Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method
Abstract
:1. Introduction
2. The Modified Auxiliary Equation Method
3. Analytical Solutions of the Modified BBM Equation
4. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benjamin, T.; Bona, J.; Mahony, J. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 1972, 272, 47. [Google Scholar]
- Rashid, S.; Kaabar, M.K.A.; Althobaiti, A.; Alqurashi, M.S. Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Ali Akbar, M.; Akinyemi, L.; Yao, S.-W.; Jhangeer, A.; Rezazadeh, H.; Khater, M.M.A.; Ahmad, H.; Inc, M. Soliton Solutions to the Boussinesq Equation Through Sine-Gordon Method and Kudryashov Method. Results Phys. 2021, 25, 104228. [Google Scholar] [CrossRef]
- Che, H.; Yu-Lan, W. Numerical Solutions of Variable-Coefficient Fractional-in-Space KdV Equation with the Caputo Fractional Derivative. Fractal Fract. 2022, 6, 207. [Google Scholar] [CrossRef]
- Ullah, H.; Fiza, M.; Khan, I.; Alshammari, N.; Hamadneh, N.N.; Islam, S. Modification of the Optimal Auxiliary Function Method for Solving Fractional Order KdV Equations. Fractal Fract. 2022, 6, 288. [Google Scholar] [CrossRef]
- Khalid, K.A.; Nuruddeen, R.I. Analytical treatment for the conformable space-time fractional Benney-Luke equation via two reliable methods. Int. J. Phy. Res. 2017, 5, 109–114. [Google Scholar]
- Khater, M.M.; Salama, S.A. Semi-analytical and numerical simulations of the modified Benjamin-Bona-Mahony model. J. Ocean. Eng. Sci. 2022, 7, 264–271. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A.; Islam, S.M.R. Exact Solution for (1+1)-Dimensional Nonlinear Dispersive Modified Benjamin-Bona-Mahony Equation and Coupled Klein-Gordon Equations. Springer Plus 2014, 3, 724. [Google Scholar] [CrossRef] [Green Version]
- Naher, H.; Abdullah, F.A. The modified Benjamin-Bona-Mahony equation via the extended generalized Riccati equation mapping method. Appl. Math. Sci. 2012, 6, 5495–5512. [Google Scholar]
- Baskonus, H.M.; Bulut, H. Anaytical studies on the (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation defined by seismic sea waves. Waves Random Complex Media 2015, 25, 576–586. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Shirzadi, A. The first integral method for modified Benjamin-Bona-Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1759–1764. [Google Scholar] [CrossRef]
- Hereman, W. Shallow Water Waves and Solitary Waves, Encyclopedia of Complexity and Systems; Springer: Berlin/Heibelberg, Germany, 2009. [Google Scholar]
- Seadawy, A.R. Ionic acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili Burgers equations in quantum plasma. Math. Methods Appl. Sci. 2017, 40, 1598–1607. [Google Scholar] [CrossRef]
- Khalid, K.A.; Nuruddeen, R.I.; Adel, R.H. New exact solitary wave solutions for the extended (3+1)-dimensional Jimbo-Miwa equations. Results Phys. 2018, 9, 12–16. [Google Scholar]
- Gepreel, K.A.; Nofal, T.A.; Althobaiti, A.A. The modified rational Jacobi elliptic functions method for nonlinear differential difference equations. J. Appl. Math. 2012, 2012, 427479. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Alam, M.N.; Hossain, A.K.M.K.S.; Roshid, H.O.; Akbar, M.A. Traveling wave solution of nonlinear evolution equation via exp(-ϕ(η))-expansion method. Glob. Sci. Front. Res. 2013, 13, 63–71. [Google Scholar]
- Raslan, K.R.; Khalid, K.A.; Shallal, M.A. The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos Solitons Fractals 2017, 103, 404–409. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Ullah, N.; Akinyemi, L.; Shah, A.; Mirhosseini-Alizamin, S.M.; Chu, Y.M.; Ahmad, H. Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 2021, 24, 104179. [Google Scholar] [CrossRef]
- Kaewta, S.; Sirisubtaweee, S.; Koonprasert, S.; Sungnul, S. Applications of the G′/G2-Expansion Method for Solving Certain Nonlinear Conformable Evolution Equations. Fractal Fract. 2021, 5, 88. [Google Scholar] [CrossRef]
- Gepreel, K.A.; Althobaiti, A.A. Exact solutions of nonlinear partial fractional differential equations using fractional sub-equations method. Indian J. Phys. 2014, 88, 293–300. [Google Scholar] [CrossRef]
- Althobaiti, A.; Althobaiti, S.; El-Rashidy, K.; Seadawy, A.R. Exact solutions for the nonlinear extended KdV equation in a stratified shear flow using modified exponential rational method. Result Phy. 2021, 29, 104723. [Google Scholar] [CrossRef]
- Rizvi, S.T.; Seadawy, A.R.; Akram, U.; Younis, M.; Althobaiti, A. Solitary wave solutions along with Painleve analysis for the Ablowitz-Kaup-Newell-Segur water waves equation. Mod. Phys. Lett. B 2022, 36, 2150548. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Anwar, I.; Baber, M.Z.; Althobaiti, A. Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3+1)-dimensional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation in plasma physics. Results Phys. 2022, 33, 105069. [Google Scholar] [CrossRef]
- Nuruddeen, R.I.; Aboodh, K.S.; Khalid, K.A. Analytical investigation of soliton solutions to three quantum Zakharov-Kuznetsov equations. Commun. Theor. Phys. 2018, 70, 405–412. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ali, I.; Younis, M.; Ali, K.; Makhlouf, M.M.; Althobaiti, A. Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen-Lee-Liu model. Opt. Quantum Electron. 2021, 54, 172. [Google Scholar] [CrossRef]
- Akinyemi, L.; Rezazadeh, H.; Yao, S.W.; Akbar, M.A.; Khater, M.M.; Jhangeer, A.; Inc, M.; Ahmad, H. Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 2021, 26, 104411. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Results Phys. 2017, 7, 43–48. [Google Scholar] [CrossRef]
- Mahak, N.; Akram, G. The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Optik 2020, 207, 164467. [Google Scholar] [CrossRef]
- Banaja, M.; Al Qarni, A.A.; Bakodah, H.O.; Biswas, A. Bright and dark solitons in cascaded system by improved Adomian decomposition scheme. Optik 2016, 130. [Google Scholar] [CrossRef]
- Shakhanda, R.; Goswami, P.; He, J.-H.; Althobaiti, A. An approximate solution of the time-fractional two-mode coupled Burgers equations. Fract. Fract. 2021, 5, 196. [Google Scholar] [CrossRef]
- Alqudah, M.A.; Ashraf, R.; Rashid, S.; Singh, J.; Hammouch, Z.; Abdeljawad, T. Novel Numerical Investigations of Fuzzy Cauchy Reaction-Diffusion Models via Generalized Fuzzy Fractional Derivative Operators. Fract. Fract. 2021, 5, 151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, T.; Althobaiti, A. Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method. Fractal Fract. 2022, 6, 399. https://doi.org/10.3390/fractalfract6070399
Alotaibi T, Althobaiti A. Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method. Fractal and Fractional. 2022; 6(7):399. https://doi.org/10.3390/fractalfract6070399
Chicago/Turabian StyleAlotaibi, Trad, and Ali Althobaiti. 2022. "Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method" Fractal and Fractional 6, no. 7: 399. https://doi.org/10.3390/fractalfract6070399
APA StyleAlotaibi, T., & Althobaiti, A. (2022). Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method. Fractal and Fractional, 6(7), 399. https://doi.org/10.3390/fractalfract6070399