+ bn‖pn − p∗‖+ |µn|‖pn − pn−1‖]
≤ (1− an − bn + anΦ + bn)‖pn − p∗‖
+ [(1− an − bn + anΦ)|νn|+ bn|µn|]‖pn − pn−1‖
≤ (1− an(1−Φ))‖pn − p∗‖+ [(1− an − bn + anΦ)|νn|
+ bn|µn|]‖pn − pn−1‖
≤ (1− an(1−Φ))‖pn − p∗‖+ [(1− an − bn + an)|νn|
+ bn|µn|]‖pn − pn−1‖
≤ (1− a(1−Φ))‖pn − p∗‖+ (|νn|+ |µn|)‖pn − pn−1‖
≤ (1− a(1−Φ))‖pn − p∗‖+ ζn‖pn − pn−1‖.

(49)

From (20), we know that Φ < 1 and, hence, 1− a(1− Φ) < 1 and from Lemma 5,
ζn‖pn − pn−1‖ → 0 as n→ ∞. Hence, from Lemma 1, we conclude that lim

n→∞
pn = p∗.

Remark 1. It can be perceived that under the assumptions of Theorem 3, by following the approach

as in Lemma 5,
∞
∑

n=1
ζn‖pn − pn−1‖ is convergent.

Corollary 1. Suppose that the mappings ΠK(p∗), θ and φ : H → H are the same and comply with
all the assumptions of Theorem 1. Suppose that the sequence {pn} initiated by Algorithm 2 with the
updating parameter ζn represented by (25) with |µn|+ |νn| ≤ ζn, for all n ∈ N and the sequences
{an}, {bn} are in (0, 1), such that 0 < an + bn < 1, for all n ∈ N and ∑∞

n=1 an = ∞. Let {εn} be
a sequence given in (25) such that lim

n→∞
εn = 0. Then, the sequence {pn} converges strongly to the

unique solution p∗ of GQVI (9).



Fractal Fract. 2022, 6, 395 11 of 16

Proof. From (48) and (49), we have:

‖pn+1 − p∗‖ ≤ (1− an(1−Φ))‖pn − p∗‖+ ζn‖pn − pn−1‖. (50)

It emanates from Remark 1 that ∑∞
n=1 ζn‖pn − pn−1‖ < ∞ and 1− an(1− Φ) < 1.

From the assumption, we can write ∑∞
n=1 an(1−Φ) = ∞. Hence, from Lemma 2, we have

lim
n→∞

pn = p∗.

Example 1. Let l2 =
{

p = (p0, p1, p2, · · · ) : ∑∞
n=0 |pn|2 < ∞, pn ∈ R, ∀n ∈ N ∪ {0}

}
be a real Hilbert space equipped with norm ‖p‖2 =

(
∑∞

n=0 |pn|2
)1/2

. Define the mappings
θ, φ : H → H by

θ(p) =
p
2

, φ(p) =
2
3

p, ∀p ∈ H.

Then, for all p, q ∈ H, one can observe that:

〈p− q, φ(p)− φ(q)〉 = 〈p− q,
2
3

p− 2
3

q〉 = 2
3
‖p− q‖2

2,

‖φ(p)− φ(q)‖2 = ‖2
3

p− 2
3

q‖2 =
2
3
‖p− q‖2.

Thus, the mapping φ is
2
3

-strongly monotone and
2
3

-Lipschitz continuous. Additionally,

〈p− q, θ(p)− θ(q)〉 = 〈p− q,
p
2
− q

2
〉 ≥ −1

4
‖θ(p)− θ(q)‖2

2 +
1
4
‖p− q‖2

2,

‖θ(p)− θ(q)‖2 =
∥∥∥ p

2
− p

2

∥∥∥
2
=

1
2
‖p− q‖2.

Thus, the mapping θ is relaxed
(1

4
,

1
4

)
-cocoercive and

1
2

-Lipschitz continuous. Next, we
define a set-valued mapping K : H → H by

K(p) = K({pn}) =
{

u = {un} : u0 ≥
p0

15
, un = 0, for all n ∈ N

}
.

We claim that K(p) is a closed convex set. Indeed, for any arbitrary α ∈ [0, 1] and u0, v0 ∈
K(p), we have αu0 + (1 − α)v0 ≥ p0

15 and, hence, K(p) is a convex set. Now, we define g :
[ p0

15 , ∞)→ K(p) by g(r) = (r, 0, 0, · · · ). Evidently, g is well defined. In point of fact, for distinct
u, v ∈ [ p0

15 , ∞), we have (u, 0, 0, · · · ) 6= (v, 0, 0, · · · ), i.e., g is injective. It is easy to see that there
exists an u0 ∈ [ p0

15 , ∞) so that g(u0) = (u0, 0, 0, · · · ) for each u = (u0, 0, 0, · · · ) ∈ K(p), i.e., g
is surjective. Let (l2, d2) and (R, d) be usual metric spaces, then for each u, v ∈ [ p0

15 , ∞), we obtain:

d2(g(u), g(v)) = d2((u, 0, 0, · · · ), (v, 0, 0, · · · )) = |u− v| = d(u, v).

Thus g is continuous. Moreover, g−1 is also continuous and bijective and hence g is a homeomor-
phism. Being homeomorphic to a closed set [ p0

15 , ∞), K(p) is also closed. Define metric projection
ΠK(p) : H → K(p) by:

ΠK(p)(l0, l1, l2, · · · ) =


(l0, l1, l2, · · · ), if (l0, l1, l2, · · · ) ∈ K(p)
( p0

15 , 0, 0, · · · ), if (l0, l1, l2, · · · ) /∈ K(p), l0 < p0
15

(l0, 0, 0, · · · ), if (l0, l1, l2, · · · ) /∈ K(p), l0 ≥ p0
15 .

To show that the projection ΠK(p) satisfies the assumption C, we discuss the following cases.
Case (a). For arbitrary p = {pn}, q = {qn}, l = {ln} ∈ H, suppose that p0 ≤ q0.
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1. If l = {ln} ∈ K(q), then l = {ln} ∈ K(p) and, hence:

‖ΠK(p)(l)−ΠK(q)(l)‖2 = ‖(l0, l1, l2, · · · )− (l0, l1, l2, · · · )‖2

= 0 ≤ 1
15
‖p− q‖2.

2. If l = (l0, l1, l2, · · · ) /∈ K(q) and l = (l0, l1, l2, · · · ) ∈ K(p), then either l0 < q0
15 or l0 ≥ q0

15 .
For l0 < q0

15 , we have:

‖ΠK(p)(l)−ΠK(q)(l)‖2 = ‖(l0, l1, l2, · · · )−
( p0

15
, 0, 0, · · ·

)
‖2

= ‖(l0, 0, 0, · · · )−
( p0

15
, 0, 0, · · ·

)
‖2

=
∣∣∣l0 − p0

15

∣∣∣ = l0 −
p0

15

≤ 1
15
‖p− q‖2.

For l0 ≥ q0
15 , we have:

‖ΠK(p)(l)−ΠK(q)(l)‖2 = ‖(l0, l1, l2, · · · )− (l0, 0, 0, · · · )‖2

= ‖(l0, 0, 0, · · · )− (l0, 0, 0, · · · )‖2

= 0 ≤ 1
15
‖p− q‖2.

3. If l = (l0, l1, l2, · · · ) /∈ K(q) and l = (l0, l1, l2, · · · ) /∈ K(p), then either l0 < q0
15 or l0 ≥ q0

15
and l0 < p0

15 or l0 ≥ p0
15 . For l0 < p0

15 , we have l0 < q0
15 . Therefore, we can conclude that

‖ΠK(p)(l)−ΠK(q)(l)‖2 =
∥∥∥( p0

15
, 0, 0, · · ·

)
−
( q0

15
, 0, 0, · · ·

)∥∥∥
2

=
∣∣∣ p0

15
− q0

15

∣∣∣ ≤ 1
15
‖p− q‖2.

For l0 ≥ p0
15 and l0 ≥ q0

15 , we have

‖ΠK(p)(l)−ΠK(q)(l)‖2 = ‖(l0, 0, 0, · · · )− (l0, 0, 0, · · · )‖2

= 0 ≤ 1
15
‖p− q‖2.

For l0 ≥ p0
15 and l0 < q0

15 , we have

‖ΠK(p)(l)−ΠK(q)(l)‖2 = ‖(l0, 0, 0, · · · )−
( q0

10
, 0, 0, · · · )‖2

=
∣∣∣l0 − q0

15

∣∣∣ = q0

15
− l0 ≤

q0

15
− p0

15
≤ 1

15
‖p− q‖2.

Case (b). Similarly, for arbitrary p = {pn}, q = {qn}, r = {ln} ∈ H with p0 > q0, we can
verify that

‖ΠK(p)(l)−ΠK(q)(l)‖2 ≤
1
15
‖p− q‖2.

Thus, we conclude that the projection ΠK(p) satisfies the assumption C with constant κ = 1
15 .

Additionally, the condition (20) is satisfied for η = γ = 2
3 , σ = τ = 1

4 , ς = 1
2 , and $ = 1. Finally,
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we shall find a unique point p∗ ∈ K(p∗) which solves GQVI (9). Consider p∗ = (p∗0 , 0, 0, · · · ) :
p∗0 ≥ 0, then for p∗ > 0, we have:

〈θ(p∗), φ(q∗)− φ(p∗)〉 = 〈 p∗

2
,

2
3
(q∗)− 2

3
(p∗)〉

=
1
3
〈(p∗0 , 0, 0, · · · ), (q∗0 − p∗0 , 0, 0, · · · )〉

< 0, ∀q∗ = (q∗0 , 0, 0, · · · ) ∈ K(p∗).

However, for p∗ = (0, 0, 0, · · · ), we have:

〈θ(p∗), φ(q∗)− φ(p∗)〉 = 〈(0, 0, 0, · · · ), (q∗0 − p∗0 , 0, 0, · · · )〉 = 0, ∀q∗ = (q∗0 , 0, 0, · · · ) ∈ K(p∗).

Hence, p∗ = (0, 0, 0, · · · ) ∈ K(p∗) is a unique solution of GQVI (9). Consider a sequence
{p(n)} ∈ l2 and for all n ∈ N, take µn = n

6(n+2) , νn = n
5(n+1) , an = n+7

2(n+5) , bn = n−1
4(n+6) with

initial points p(0) = ( 1
2 , 1

6 , 0, 0, · · · ), p(1) = (1, 1
3 , 0, 0, · · · ) in Algorithm 2. Table 1 shows that

the scheme 2 converges faster with initial terms than that of with µn = νn = 0.

Table 1. Numerical comparison of iterative Algorithm 2 with inertial and non-inertial terms.

No. Iter. xn( with µn = n
6(n+2) , vn = n

5(n+n) ) ‖xn‖2 xn (with µn = vn = 0) ‖xn‖2

0 ( 1
2 , 1

6 , 0, 0, . . . ) 0.527046268 ( 1
2 , 1

6 , 0, 0, . . . ) 0.52704268
1 (1, 1

3 , 0, 0, . . . ) 1.054092481 (1, 1
3 , 0, 0, . . . ) 1.054092481

2 (0.411111101, 0.114197529, 0, 0, . . . ) 0.426676275 (0.411111221, 0.114199632, 0, 0, . . . ) 0.586937317
...

...
...

...
...

25 (1.56798 × 10−11, 2.80294 × 10−16, 0, 0, . . . ) 3.53429 × 10−12 (9.40659 × 10−11, 1.99635 × 10−14, 0, 0, . . . ) 9.40267 × 10−11

...
...

...
...

...
110 (5.23109 × 10−91, 6.59583 × 10−118, 0, 0, . . . ) 2.40527 × 10−47 (2.14532 × 10−43, 1.40867 × 10−57, 0, 0, . . . ) 2.10462 × 10−43

...
...

...
...

...
220 (3.1594 × 10−147, 2.0037 × 10−192, 0, 0, . . . ) 8.19276 × 10−92 (1.08984 × 10−84, 1.10363 × 10−86, 0, 0, . . . ) 1.09486 × 10−84

5. Application to Delay Differential Equation

In this section, we make use of the inertial iterative Algorithm 2 to find an approximate
solution of the delay differential equation stated as under:{

ω
′
(s) = h(s, ω(s), ω(s− τ)), s ∈ [s0, a1],

ω(s) = ϑ(s), s ∈ [s0 − τ, s0].
(51)

Let C[a0, a1] denotes the space of all continuous real-valued functions defined on
[a0, a1] equipped with the Chebyshev norm ‖p‖∞ = max

s∈[a0,a1]
|p(s)|. From classical analysis,

observe that (C[a0, a1], ‖ · ‖∞) is a Banach space. Suppose the following assumptions
are fulfilled.

(C1) s0, a1 ∈ R, τ > 0;
(C2) h ∈ C([s0, a1]×R2,R);
(C3) ϑ ∈ C([s0 − τ, a1],R);
(C4) there exists Lh > 0 so that

|h(s, m1, m2)− h(s, n1, n2)| ≤ Lh ∑2
i=1 |mi − ni|, for all mi, ni ∈ R, s ∈ [s0, a1];

(C5) 2Lh(a1 − s0) < 1.

Suppose that the solution p∗ ∈ C([s0 − τ, a1],R) ∩ C1([s0, a1],R) of the problem (51)
exists. Then it can be modelled as being a solution of the following integral equation.

ω(s) =

{
ϑ(s), s ∈ [s0 − τ, s0],
ϑ(s0) +

∫ s
s0

h(r, ω(r), ω(r− τ))dr, s ∈ [s0, a1].
(52)



Fractal Fract. 2022, 6, 395 14 of 16

Next, we present convergence of our inertial iterative algorithm to look over the
solution of Problem (51).

Theorem 4. Suppose the assumptions (C1)–(C5) are fulfilled. Let {εn} be a sequence given in
(25), such that lim

n→∞
εn = 0. Let {pn} be a sequence initiated by (43)–(45) with the updating

parameter ζn represented by (25) with |µn|+ |νn| ≤ ζn, for all n ∈ N and {an}, {bn} ∈ (0, 1),
such that 0 < an + bn < 1, for all n ∈ N. Then, {pn} converges to the unique solution
p∗ ∈ C([s0 − τ, a1],R) ∩ C1([s0, a1],R) of Problem (51).

Proof. Define the operator ψ(ω(s)) =

{
ϑ(s), s ∈ [s0 − τ, s0],
ϑ(s0) +

∫ s
s0

h(r, ω(r), ω(r− τ))dr, s ∈ [s0, a1],
where {an} and {bn} are sequences in (0,1), such that ∑∞

k=0 akbk = ∞. From (17) and (19), it
follows that p∗ is a fixed point of ψ. In addition, let {pn} be a sequence generated by (45).
Then, for s ∈ [s0, a1], we have:

‖pn+1 − p∗‖∞

= ‖(1− an − bn)qn + anψ(qn) + bnωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + an‖ψ(qn)− ψ(p∗)‖∞ + bn‖ωn − p∗‖∞

= (1− an − bn)‖qn − p∗‖∞ + an max
s∈[s0−τ,a1]

|ψqn(s)− ψp∗(s)|+ bn‖ωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + an max
s∈[s0−τ,a1]

∣∣∣ϑ(s0) +
∫ s

s0

h(r, qn(r), qn(r− τ))dr

− ϑ(s0)−
∫ s

s0

h(r, p∗(r), p∗(r− τ))dr
∣∣∣+ bn‖ωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + an max
s∈[s0−τ,a1]

∫ s

s0

|h(r, qn(r), qn(r− τ))

− h(r, p∗(r), p∗(r− τ))|dr + bn‖ωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + an

∫ s

s0

Lh

(
max

s∈[s0−τ,a1]
|qn(r)− p∗(r)|

+ max
s∈[s0−τ,a1]

|qn(r− τ)− p∗(r− τ)|
)

dr + bn‖ωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + anLh

(
max

s∈[s0−τ,a1]
|qn(r)− p∗(r)|

+ max
s∈[s0−τ,a1]

|qn(r− τ)− p∗(r− τ)|
) ∫ s

s0

dr + bn‖ωn − p∗‖∞

≤ (1− an − bn)‖qn − p∗‖∞ + 2anLh(a1 − s0)‖qn − p∗‖∞ + bn‖ωn − p∗‖∞

= (1− an − bn + 2anLh(a1 − s0))‖qn − p∗‖∞ + bn‖ωn − p∗‖∞.

(53)

Since {an}, {bn} are sequences in (0, 1) and from assumption (C5), we know that
2Lh(a1 − s0) < 1. Then, by utilizing (43) and (44), (53) becomes:

‖pn+1 − p∗‖ ≤ (1− an − bn + 2anLh(a1 − s0))‖qn − p∗‖∞ + bn‖ωn − p∗‖∞

≤ (1− an − bn + 2anLh(a1 − s0))[‖pn − p∗‖+ |νn|‖pn − pn−1‖]
+ bn‖pn − p∗‖+ |µn|‖pn − pn−1‖]
≤ (1− an − bn + 2anLh(a1 − s0) + bn)‖pn − p∗‖
+ [(1− an − bn + 2anLh(a1 − s0))|νn|+ bn|µn|]‖pn − pn−1‖
≤ (1− an + 2anLh(a1 − s0))‖pn − p∗‖
+ [(1− an − bn + an)|νn|+ bn|µn|]‖pn − pn−1‖
≤ (1− an(1− 2Lh(a1 − s0)))‖pn − p∗‖+ (|νn|+ |µn|)‖pn − pn−1‖
≤ (1− an(1− 2Lh(a1 − s0)))‖pn − p∗‖+ ζn‖pn − pn−1‖.

(54)
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From (C5), we know that 2Lh(a1 − s0) < 1 and hence 1− an(1− 2Lh(a1 − s0)) < 1
and from Lemma 5, ζn‖pn − pn−1‖ → 0 as n → ∞. Hence, from Lemma 1, we conclude
that lim

n→∞
pn = p∗.

6. Concluding Remarks

In this paper, new inertial iterative algorithms have been constructed and their conver-
gence analysis is considered in order to approximate solutions of general quasi-variational
inequalities. The existence result of vectors satisfying a general quasi-variational inequality
is proved and verified by illustrative example. Finally, as an application of the two steps
inertial iterative algorithm, we examined a delay differential equation.
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