
����������
�������

Citation: Zhang, X.; Yang, J.; Zhao, Y.

Numerical Solution of Time

Fractional Black–Scholes Model

Based on Legendre Wavelet Neural

Network with Extreme Learning

Machine. Fractal Fract. 2022, 6, 401.

https://doi.org/10.3390/

fractalfract6070401

Academic Editor: Ivanka Stamova

Received: 7 June 2022

Accepted: 15 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Numerical Solution of Time Fractional Black–Scholes Model
Based on Legendre Wavelet Neural Network with Extreme
Learning Machine

Xiaoning Zhang † , Jianhui Yang * and Yuxin Zhao †

School of Business Administration, South China University of Technology, Guangzhou 510641, China;
bmxnzhang@mail.scut.edu.cn (X.Z.); bmyxzhao@mail.scut.edu.cn (Y.Z.)
* Correspondence: bmjhyang@scut.edu.cn; Tel.: +86-186-6609-2759
† These authors contributed equally to this work.

Abstract: In this paper, the Legendre wavelet neural network with extreme learning machine is
proposed for the numerical solution of the time fractional Black–Scholes model. In this way, the
operational matrix of the fractional derivative based on the two-dimensional Legendre wavelet is
derived and employed to solve the European options pricing problem. This scheme converts this
problem into the calculation of a set of algebraic equations. The Legendre wavelet neural network is
constructed; meanwhile, the extreme learning machine algorithm is adopted to speed up the learning
rate and avoid the over-fitting problem. In order to evaluate the performance of this scheme, a
comparative study with the implicit differential method is constructed to validate its feasibility and
effectiveness. Experimental results illustrate that this scheme offers a satisfactory numerical solution
compared to the benchmark method.

Keywords: Legendre wavelet neural network (LWNN); operational matrix; extreme learning machine
(ELM); Black–Scholes model; Caputo’s fractional derivative

1. Introduction

The options pricing model plays an important role in modern financial theory, which
has been employed in cost budgets [1–3], asset valuations [4], resource allocation [5,6],
and so on. It is of great significance to study options pricing and its modeling problem.
The mathematical study of the financial market dates back to 1900 [7]. In 1973, the classic
Black–Scholes model was proposed by Black and Scholes [8,9], which serves as a milestone
of fair market options pricing. Over several decades, the B-S model has been extensively
accepted because it can effectively model the options price and provides a mechanism for
extracting implied volatility. Although the options price obtained from the B-S model can
be well approximated to the observed one, it still has some deficiencies such as the failure
to capture jump-diffusion over a small time frame in the financial market [10].

Being a generalization and extension of classic calculus, fractional calculus dates back
to a letter from Leibniz to l’Hôpital in 1665 [11]. However, the theory and foundation of
fractional calculus were developed by Liouville in 1832. After several decades, Grunwald
and Letnikov defined the fractional derivative with differential quotient approach based on
a fractional binomial expansion proposed by Newton. In 1967, Caputo defined Caputo’s
fractional derivative, which requires the function to be differentiable [12]. In 2006, Jumarie
made some improvements to the Riemann–Liouville derivative by subtracting a constant
from the integrand to avoid the derivative of the constant being nonzero [13]. Guariglia
and Silvestrov introduced the Ortigueira–Caputo fractional derivative operator to describe
a complex function in the distribution sense [14]. Indeed, since some remarkable work
appearing in [15], fractional calculus has become the key invariant, providing rich informa-
tion about the level of complexity that a certain system presents. With plenty of research
focusing on the fractional calculus field, it becomes imperative and necessary to solve the
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fractional differential equation. An implicit method was proposed by Murio to solve the
linear time fractional diffusion equation, constructed by Caputo’s fractional derivative on
a finite slab [16]. Langlands offered the stability and accuracy of the implicit numerical
method for solving the fractional diffusion equation [17]. Chen proposed an explicit closed-
form solution of the double-barrier option based on the time fractional B-S model [18],
where the solution is obtained by the convolution of some specific function (Mittag–Leffler
function) and finite series expansion with integration. As a consequence, some numerical
methods were introduced to simplify the calculation procedure. Song adopted the implicit
finite difference method to solve the options pricing problem based on Jumaire’s model [19].
Cen [20] transformed the differential equation to an integral form with a weakly singular
kernel and discretized it on an adaptive mesh grid, rigorously analyzed the convergence of
the proposed scheme, and took account of possible singular behavior. Rezaei [21] presented
the time fractional B-S model under the European double barrier option with the constant
of elasticity of variance and presented the rigorous solvability, stability, and convergence of
the implicit difference method. Zhang deduced an implicit discrete solution to the time
fractional B-S model for the European option with double barriers, which has a spatially
second-order accuracy and temporally 2− α-order accuracy [22]. De Staelen improved
the spatial accuracy of the implicit differential method to fourth-order and presented the
solvability, stability, and convergence of this method based on the Fourier method [23].
Moreover, some analytical methods have been derived, such as homotopy perturbation
and the Laplace transform [24], the homotopy analysis method [25–30], the fractional varia-
tional iteration method [31,32], the generalized differential transform method [33], and the
Adomain decomposition method [34–37]. The essential aspects of these methods are the
convolution of some special function or the integration of infinite series expansion, which
are complicated to calculate; what is more, the solvability, stability, and convergence need
to be proven. As a consequence, making some improvements to the numerical method
becomes practical and necessary.

Compared with standard Brownian motion, fractional Brownian motion can describe
the dynamic characteristics of financial markets accurately; meanwhile, some new fractional
B-S formulae have been derived. The fractional B-S model for the European option was
initially proposed by Wyss [38], then Hu and Oksendal derived a fractional B-S model
based on fractional Brownian motion [39]. Li developed a fractional stochastic differential
equation to demonstrate the existence of trend memory in options pricing when the Hurst
index is between 0.5 and 1 [40]. Jumarie proposed two new families of the fractional B-S
model based on fractional Taylor expansion series and the modified Riemann–Liouville
derivative [41]. Liu and Chang also proposed a time fractional B-S model with transaction
cost based on fractional Brownian motion and provided an approximate solution of the
nonlinear Hoggard–Whalley–Wilmott equation [42].

Accompanying the evolution of computer technology, machine learning has gained
enormous advancement. Being a branch of artificial intelligence, reliable decisions and
results can be obtained through iteration and optimization. In the last decade, a single feed-
forward neural network named extreme learning machine [43,44] was proposed by Huang,
which is different from traditional learning methods based on the gradient descent principle;
meanwhile, the single hidden layer structure makes its learning procedure exceptionally
faster compared with that of a deep neural network [45,46]; however, the ELM algorithm
has been demonstrated to be sensitive to the activation function [47–49]. Furthermore, the
wavelet can be regarded as a mathematical microscope for signal analysis (constant ratio
of bandwidth and central frequency); its multi-resolution analysis and time–frequency
ability can provide a powerful tool for signal analysis and approximation, then different
wavelets can be constructed by dilation and translation, such as the Legendre wavelet [50],
Chebyshev wavelet [51], Taylor wavelet [52], etc. Aiming at the framework of an adaptive
multi-scale wavelet, Zheng pointed out that a sampling rate far from 1/2 can lead to
low representation efficiency and proposed a signal Shannon-entropy-based adaptive
multi-scale wavelet decomposition for signals analysis [53]. The wavelet neural network,
suggested by Zhang in 1992 [54], was initially used for signal approximation [55], which
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can be applied in image analysis and computer vision, such as video segmentation [56],
speech recognition, and data compression [57]. Besides, some improved neural-network-
based methods have recently emerged; however, these methods lack a strong theoretical
foundation and require massive amounts of training data. Shi et al. proposed the deep
scattering network (DSN), a variant of the deep convolutional neural network (DCNN),
where the data-driven linear filters are replaced by predefined fixed multi-scale wavelet
filters; for the non-stationary image textures, the fractional wavelet transform (FRWT) is
employed because it can be regarded as a bank of linear translation-variant multi-scale
filters [58]. Aiming at poor resolution in the high-fractional-frequency domain, Shi and his
partners revealed a novel fractional wavelet package transform (FRWPT) and its recursive
algorithm [59].

Moreover, previous literature demonstrated the reliability and stability of the WNN
in the learning procedure [60,61]. Due to the decomposition capacity of the WNN in
the time and frequency domain, this paper presents a novel Legendre wavelet neural
network (LWNN) with extreme learning machine (ELM) to solve the time fractional B-S
model governed by the European option. Taking the final and boundary conditions into
consideration, this time fractional B-S model can be converted into a group of algebraic
equations. In the end, numerical experiments illustrate the superiority of the proposed
method compared to the implicit differential method.

The objective of this paper is to solve a time fractional B-S model of the European op-
tion, where ELM is used for the output layer weight learning of the LWNN. The advantages
of the proposed scheme are given as follows:

• It is a single hidden layer feed-forward network; we only should train the weights of
the output layer; the input layer weights can be randomly selected.

• ELM can be classified as unsupervised learning; the optimization scheme is unneces-
sary; besides, it has a fast learning rate and can avoid over-fitting.

• It converts the European options pricing problem to a group of algebraic equations,
which can substantially facilitate analysis.

The structure of this paper is as follows. Section 2 gives a description of the time
fractional B-S model governed by the European option with double barriers. Section 3
introduces the properties of the Legendre wavelet. Section 4 deduces the operational matrix
of the fractional derivative for the two-dimensional Legendre wavelet. Section 5 presents
the topology of the LWNN and the algorithm of ELM. Section 6 validates the feasibility
and effectiveness of the proposed method by numerical experiments. In the end, some
conclusions and directions for improvement are presented.

2. Double Barrier Option under Time Fractional B-S Model
2.1. Time Fractional B-S Model

Liang [62] proposed a bi-fractional B-S model in the time and spatial domain, where
the underlying asset price follows a fractional Ito process and options price variation is a
fractal transmission system. As a result, the time fractional B-S model can be regarded as a
special case of the bi-fractional B-S model. Let S, t, r, σ, and q be the underlying asset price,
time, risk-free interest rate, volatility, and dividend payment, respectively, then options
price V(S, t) should satisfy

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + (r− q)S

∂V
∂S
− rV = 0 (1)

According to the arguments in [62–64], the variation of the options price regarding
time can be assumed as a fractal transmission system, which implies that the average
options price C(S, t) from time t to expiration time T should satisfy∫ T

t
C(S, τ)dτ = Sd f−1

∫ T

t
F(τ − t)[V(S, τ)−V(S, T)]dτ (2)
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where F(t) and d f represent the transmission function and Hausdorff dimension of the
fractional transmission system, respectively. As pointed out in [62], Equation (2) is a
conservation equation containing an explicit reference to the diffusion process of the
options price based on a fractal structure. It can be assumed that the diffusion sets are the
underlying fractal, where F(t) = Aαt−α/Γ(1− α) is selected as the transmission function
with Aα and α a constant and the transmission exponent, respectively. Making partial
differentiation regarding t on both sides of Equation (2) yields

−C(S, t) = Sd f−1 ∂

∂t

∫ T

t
F(τ − t)[V(S, τ)−V(S, T)]dτ (3)

On the other hand, because of the B-S model, we have

C(S, t) =
1
2

σ2S2 ∂2V
∂S2 + (r− q)S

∂V
∂S
− rV (4)

substituting Equation (3) into (4) yields

AαSd f−1 ∂αV
∂tα

+
1
2

σ2S2 ∂2V
∂S2 + (r− q)S

∂V
∂S
− rV = 0 (5)

where

∂αV
∂tα

=
1

Γ(n− α)

∂n

∂tn

∫ T

t

V(S, τ)−V(S, T)
(τ − t)α+1−n dτ, n− 1 6 α < n (6)

when α approaches 1, this yields

lim
α→1

∂αV
∂tα

=
1

Γ(2− 1)
∂

∂t

∫ T

t

V(S, τ)−V(S, T)
(τ − t)1+1−2 dτ =

∂V
∂t

It is clear that the time fractional B-S model is consistent with the classic B-S model
when Aα = d f = 1. In this paper, Aα = d f = 1 are selected. As a matter of fact, the solution
procedure is applicable to other values of Aα and d f .

It should be mentioned that the time fractional order model is a simplification com-
pared with that proposed by Liang [62]. In this paper, we assume that the underlying asset
follows standard Brownian motion, only considering the options price variation with time
as a fractal transmission system; this is why the fractional derivative only appears in the
time domain. Actually, Jumaire [65,66] defined the stock exchange fractional dynamics as
fractional exponential growth driven by Gaussian noise; it can be found that the derived
equation is similar to Equation (5). However, the derived equation has a time variable
coefficient in front of the second derivative, which is different from the time fractional B-S
model mentioned above.

2.2. Double Barrier Option

The barrier option is probably the oldest exotic option, which was sporadically traded
on the U.S. market before the establishment of the Chicago Board of Options Exchange.
The barrier option is essentially a conditional option, depending on whether the barrier can
be triggered or breached within its expiration; meanwhile, it is considerably less expensive
than the corresponding vanilla option. Obviously, a double barrier option features two
barriers, and the payoff to the holder depends on the breaching behaviors of the underlying
asset process with respect to these two barriers. Let V(S, t) be the price of a European
option with double barriers; obviously, if the price variation regarding time is considered
to be a fractal transmission system, then V(S, t) should satisfy
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

∂αV
∂tα

+
1
2

σ2S2 ∂2V
∂S2 + (r− q)S

∂V
∂S
− rV = 0

V(S, T) = Π(S) = max(S− k, 0)

V(A, t) = P(t)

V(B, t) = Q(t)

(7)

where P(t) and Q(t) denote the discount paid when the corresponding barrier is breached
and K and T are the strike price and expiration time, respectively. In general, it is com-
plicated to obtain the solution of this partial derivative equation; the following variables
and functions are introduced to non-dimensionalize this model: t = T− 2τ/(σ2), S = Kex,
V(S, t) = KU(x, τ), P(t) = KP(τ), and Q(t) = KQ(τ); as a consequence, the European
Equation (7) can be rewritten as

∂αV
∂tα

=
1

Γ(1− α)

∂

∂t

∫ T

t

V(S, t)−V(S, T)
(t− t)α

dt

=
1

Γ(1− α)

(
−σ2

2

)
∂

∂τ

∫ T

T− 2τ
σ2

V(S, t)−V(S, T)[
t−
(

T − 2τ
σ2

)]α dt

=
1

Γ(1− α)

(
−σ2

2

)
∂

∂τ

∫ 0

τ

V
(

S, T − 2τ
σ2

)
−V(S, T)[

2
σ2 (τ − τ)

]α

(
− 2

σ2

)
dτ

=
−K

Γ(1− α)

(
σ2

2

)α
∂

∂τ

∫ τ

0

U(x, τ)−U(x, 0)
(τ − τ)α dτ = −K

(
σ2

2

)α
∂αU
∂τα

(8)

where

∂αU
∂tα

=
1

Γ(1− α)

∂

∂t

∫ t

0

U(x, t)−U(x, 0)
(τ − t)α

dτ, 0 < α < 1

is consistent with the modified Riemann–Liouville derivative in [13]. Substituting Equation (8)
into Equation (7) yields 

∂αU
∂τα

= c1
∂2U
∂x2 + c2

∂U
∂x

+ c3U

U(x, 0) = Π(x)

U(Bd, τ) = P(τ)

U(Bu, τ) = Q(τ)

(9)

where γ = r(−σ2/2)−α, d = q(σ2/2)−α, c1 = (σ2/2)1−α, c2 = r − d − c1, c3 = −γ,
Bd = ln(A/K), and Bu = ln(B/K). It can be observed that ∂αU

∂τα is consistent with Caputo’s
derivative in Definition 2.

3. Legendre Wavelet and Its Properties

Legendre polynomials are constructed by the polynomials’, {1, x, · · · , xn, · · · }, orthog-
onalization with respect to weighting function w(x) = 1. In 1814, Rodrigul presented the
simple expression as

L0(x) = 1, Ln(x) =
1

2nn!
dn

dxn

{
(x2 − 1)n

}
, x ∈ [−1, 1], n ∈ Z+ (10)

In [67], the recurrence formula of Legendre polynomials was given as
L0(x) = 1, L1(x) = x

Ln+1(x) =
2n + 1
n + 1

xLn(x)− n
n + 1

Ln−1(x)
(11)
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For the practical implementation of Legendre polynomials on domain [ld, lu], it is feasible
to shift the domain by means of linear transformation x̃ = [2x− (lu + ld)]/(lu − ld). Hence,
the shifted Legendre polynomials L∗n(x) can be obtained as L∗n(x) = Ln(x̃). Specifically, the
orthogonality characteristic of shifted Legendre polynomials on domain [0, 1] is

∫ 1

0
L∗m(x)L∗n(x)dx =


1

2m + 1
, m = n

0, otherwise
(12)

Moreover, the analytical form of shifted Legendre polynomials L∗n(x) can be expressed
as [67]

L∗n(x) =
n

∑
i=0

bn,ixi (13)

where

bn,i = (−1)n+i (n + i)!
(n− i)!(i!)2

Furthermore, the wavelet function is generally constructed by the dilation and transla-
tion of the mother wavelet. When the dilation and translation parameters vary continuously,
we can obtain the continuous wavelet:

ψa,b(x) =
1√
a

ψ

(
x− b

a

)
, a, b ∈ R, a > 0 (14)

where a and b are the dilation and translation parameters, respectively. When they are
constricted to only discrete values a = ak

0, b = nak
0b0, a0 > 1, b0 > 1, this yields

ψk,n(x) =
1√
ak

0

ψ

(
x− nak

0b0

ak
0

)
= a−k/2

0 ψ
(

a−k
0 x− nb0

)
, n, k ∈ Z+ (15)

where ψk,n(x) represents the basis of L2(R). In particular, ψk,n(x) constructs an orthogonal
basis when a0 = 2 and b0 = 1. Legendre wavelet ψn,m(t) = ψ(k, n̂, m, t) is composed of
four arguments, n̂ = 2n + 1, n = 0, 1, 2, · · · , 2k−1, m = 0, 1, · · · , m0 − 1 is the degree of the
Legendre polynomials, and t is normalized time [68]. The Legendre wavelet on domain
[0, 1] is defined as

ψn,m(x) =


√

2m + 1
√

2kLm

(
2k+1x− n̂

)
,

n
2k 6 x 6

n + 1
2k

0, otherwise
(16)

Theorem 1. [[69]] Supposing thatH and Y ⊂ H are the inner product and complete space, respec-
tively, we define {e0, e1, · · · , en} as an orthogonal basis forH. For f ∈ H, the best approximation
in Y :

f0 =
n

∑
i=0

( f , ei)ei

such that

∀y ∈ Y , ‖ f − f0‖2 6 ‖ f − y‖2

where (, ) denotes the inner product, that is ‖ f ‖2 =
√
( f , f ).
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From Theorem 1, a function f (x) on domain [0, 1] can be expanded by the Legendre
wavelet as

f (x) =
∞

∑
n=0

∞

∑
m=0

cn,mψn,m(x) (17)

where cn,m = ( f (x), ψn,m(x)). If Equation (17) is substituted with finite series expansion,
then f (x) can be written as

f (x) '
2k−1

∑
n=0

m0−1

∑
m=0

cn,mψn,m(x) = CTΨ(x) (18)

where T represents the matrix transposition operator and C and Ψ(x) are the 2km0-column
vector shown as below.

C =
[
c0,0, c0,1, · · · , c0,m0−1, c1,0, c1,1, · · · , c1,m0−1, · · · , c2k−1,0, c2k−1,1, · · · , c2k−1,m0−1

]T

Ψ(x) =
[
ψ0,0(x), ψ0,1(x), · · · , ψ0,m0−1(x), ψ1,0(x), ψ1,1(x), · · · , ψ1,m0−1(x), · · · , ψ2k−1,0(x),

ψ2k−1,1(x), · · · , ψ2k−1,m0−1(x)
]T

For simplicity, let ci = cn,m, ψi = ψn,m, and M = 2km0, where index i is determined by
i = m0n + m + 1, then Equation (18) can be rewritten as

f (x) '
M

∑
i=1

ciψi(x) = CTΨ(x) (19)

where

C =
[
c1, · · · , cm0 , |, cm0+1, · · · , c2m0 , |, cm0(2k−1)+1, · · · , cM

]T

Ψ(x) =
[
ψ1(x), · · · , ψm0(x), |, ψm0+1(x), · · · , ψ2m0(x), |, · · · , |,

ψm0(2k−1)+1(x), · · · , ψM(x)
]T

Similarly, an arbitrary function with two variables f (x, y) ∈ L2(R×R) defined on
domain [0, 1]× [0, 1] can be approximated with the Legendre wavelet:

f (x, y) '
M

∑
i=1

M

∑
j=1

ψi(x) fijψj(y) = ΨT(x)FΨ(y) (20)

where F =
[

fij
]

M×M and fij =
(
ψi(x),

(
f (x, y), ψj(y)

))
.

Theorem 2. [Convergence analysis [70]] Supposing that a continuous function f (x) on domain
[0, 1] is bounded with second derivative | f ′′(x)| 6 K, it can be uniformly approximated by the
infinite sum of Legendre wavelet expansion, that is f (x) = ∑∞

n=1 ∑∞
m=0 cn,mψn,m(x); moreover,

coefficients cn,m are bounded with |cn,m| 6 K
√

12/(2n)5/2(2m− 3)2.

Theorem 3. [Error analysis [71]] Supposing that a continuous function f (x, y) on domain
[0, 1]× [0, 1] is bounded with four mixed partial derivatives

∣∣∂4 f (x, y)/∂x2∂y2
∣∣ 6 D, then the

Legendre wavelet expansion of f (x, y) has a uniform convergence characteristic and

∣∣ fij
∣∣ < 12D

(2n)5(2m− 3)4
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Definition 1. Supposing that A = [aij]m×n and B = [bij]p×q are two arbitrary matrices, the
Kronecker product of A and B is defined as follows [72].

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB


mp×nq

For matrix A, operator Vec(A) is a column vector made of the column of A stacked on top of
each other from left to right [73].

Vec(A) = [a11, · · · , am1, a12, · · · , am2, · · · , a1n, · · · , amn]
T

Definition 2. The Caputo’s fractional derivative of order α is defined as [74]

C
0 Dα

x f (x, y) =


1

Γ(n− α)

∫ x

0

f (n)(χ, y)

(x− χ)1+α−n dχ, 0 6 n− 1 < α < n

∂α f (x, y)
∂xα

, α = n

where operator Dα
∗ represents Caputo’s derivative. It can be observed that Dα

xC = 0 (C is a
constant); additionally,

Dα
x xn =


0, n < dαe, n ∈ Z+

Γ(n + 1)
Γ(n + 1− α)

xn−α, n > dαe, n ∈ Z+

where Γ(·) denotes the Gamma function; the ceiling function dαe denotes the smallest integer
greater than or equal to α.

4. Operational Matrix of Fractional Derivative

From Equations (13) and (16), for m < dαe, the analytical form of the shifted Legendre
wavelet can be written as

ψn,m(x) = 2k/2
√

2m + 1
m

∑
i=0

bm,i

(
2kx− n

)i
In,k(x) (21)

where In,k =
[
n/2k, (n + 1)/2k

]
(n = 0, 1, · · · , 2k − 1, m = 0, 1, · · · , m0 − 1); in addition,

the indicator function is defined as

In,k(x) =

1, x ∈
[

n
2k ,

n + 1
2k

]
0, otherwise

It is apparent that In,k(x) is zero outside the interval
[
n/2k, (n + 1)/2k

]
. Applying Dα

x

on both sides of Equation (21) yields

Dα
xψn,m(x) =

m

∑
i=0

Dα

((
x− n

2k

)i
)
=

m

∑
i=dαe

am,i(i)!
Γ(i− α + 1)

(
x− n

2k

)i−α
In,k(x)

+
m

∑
i=dαe

am,i(i)!
Γ(dαe − α)Γ(i− dαe+ 1)

fi(x) (22)
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where

am,i = 2k(i+1/2)
√

2m + 1bm,i, fi(x) =
∫ (n+1)/2k

n/2k

(
χ− n

2k

)i−dαe

(x− χ)α−dαe+1
dχ

Here, Legendre wavelet expansions are employed to approximate (x− n/2k)i−α, that
is to say

(
x− n

2k

)i−α
=

m0−1

∑
j=0

ei,jψn,j(x), i = dαe, dαe+ 1, · · · , m (23)

where

ei,j =
∫ (n+1)/2k

n/2k

(
x− n

2k

)i−α
ψn,j(x)dx

=
j

∑
r=0

cj,r

∫ (n+1)/2k

n/2k

(
2kx− n

)r+i−α
dx =

j

∑
r=0

cj,r

2k(r + i− α + 1)

and

cj,r =
2k/2
√

2m + 1
2k(i−α)

bj,r

Furthermore, fi(x) in Equation (22) can be approximated by the Legendre wavelet in
every interval Il,k(x), l = n + 1, · · · , 2k − 1, yielding

fi(x) =
m0−1

∑
j=0

di,jψi,j(x) (24)

where

di,j =
∫ (l+1)/2k

l/2k
fi(x)ψl,j(x)dx

=
j

∑
r=0

2k/2
√

2m + 1bj,r ×
∫ (l+1)/2k

l/2k
fi(x)

(
2kx− l

)r
dx

Substituting Equations (23) and (24) into Equation (22), we can obtain

Dα
xψn,m(x) =

m0−1

∑
j=0

Ω(n)
α (m, j)ψn,j(x) +

2k−1

∑
l=n+1

m0−1

∑
j=0

Ω̂
(n)
α (m, j)ψl,j(x) (25)

where 
Ω

(n)
α (m, j) =

m

∑
i=dαe

Θm,j,i

Θm,j,i =
am,i(i)!

Γ(i− α + 1)
×

j

∑
r=0

cj,r

2k(r + i− α + 1)
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and 

Ω̂
(n)
α (m, j) =

m

∑
i=dαe

Θ̂m,j,i

Θ̂m,j,i =
am,i(i)!

Γ(dαe − α)Γ(i− dαe+ 1)
×

j

∑
r=0

2k/2
√

2m + 1bj,r×

∫ (l+1)/2k

l/2k
fi(x)

(
2kx− l

)r
dx

After simplification, Θm,j,i and Θ̂m,j,i can be written as:

Θm,j,i =
(−1)m+i+j2kα(2m + 1)(m + i)!Γ(i− α + 2)Γ(j− i + α)

(i− α + 1)(m− i)!(i)!Γ(−i + α)Γ(i− α + 1)Γ(j + i− α + 2)
(26)

and

Θ̂m,j,i =
2k(i+1)(2m + 1)bm,i(i)!

Γ(dαe − α)Γ(i− dαe+ 1)

j

∑
r=0

bj,r

∫ (l+1)/2k

l/2k
fi(x)(2k − l)rdx (27)

Consequently, Equation (25) can be written as

Dα
xψn,m(x) =

[
Ω

(n)
α (m, 0), Ω

(n)
α (m, 1), · · · , Ω

(n)
α (m, m0 − 1)

]
Ψn(x)+

2k−1

∑
l=n+1

[
Ω̂

(n)
α (m, 0), Ω̂

(n)
α (m, 1), · · · , Ω̂

(n)
α (m, m0 − 1)

]
Ψl(x) (28)

where

Ψs(x) =
[
ψs,0(x), ψs,1(x), · · · , ψs,(m0−1)(x)

]
, s = 0, 1, 2 · · · , 2k − 1

Remark 1. For α = dαe, from Caputo’s derivative, we can obtain

Dα
xψn,m(x) =


0, 0 6 m < dαe
m0−1

∑
j=0

Ω
(n)
α (m, j)ψn,j(x), m > dαe

(29)

Let Ψ(x) be the Legendre wavelet vector in Equation (18), Dα (α > 0, and (bαc − 1 <
α < bαc)) be the α-order differential operational matrix of the Legendre wavelet, then

Dα
xΨ(x) ' DαΨ(x) (30)

where

Dα =


Bα Fα · · · Fα Fα

0 Bα · · · Fα Fα

...
...

. . .
...

...
0 0 · · · Bα Fα

0 0 · · · 0 Bα


M×M
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where matrices Bα and Fα are given as

Bα =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
Ω(n)

α (dαe, 0) Ω(n)
α (dαe, 1) · · · Ω(n)

α (dαe, m0 − 1)
Ω(n)

α (dαe+ 1, 0) Ω(n)
α (dαe+ 1, 1) · · · Ω(n)

α (dαe+ 1, m0 − 1)
...

... · · ·
...

Ω(n)
α (m0 − 1, 0) Ω(n)

α (m0 − 1, 1) · · · Ω(n)
α (m0 − 1, m0 − 1)


m0×m0

and

Fα =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
Ω̂(n)

α (dαe, 0) Ω̂(n)
α (dαe, 1) · · · Ω̂(n)

α (dαe, m0 − 1)
Ω̂(n)

α (dαe+ 1, 0) Ω̂(n)
α (dαe+ 1, 1) · · · Ω̂(n)

α (dαe+ 1, m0 − 1)
...

... · · ·
...

Ω̂(n)
α (m0 − 1, 0) Ω̂(n)

α (m0 − 1, 1) · · · Ω̂(n)
α (m0 − 1, m0 − 1)


m0×m0

Here, for a better understanding of the calculation procedure, B(1.5) and F(1.5) are
provided as below, where m0 = 4, k = 2, and α = 1.5 are selected.

B(1.5) =
1√
π


0 0 0 0
0 0 0 0

640 128 − 128
7

128
21

−896 640 896
3 − 640

11



F(1.5) =
1√
π


0 0 0 0
0 0 0 0

1280 ∗ (1−
√

2) 28 ∗ (3
√

2− 4) 27∗(166−118
√

2)
7 − 28∗(538

√
2−824)

21

28 ∗ (91
√

2− 28) −28 ∗ (29
√

2− 51) − 28∗(400−281
√

2)
3

28∗(10245−9557
√

2)
33


In order to solve the time fractional B-S model of the European option, U(x, τ) in

Equation (9) can be approximated with

U(x, τ) ' Ψ(x)TUΨ(τ) (31)

where U = [ui,j]M×M is an unknown matrix, which needs to be determined; from Equation (30),
we can obtain 

∂αU(x, τ)

∂τα
= Ψ(x)TUDαΨ(τ)

∂U(x, τ)

∂x
= Ψ(x)T DTUΨ(τ)

∂2U(x, τ)

∂x2 = Ψ(x)T(DT)2UΨ(τ)

(32)
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From Definition 1, Equation (32) can be rewritten as

∂αU(x, τ)

∂τα
= Vec

(
Ψ(τ)T ⊗Ψ(x)T

)[
(Dα)T ⊗ IM

]
Vec(U)

∂U(x, τ)

∂x
= Vec

(
Ψ(τ)T ⊗Ψ(x)T

)[
IM ⊗ DT

]
Vec(U)

∂2U(x, τ)

∂x2 = Vec
(

Ψ(τ)T ⊗Ψ(x)T
)[

IM ⊗
(

DT
)2
]

Vec(U)

where

Vec
(

Ψ(τ)T ⊗Ψ(x)T
)
= [ψ1(τ)Ψ(x), ψ2(τ)Ψ(x), · · · , ψM(τ)Ψ(x)]1×M2

and IM is an M-dimensional identity matrix. Then, Equation (9) can be converted to

ΨT(x)UDαΨ(τ) = c1Ψ(x)T
(

D2
)T

UΨ(τ) + c2Ψ(x)T DTUΨ(τ)+

c3Ψ(x)TUΨ(τ)

ΨT(x)UΨ(0) = Π(x)

ΨT(Bd)UΨ(τ) = P(τ)

ΨT(Bu)UΨ(τ) = Q(τ)

(33)

Define

Z = (Dα)T ⊗ IM − c1

(
IM ⊗ DT

)
− c2

[
IM ⊗

(
DT
)2
]
− c3(IM ⊗ IM)

and let

∆x =
Bu − Bd

Ns
, xi = Bd + i∆x, i = 0, 1, 2, · · · , Ns

∆τ = T/Nt, τj = j∆τ, j = 0, 1, 2, · · · , Nt

be the step size of stock price and time, respectively. Denoting U j
i = U(xi, τj) yields

[
Vec
(

Ψ(xi)
T ⊗Ψ(τj)

T
)

Z
]
Vec(U) = 0[

Vec
(

Ψ(xi)
T ⊗Ψ(τ0)

T
)]

Vec(U) = U0
i[

Vec
(

Ψ(x0)
T ⊗Ψ(τj)

T
)]

Vec(U) = U j
0[

Vec
(

Ψ(xNs)
T ⊗Ψ(τj)

T
)]

Vec(U) = U j
Ns

(34)

which can be expressed as

HVec(U) = Y (35)

Let

L =


ψ1(x0) ψ2(x0) · · · ψM(x0)
ψ1(x1) ψ2(x1) · · · ψM(x1)

...
...

. . .
...

ψ1(xNs) ψ2(xNs) · · · ψM(xNs)


(Ns+1)×M



Fractal Fract. 2022, 6, 401 13 of 20

and

K =


ψ1(τ0) ψ2(τ0) · · · ψM(τ0)
ψ1(τ1) ψ2(τ1) · · · ψM(τ1)

...
...

. . .
...

ψ1(τNt) ψ2(τNt) · · · ψM(τNt)


(Nt+1)×M

then

H =


(L⊗ K)Z
L⊗ K(1, :)
L(1, :)⊗ K

L(Ns + 1, :)⊗ K


and

Y =


(Ns+1)(Nt+1)︷ ︸︸ ︷

0, · · · , 0 , U0
0 , · · · , U0

Ns︸ ︷︷ ︸
Ns+1

,

Nt+1︷ ︸︸ ︷
U0

0 , · · · , UNt
0 , U0

Ns
, · · · , UNt

Ns︸ ︷︷ ︸
Nt+1


5. ELM Algorithm for LWNN Training

ELM has a fast convergence rate owing to its single hidden layer feed-forward struc-
ture. It has many advantages over traditional BP methods, because traditional BP methods
can easily become stuck in local optima and have a slow convergence rate owing to the
continuous weight updating. The parameters of ELM only depend on the analytical res-
olution of the output layer weights and the random selection of input and hidden layer
parameters (weights and biases); as a consequence, many issues, such as the learning rate,
local optima and learning epochs, can be avoided. It can solve the slow convergence rate
and over-fitting issues of gradient descent methods based on neural networks. Here, the
ELM algorithm is illustrated in Algorithm 1. The Neural network structure of LWNN-ELM
is showed in Figure 1.

Algorithm 1 Extreme learning machine algorithm.
Input: A = {ai}n

i=1, B = {bi}n
i=1, X = {xi}n

i=1
ai and bi denote the weights and bias of the input layer, respectively.
Ni, Nh, No represent the nodes of the input, hidden, and output layer, respectively.
Step 1: Attribute random parameters of the hidden layer nodes, weights, and biases.
Step 2: Calculate the output matrix of the hidden layer nodes H.
Step 3: Calculate the output weight β = H†Y.
where H† is the Moore–Penrose generalized inverse of the hidden layer
output matrix H, Y is the training data target.

Theorem 4. The equation Hβ = Y can be solved in three cases:

1. If matrix H is square and invertible, then β = H−1Y.
2. If matrix H is rectangle, then β = H†Y; β is the minimal least square solution; in other

words, β = arg min‖Yβ− T‖.
3. If matrix H is singular, then β = H†Y, where H† = HT(λI + HHT)−1; λ is a regulariza-

tion parameter, which can be set based on a specific norm.

The procedure for training the network weights of the LWNN to solve the European
options pricing model is given in Algorithm 2.
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Algorithm 2 The procedure for solving the European options pricing model based on the
LWNN-ELM.
Input: xi = Bd + i∆x, ∆x = (Bu − Bd)/Ns, i = 0, 1, 2, · · · , Ns
τj = j∆τ, ∆τ = T/Nt, j = 0, 1, 2, · · · , Nt
ψ1(x), · · · , ψM(x), ψ1(τ), · · · , ψM(τ)
Step 1: Constructing a numerical solution by the Legendre wavelet as
the activation function, that is U∗(x, τ) = ∑n

i=0 ∑n
j=0 βi,jΨi(x)Ψj(τ) = Ψ(x, τ)β.

Step 2: Substituting the numerical solution U∗(x, τ) and its derivative into
the PDEs, the initial condition, and its boundary.
Step 3: Solving Hβ = Y by ELM and obtaining the network weights
β = H†Y, β = argmin‖Hβ−Y‖.
Step 4: To obtain the numerical solution
U∗(x, τ) = ∑n

i=0 ∑n
j=0 βi,jΨi(x)Ψj(τ) = Ψ(x, τ)β.









H Y  †YH 

1 ,1

1 , 2

1,M

2 ,1

2,M

,1M

,M M

x



( , )U x 

1 1( ) ( )x  

1( ) ( )Mx  

1 2( ) ( )x  

2 1( ) ( )x  

2( ) ( )Mx  

( ) ( )M Mx  

1( ) ( )M x  









Figure 1. Neural network structure based on the LWNN-ELM, where x and τ denote the stock price
and time, respectively.

Remark 2. The detailed proof of this theorem can be referred to the related knowledge of the
generalized inverse matrix [43].

6. Numerical Experiment and Discussion

Once the numerical solution is obtained for a specific options pricing model, the
main concern of market practitioners becomes its implementation. Whether the options
price can be efficiently computed is one of the core criteria to evaluate its characteristics.
Therefore, in this section, as far as the validation of the numerical solution’s accuracy and
the convergence order of the proposed method are concerned, a double barrier knock-out
call European option is selected as an experiment. For other kinds of options pricing
models, their solutions can be straightforwardly obtained by a simple modification or the
parity relationship [75].

In order to validate the feasibility of the proposed method, calculating the solution
for α = 1 can be considered as the best way, and comparing it with a benchmark solution
based on the implicit difference method (IDM) [22], where all numerical experiments were
implemented with MATLAB R2013b on a desktop with i7-6700K CPU, 8GB memory, 1TB
HDD, and a Windows 7 operating system. From Figure 2, it can be seen that the two groups
of options price coincide perfectly, which can affirm the correctness of the proposed method.
Besides, the calculation times for different expirations is presented in Table 1; it is clear that
the time consumption of the LWNN-ELM method decreases significantly compared with
the IDM, which can save computing resources.
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Figure 2. Comparison of the solution at α = 1 with the traditional B-S model, where the corresponding
parameters are σ = 0.45, r = 0.03, q = 0.01, K = 10, A = 3, B = 15, and M = 16. (a) T = 1 (years);
(b) T = 0.5; (c) T = 2.

Table 1. Time consumption of the LWNN-ELM and IDM for different expirations.

Expiration (years)

Time Consumption (seconds) Method LWNN-ELM IDM

1 5.2853 75.2167

0.5 4.3862 62.4791

2 6.7541 83.3754

Here, the influence of different α on the options price is investigated. From Equation (6),
intuitively, α can be regarded as a metric of the dependence of U(S, t) on the stock price
at the same underlying level from the current time to the expiration; in the practical case,
T − t 6 1; it is not difficult to observe that the larger α is, the weaker the dependence
becomes. This may explain the phenomena illustrated in Figure 3, wherein the B-S model
tends to overprice a double knock-out call when the underlying is close to the lower barrier.
On the other hand, it can be observed that from a certain underlying value and onward,
this B-S model prefers to underprice the option, which possibly results in the larger impact
of the nonzero payoff value on the options price for smaller α. Table 2 offers the calculation
time of the LWNN-ELM for different expirations; it can be seen that for a longer expira-
tion, the time consumption has no apparent increase which is beneficial for some complex
options pricing models.
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Figure 3. Options price for different α, where the corresponding parameters are σ = 0.45, r = 0.03,
q = 0.01, K = 10, A = 3, B = 15, and M = 16. (a) T = 1 (years); (b) T = 0.5; (c) T = 2.

Table 2. Time consumption of the LWNN-ELM for different expirations.

Expiration (years)

Time Consumption (seconds) Method
LWNN-ELM

1 27.6381

0.5 24.9635

2 31.7652

For the European put option, the final and boundary conditions are Π(S) = max{K− S, 0},
Q(t) = q = 0, and P(t) = K exp(−r(T− t)). The put options prices for different M are pre-
sented in Figure 4; it is clear that the numerical solutions of the LWNN-ELM for different M
are quite close; meanwhile, the time consumption is 4.8391 (M = 12) and 6.1726 (M = 16),
respectively. In addition, the numerical solutions based on the LWNN-ELM and IDM are
provided in Table 3; it is clear that the numerical solutions obtained by the LWNN-ELM
agree very well with the benchmark method. Although the numerical solution for M = 12
has a faster computation rate compared to that of M = 16, the numerical solution for
M = 16 has a higher precision. Consequently, for a more accurate description of financial
dynamics, a fast and efficient scheme to solve the options price is preferred. In the end, the
order of convergence is utilized to explore the solution accuracy [76], which is defined as

Order = log2
‖e∆τ‖∞∥∥∥e(∆τ/2)

∥∥∥
∞

(36)

where e(∆τ) = U(∆τ) −U(∆τ/2) and U(∆τ) is the numerical solution at the final time with
step size ∆τ. In the following experiments, Ns = 460 was selected to saturate the stock
price discretization so that the error is mainly determined by the time discretization. The
order of convergence of the European option is illustrated in Table 4. It can be observed
that the LWNN-ELM has first-order convergence for different α.
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Table 3. The numerical solutions of the European put option, where the corresponding parameters
are K = 50, T = 1, r = 0.01, σ = 0.1, A = 10, B = 100, and M = 16.

(Ns,Nt) Method
Stock Price

S = 30 S = 40 S = 50 S = 60 S = 70 S = 80

(230,500)
LWNN-ELM 17.6089 9.0658 3.5568 1.1969 0.4472 0.1727

IDM 17.6088 9.0656 3.5571 1.1968 0.4473 0.1726

(460,500)
LWNN-ELM 17.5861 9.2083 3.5714 1.2866 0.4707 0.1757

IDM 17.5862 9.2083 3.5715 1.2867 0.4706 0.1755
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Figure 4. European put options price obtained by the LWNN-ELM for different M, where the
corresponding parameters are α = 0.7, K = 50, T = 1, r = 0.01, σ = 0.1, A = 10, and B = 100.

Table 4. The convergence order of the European put options price. Nt is the number of discretization
points regarding time; the number of discretization points regarding the stock price is fixed as
Ns = 460.

Nt

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

250 1.02 1.05 1.02 1.04 1.02 1.04 1.02 1.02 0.98

500 1.01 1.01 1.03 1.03 1.01 1.00 1.04 0.99 1.01

1000 1.01 1.01 1.00 1.02 1.00 1.03 1.02 1.02 0.99

2000 1.00 1.00 1.02 1.01 1.01 1.00 0.99 1.01 0.99

7. Conclusions

Being a generalization of the classic B-S model, the “global” characteristic of the time
fractional B-S model makes it more difficult to calculate the analytical or numerical solution
than the integer-order model. In this paper, the options price model is governed by a
time fractional derivative B-S equation when the underlying price change is considered
as a fractal transmission system, then the fractional derivative operational matrix of the
two-dimensional Legendre wavelet is derived, and the European options pricing model
(including final and boundary conditions) is transformed to a group of algebraic equations.
The LWNN-ELM is employed to train the output layer weights owing to its fast learning
rate and moderate fitting characteristic. In the end, numerical experiments are provided to
price the European option with double barriers based on the LWNN-ELM and the implicit
differential method, and the experimental results illustrate that the proposed method has
less time consumption compared with the benchmark method; besides, the first-order
convergence is demonstrated when α is less than 1. Furthermore, the proposed scheme is
simple and easy to implement and can be available to other similar fractional models for
pricing different European options.
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