A Model Based on Fractional Brownian Motion for Temperature Fluctuation in the Campi Flegrei Caldera
Abstract
:1. Introduction
- The development of a suitable stochastic model describing a geophysical phenomenon;
- The estimation of the parameters involved in the model based on real observed data;
- The design of revised statistical algorithms to construct the model and to perform appropriate testing for confirming its validity.
2. The Stochastic Model
- If , then the increments of the process are positively correlated, making the process persistent (i.e., likely to keep the trend exhibited in the previous observations);
- If , the increments of the process are negatively correlated, and the process is counter-persistent (i.e., likely to break the trend followed in the past).
3. The Deterministic Component
4. Analysis of the Stochastic Component
4.1. Testing for Brownian Motion
- (i)
- If , then the time series can be identified as a realization of fractional Gaussian noise;
- (ii)
- If , then the data series represents a sample path of fractional Brownian motion.
4.2. The Shapiro–Wilk Test
4.3. Robust Jarque–Bera Test
5. Statistical Test for the Model
- (i)
- For , the null hypothesis is rejected;
- (ii)
- For , the values are considered as a “warning”;
- (iii)
- For , the hypothesis cannot be rejected.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OLS | ordinary least squares |
fBm | fractional Brownian motion |
fGn | fractional Gaussian noise |
RJB | robust Jarque–Bera test |
DMA | detrending moving average |
i.i.d. | independent and identically distributed |
LRD | long-range dependency |
References
- Sebastiani, G.; Malagnini, L. Forecasting the Next Parkfield Mainshock on the San Andreas Fault (California). J. Ecol. Nat. Resour. 2020, 4, 1–45. [Google Scholar] [CrossRef]
- Giordano, L.M.; Morale, D. A fractional Brownian–Hawkes model for the Italian electricity spot market: Estimation and forecasting. J. Energy Mark. 2021, 14, 1–44. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; Chiodini, G.; Giudicepietro, F.; Macedonio, G.; Caliro, S.; De Cesare, W.; Bianco, F.; Pugliese, M.; Roca, V. Continuous radon monitoring during seven years of volcanic unrest at Campi Flegrei caldera (Italy). Sci. Rep. 2020, 10, 9551. [Google Scholar] [CrossRef] [PubMed]
- Nourdin, I. Selected Aspects of Fractional Brownian Motion; Bocconi & Springer Series; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Prakasa Rao, B.L.S. Statistical Inference for Fractional Diffusion Processes; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Davidson, M.; Borgeaud, M. On the scattering from natural rough surfaces. IGARSS 1999, 5, 2413–2415. [Google Scholar] [CrossRef]
- Yin, Z.M.; Ranalli, G. Modelling of earthquake rupturing as a stochastic process and estimation of its distribution function from earthquake observations. Geophys. J. Int. 1995, 123, 838–848. [Google Scholar] [CrossRef]
- Taqqu, M.S.; Teverovsky, V.; Willinger, W. Estimators for longrange dependence: An empirical study. Fractals 1996, 3, 785–798. [Google Scholar] [CrossRef]
- Travaglino, F.; Di Crescenzo, A.; Martinucci, B.; Scarpa, R. A New Model of Campi Flegrei Inflation and Deflation Episodes based on Brownian Motion Driven by Telegraph Process. Math. Geosci. 2018, 50, 961–975. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Dieker, T. Simulation of Fractional Brownian Motion. Ph.D. Thesis, University of Twente, Enschede, The Netherland, 2004. [Google Scholar]
- Li, M. On the Long-Range Dependence of Fractional Brownian Motion. Math. Probl. Eng. 2013, 2013, 842197. [Google Scholar] [CrossRef]
- Balcerek, M.; Burnecki, K.; Thapa, S.; Wyłomańska, A.; Chechkin, A. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions. arXiv 2022, arXiv:2206.03818. [Google Scholar]
- Han, D.; Korabel, N.; Chen, R.; Johnston, M.; Gavrilova, A.; Allan, V.J.; Fedotov, S.; Waigh, T.A. Deciphering anomalous heterogeneous intracellular transport with neural networks. eLife 2019, 9, e52224. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.J. Fitting Segmented Curves Whose Join Points Have to Be Estimated. J. Am. Stat. Assoc. 1966, 61, 1097–1129. [Google Scholar] [CrossRef]
- Briane, V.; Vimond, M.; Kervrann, C. An adaptive statistical test to detect non Brownian diffusion from particle trajectories. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016. [Google Scholar]
- Roume, C.; Ezzina, S.; Blain, H.; Delignieres, D. Biases in the Simulation and Analysis of Fractal Processes. Comput. Math. Methods Med. 2019, 2019, 4025305. [Google Scholar] [CrossRef] [PubMed]
- Montanari, A.; Taqqu, M.S.; Teverovsky, V. Estimating Long-Range Dependence in the Presence of Periodicity: An Empirical Study. Math. Comput. Model. 1999, 29, 217–228. [Google Scholar] [CrossRef]
- Flandrin, P. On the spectrum of fractional Brownian motions. IEEE Trans. Inf. Theory 1989, 35, 197–199. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, S.; Cheng, C.; Song, C.; Ye, S. Long-Range Correlation Analysis of Soil Temperature and Moisture on A’rou Hillsides, Babao River Basin. J. Geophys. Res. Atmos. 2018, 123, 12–606. [Google Scholar] [CrossRef]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
- Royston, P. Remark AS R94: A Remark on Algorithm AS 181: The W-test for Normality. J. R. Stat. Soc. 1995, 44, 547–551. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Gel, Y.R.; Gastwirth, J.L. A robust modification of the Jarque–Bera test of normality. Econ. Lett. 2008, 99, 30–32. [Google Scholar] [CrossRef]
- Deb, P.; Sefton, M. The distribution of a Lagrange multiplier test of normality. Econ. Lett. 1996, 51, 123–130. [Google Scholar] [CrossRef]
- Sikora, G. Statistical test for fractional Brownian motion based on detrending moving average algorithm. Chaos Solitons Fractals 2018, 116, 54–62. [Google Scholar] [CrossRef]
(°C) | (°C) | ||
---|---|---|---|
16 September 2011 | 31.78 | 14 February 2012 | 28.68 |
25 August 2012 | 33.6 | 22 March 2013 | 28.63 |
11 September 2013 | 33.31 | 4 March 2014 | 29.17 |
22 September 2014 | 33.4 | 27 February 2015 | 27.08 |
5 September 2015 | 32.4 | 11 March 2016 | 29.27 |
19 September 2016 | 33.29 | 03 February 2017 | 28.88 |
30 August 2017 | 34.04 |
11 September 2011 | 0.0219 | 0.9302 |
12 September 2011 | 0.0217 | 0.9326 |
13 September 2011 | 0.0215 | 0.9341 |
14 September 2011 | 0.0213 | 0.9369 |
15 September 2011 | 0.0213 | 0.9405 |
23 September 2011 | 0.0199 | 0.9021 |
24 September 2011 | 0.0190 | 0.8787 |
25 September 2011 | 0.0182 | 0.8574 |
26 September 2011 | 0.0174 | 0.8369 |
27 September 2011 | 0.0162 | 0.7880 |
16 September 2011 | 0.0213 | 0.9442 | 27 February 2012 | −0.0264 | 0.9709 |
13 September 2012 | 0.0262 | 0.9356 | 7 March 2013 | −0.0311 | 0.9722 |
6 September 2013 | 0.0287 | 0.9818 | 7 March 2014 | −0.0256 | 0.9573 |
24 September 2014 | 0.0237 | 0.9701 | 1 March 2015 | −0.0418 | 0.9635 |
23 August 2015 | 0.0294 | 0.9659 | 19 March 2016 | −0.0145 | 0.9287 |
8 September 2016 | 0.0238 | 0.9619 | 16 February 2017 | −0.0261 | 0.9357 |
14 September 2017 | 0.0228 | 0.9674 | 31 December 2017 | −0.0346 | 0.9153 |
h | |||
---|---|---|---|
1 | 64% | 66.8% | 68.0% |
2 | 76% | 72.2% | 69.9% |
3 | 68% | 70.0% | 66.1% |
4 | 66% | 69.4% | 71.3% |
5 | 70% | 71.0% | 70.5% |
6 | 68% | 71.4% | 71.1% |
7 | 68% | 70.8% | 70.5% |
8 | 71% | 67.0% | 69.9% |
9 | 70% | 73.0% | 68.1% |
10 | 70% | 69.4% | 71.5% |
Set | Reject Values () | Perc. | Warning Values () | Perc. | Acceptable Values () | Perc. |
---|---|---|---|---|---|---|
1 | 0 | 0% | 12 | 4.86% | 235 | 95.14% |
2 | 70 | 28.23% | 12 | 4.84% | 154 | 62.10% |
3 | 17 | 6.85% | 6 | 2.42% | 219 | 88.31% |
4 | 70 | 28.23% | 6 | 2.42% | 166 | 66.94% |
5 | 23 | 9.27% | 10 | 4.03% | 205 | 82.66% |
6 | 4 | 1.61% | 4 | 1.61% | 236 | 95.16% |
7 | 3 | 1.21% | 3 | 1.21% | 239 | 96.37% |
8 | 0 | 0% | 0 | 0% | 248 | 100% |
9 | 1 | 0.4% | 0 | 0% | 247 | 99.6% |
10 | 0 | 0% | 0 | 0% | 95 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Crescenzo, A.; Martinucci, B.; Mustaro, V. A Model Based on Fractional Brownian Motion for Temperature Fluctuation in the Campi Flegrei Caldera. Fractal Fract. 2022, 6, 421. https://doi.org/10.3390/fractalfract6080421
Di Crescenzo A, Martinucci B, Mustaro V. A Model Based on Fractional Brownian Motion for Temperature Fluctuation in the Campi Flegrei Caldera. Fractal and Fractional. 2022; 6(8):421. https://doi.org/10.3390/fractalfract6080421
Chicago/Turabian StyleDi Crescenzo, Antonio, Barbara Martinucci, and Verdiana Mustaro. 2022. "A Model Based on Fractional Brownian Motion for Temperature Fluctuation in the Campi Flegrei Caldera" Fractal and Fractional 6, no. 8: 421. https://doi.org/10.3390/fractalfract6080421
APA StyleDi Crescenzo, A., Martinucci, B., & Mustaro, V. (2022). A Model Based on Fractional Brownian Motion for Temperature Fluctuation in the Campi Flegrei Caldera. Fractal and Fractional, 6(8), 421. https://doi.org/10.3390/fractalfract6080421