CORDIC-Based FPGA Realization of a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System
Abstract
:1. Introduction
2. Mathematical Background
2.1. Numerical Solution of Fractional-Order Systems
2.2. CORDIC Algorithm
3. Towards a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System
3.1. Fractional-Order Multi-Scroll Grid Chaotic System
3.2. Two-Dimensional Translational Rotating System
3.3. Three-Dimensional Rotating System
Algorithm 1: Three-dimensional rotation algorithm. |
Construct the rotation matrix R and . Find . Apply GL method to solve (12), and find . Find . |
4. Encryption Application
5. FPGA Implementation
5.1. 2D Rotation Algorithm
5.2. Three-Dimensional Rotation Algorithm
6. Experimental Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petráš, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Elwy, O.; Abdelaty, A.; Said, L.; Radwan, A. Fractional calculus definitions, approximations, and engineering applications. J. Eng. Appl. Sci. 2020, 67, 1–30. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4. [Google Scholar]
- de la Fraga, L.G.; Torres-Pérez, E.; Tlelo-Cuautle, E.; Mancillas-López, C. Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 2017, 90, 1661–1670. [Google Scholar] [CrossRef]
- Elsafty, A.H.; Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G. Enhanced hardware implementation of a mixed-order nonlinear chaotic system and speech encryption application. AEU Int. J. Electron. Commun. 2020, 125, 153347. [Google Scholar] [CrossRef]
- Razminia, A.; Baleanu, D. Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics 2013, 23, 873–879. [Google Scholar] [CrossRef]
- Sayed, W.S.; Radwan, A.G. Generalized switched synchronization and dependent image encryption using dynamically rotating fractional-order chaotic systems. AEU Int. J. Electron. Commun. 2020, 123, 153268. [Google Scholar] [CrossRef]
- Caponetto, R. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010; Volume 72. [Google Scholar]
- Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 863–879. [Google Scholar] [CrossRef]
- Elwakil, A.S. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 2010, 10, 40–50. [Google Scholar] [CrossRef]
- Raza, A.; Rafiq, M.; Awrejcewicz, J.; Ahmed, N.; Mohsin, M. Dynamical analysis of coronavirus disease with crowding effect, and vaccination: A study of third strain. Nonlinear Dyn. 2022, 107, 3963–3982. [Google Scholar] [CrossRef]
- Raza, A.; Chu, Y.M.; Bajuri, M.Y.; Ahmadian, A.; Ahmed, N.; Rafiq, M.; Salahshour, S. Dynamical and nonstandard computational analysis of heroin epidemic model. Results Phys. 2022, 34, 105245. [Google Scholar] [CrossRef]
- Aghababa, M.P.; Borjkhani, M. Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme. Complexity 2014, 20, 37–46. [Google Scholar] [CrossRef]
- Lü, J.; Chen, G. Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J. Bifurc. Chaos 2006, 16, 775–858. [Google Scholar] [CrossRef]
- Ahmad, W.M. Generation and control of multi-scroll chaotic attractors in fractional order systems. Chaos Solitons Fractals 2005, 25, 727–735. [Google Scholar] [CrossRef]
- Deng, W.; Lü, J. Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. Chaos Interdiscip. J. Nonlinear Sci. 2006, 16, 043120. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Lü, J. Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system. Phys. Lett. A 2007, 369, 438–443. [Google Scholar] [CrossRef]
- Deng, W. Generating 3-D scroll grid attractors of fractional differential systems via stair function. Int. J. Bifurc. Chaos 2007, 17, 3965–3983. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, S. Generation of multi-wing chaotic attractor in fractional order system. Chaos Solitons Fractals 2011, 44, 845–850. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W.; Wu, R.; Wang, K.; He, Y. Generation and circuit implementation of fractional-order multi-scroll attractors. Chaos Solitons Fractals 2016, 85, 22–31. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W.; Wu, R.; Machado, J.T.; Lopes, A.M. Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 084303. [Google Scholar] [CrossRef]
- Yu, N.; Wang, Y.W.; Liu, X.K.; Xiao, J.W. 3D grid multi-wing chaotic attractors. Int. J. Bifurc. Chaos 2018, 28, 1850045. [Google Scholar] [CrossRef]
- Escalante-González, R.J.; Campos-Cantón, E. A class of piecewise linear systems without equilibria with 3-D grid multiscroll chaotic attractors. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 1456–1460. [Google Scholar] [CrossRef]
- Ding, P.F.; Feng, X.Y.; Wu, C.M. Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system. Chin. Phys. B 2020, 29, 108202. [Google Scholar] [CrossRef]
- Xu, W.; Cao, N. Hardware design of a kind of grid multi-scroll chaotic system based on a MSP430f169 chip. J. Circuits Syst. Comput. 2020, 29, 2050189. [Google Scholar] [CrossRef]
- Xu, X.L.; Li, G.D.; Dai, W.Y.; Song, X.M. Multi-direction chain and grid chaotic system based on Julia fractal. Fractals 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Cui, L.; Lu, M.; Ou, Q.; Duan, H.; Luo, W. Analysis and circuit implementation of fractional order multi-wing hidden attractors. Chaos Solitons Fractals 2020, 138, 109894. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A. Investigating the complex behavior of multi-scroll chaotic system with Caputo fractal-fractional operator. Chaos Solitons Fractals 2021, 146, 110900. [Google Scholar] [CrossRef]
- Yan, M.; Jie, J. Fractional-order multiwing switchable chaotic system with a wide range of parameters. Chaos Solitons Fractals 2022, 160, 112161. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Pano-Azucena, A.D.; Guillén-Fernández, O.; Silva-Juárez, A. Analog/Digital Implementation of Fractional Order Chaotic Circuits and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019, 480, 403–419. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Wang, N.; Zhu, L.; Chen, M.; Bao, B. Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation. IEEE Trans. Ind. Inform. 2020, 17, 1132–1140. [Google Scholar] [CrossRef]
- Hua, Z.; Zhang, Y.; Bao, H.; Huang, H.; Zhou, Y. n-Dimensional Polynomial Chaotic System With Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 69, 784–797. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Sayed, W.S.; Said, L.A.; Radwan, A.G. Reconfigurable FPGA realization of fractional-order chaotic systems. IEEE Access 2021, 9, 89376–89389. [Google Scholar] [CrossRef]
- Tlelo-Cuautle, E.; Rangel-Magdaleno, J.; Pano-Azucena, A.; Obeso-Rodelo, P.; Nuñez-Perez, J.C. FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 2015, 27, 66–80. [Google Scholar] [CrossRef]
- Tolba, M.F.; Said, L.A.; Madian, A.H.; Radwan, A.G. FPGA implementation of fractional-order integrator and differentiator based on Grünwald Letnikov’s definition. In Proceedings of the 2017 29th International Conference on Microelectronics (ICM), Beirut, Lebanon, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Sayed, W.; Radwan, A.; Elnawawy, M.; Orabi, H.; Sagahyroon, A.; Aloul, F.; Elwakil, A.; Fahmy, H.; El-Sedeek, A. Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization. Circuits Syst. Signal Process. 2019, 38, 4890–4903. [Google Scholar] [CrossRef]
- Sayed, W.S.; Radwan, A.G.; Fahmy, H.A.; Elsedeek, A. Trajectory control and image encryption using affine transformation of Lorenz system. Egypt. Inform. J. 2021, 22, 155–166. [Google Scholar] [CrossRef]
- Sayed, W.S.; Roshdy, M.; Said, L.A.; Radwan, A.G. Design and FPGA Verification of Custom-Shaped Chaotic Attractors Using Rotation, Offset Boosting and Amplitude Control. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3466–3470. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C. Variable-boostable chaotic flows. Optik 2016, 127, 10389–10398. [Google Scholar] [CrossRef]
- Pham, V.T.; Akgul, A.; Volos, C.; Jafari, S.; Kapitaniak, T. Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU Int. J. Electron. Commun. 2017, 78, 134–140. [Google Scholar] [CrossRef]
- Pham, V.T.; Wang, X.; Jafari, S.; Volos, C.; Kapitaniak, T. From Wang–Chen system with only one stable equilibrium to a new chaotic system without equilibrium. Int. J. Bifurc. Chaos 2017, 27, 1750097. [Google Scholar] [CrossRef]
- Li, C.; Lei, T.; Wang, X.; Chen, G. Dynamics editing based on offset boosting. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063124. [Google Scholar] [CrossRef]
- Munoz-Pacheco, J.; Zambrano-Serrano, E.; Volos, C.; Tacha, O.; Stouboulos, I.; Pham, V.T. A fractional order chaotic system with a 3D grid of variable attractors. Chaos Solitons Fractals 2018, 113, 69–78. [Google Scholar] [CrossRef]
- Gu, S.; He, S.; Wang, H.; Du, B. Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fractals 2021, 143, 110613. [Google Scholar] [CrossRef]
- Ai, X.; Sun, K.; He, S.; Wang, H. Design of grid multiscroll chaotic attractors via transformations. Int. J. Bifurc. Chaos 2015, 25, 1530027. [Google Scholar] [CrossRef]
- Bar-Yam, Y. Dynamics of Complex Systems; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wang, Z.; Volos, C.; Kingni, S.T.; Azar, A.T.; Pham, V.T. Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Optik 2017, 131, 1071–1078. [Google Scholar] [CrossRef]
- AboAlNaga, B.M.; Said, L.A.; Madian, A.H.; Radwan, A.G. Analysis and FPGA of semi-fractal shapes based on complex Gaussian map. Chaos Solitons Fractals 2021, 142, 110493. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Sayed, W.S.; Radwan, A.G.; Said, L.A. FPGA Implementation of Reconfigurable CORDIC Algorithm and a Memristive Chaotic System With Transcendental Nonlinearities. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2885–2892. [Google Scholar] [CrossRef]
- Koyuncu, İ.; Şahin, İ.; Gloster, C.; Sarıtekin, N.K. A neuron library for rapid realization of artificial neural networks on FPGA: A case study of Rössler chaotic system. J. Circuits Syst. Comput. 2017, 26, 1750015. [Google Scholar] [CrossRef]
- Tuna, M. A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: Design and its FPGA implementation. Analog. Integr. Circuits Signal Process. 2020, 105, 167–181. [Google Scholar] [CrossRef]
- Hu, Y.H. CORDIC-based VLSI architectures for digital signal processing. IEEE Signal Process. Mag. 1992, 9, 16–35. [Google Scholar] [CrossRef]
- Harber, R.G.; Hu, X.; Li, J.; Bass, S.C. The application of bit-serial CORDIC computational units to the design of inverse kinematics processors. In Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, 24–29 April 1988; pp. 1152–1157. [Google Scholar]
- Volder, J.E. The birth of CORDIC. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2000, 25, 101–105. [Google Scholar] [CrossRef]
- Vladimirova, T.; Tiggeler, H. FPGA implementation of sine and cosine generators using the CORDIC algorithm. In Proceedings of the 1999 MAPLD International Conference, Washington, DC, USA; 1999; pp. 26–28. [Google Scholar]
- Vachhani, L.; Sridharan, K.; Meher, P.K. Efficient FPGA realization of CORDIC with application to robotic exploration. IEEE Trans. Ind. Electron. 2009, 56, 4915–4929. [Google Scholar] [CrossRef]
- Qian, M. Application of CORDIC algorithm to neural networks VLSI design. In Proceedings of the Multiconference on “Computational Engineering in Systems Applications”, Beijing, China, 4–6 October 2006; Volume 1, pp. 504–508. [Google Scholar]
- Walther, J.S. A unified algorithm for elementary functions. In Proceedings of the Spring Joint Computer Conference, Atlantic City, NJ, USA, 18–20 May 1971; pp. 379–385. [Google Scholar]
- Yalçin, M.E.; Suykens, J.A.; Vandewalle, J.; Özoğuz, S. Families of scroll grid attractors. Int. J. Bifurc. Chaos 2002, 12, 23–41. [Google Scholar] [CrossRef]
- Lian, S. Multimedia Content Encryption: Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bassham, L.E., III; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.; Banks, D.L.; et al. Sp 800-22 Rev. 1a. a Statistical Test Suite for Random And Pseudorandom Number Generators for Cryptographic Applications; National Institute of Standards & Technology: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Gotz, M.; Kelber, K.; Schwarz, W. Discrete-time chaotic encryption systems. I. Statistical design approach. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1997, 44, 963–970. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, G. Chaos-based image encryption. In Handbook of Geometric Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 231–265. [Google Scholar]
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. JSAT 2011, 1, 31–38. [Google Scholar]
- Bao, H.; Hua, Z.; Liu, W.; Bao, B. Discrete memristive neuron model and its interspike interval-encoded application in image encryption. Sci. China Technol. Sci. 2021, 64, 2281–2291. [Google Scholar] [CrossRef]
- Lin, R.; Li, S. An image encryption scheme based on Lorenz Hyperchaotic system and RSA algorithm. Secur. Commun. Netw. 2021, 2021, 5586959. [Google Scholar] [CrossRef]
n | ||
---|---|---|
13 | 0.0044 | −0.0028 |
14 | −0.0026 | 0.0042 |
15 | 0.000858884 | 0.00074059 |
16 | 0.00088966 | −0.001 |
Encryption Scheme | Histograms | NIST | |||
---|---|---|---|---|---|
Test | PV | PP | |||
1 | ✓ | 0.979 | |||
2 | ✓ | 0.958 | |||
3 | ✓ | 1 | |||
4 | ✓ | 0.917 | |||
5 | ✓ | 1 | |||
6 | ✓ | 1 | |||
7 | ✓ | 1 | |||
8 | ✓ | 0.989 | |||
9 | ✓ | 1 | |||
Horz. corr. | Vert. corr. | Diag. corr. | 10 | ✓ | 1 |
5.5465 | 2.4273 | 3.8249 | 11 | ✓ | 1 |
Key Sens. | MSE () | Entropy | 12 | ✓ | 0.969 |
() | 8.9265 | 7.9998 | 13 | ✓ | 0.99 |
DA | NPCR (%) | UACI (%) | 14 | ✓ | 1 |
99.5607 | 33.4624 | 15 | ✓ | 0.958 |
Logic Utilization | 2D Rotation | 3D Rotation |
---|---|---|
No. of LUT | 1833 out of 63,400 | 5636 out of 63,400 |
No. of slice registers | 1091 out of 126,800 | 1106 out of 12,6800 |
Clock speed (MHz) | ||
Throughput (Mbit/sec) | ||
Oscilloscope results | ||
projection | projection |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, W.S.; Roshdy, M.; Said, L.A.; Herencsar, N.; Radwan, A.G. CORDIC-Based FPGA Realization of a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System. Fractal Fract. 2022, 6, 432. https://doi.org/10.3390/fractalfract6080432
Sayed WS, Roshdy M, Said LA, Herencsar N, Radwan AG. CORDIC-Based FPGA Realization of a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System. Fractal and Fractional. 2022; 6(8):432. https://doi.org/10.3390/fractalfract6080432
Chicago/Turabian StyleSayed, Wafaa S., Merna Roshdy, Lobna A. Said, Norbert Herencsar, and Ahmed G. Radwan. 2022. "CORDIC-Based FPGA Realization of a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System" Fractal and Fractional 6, no. 8: 432. https://doi.org/10.3390/fractalfract6080432
APA StyleSayed, W. S., Roshdy, M., Said, L. A., Herencsar, N., & Radwan, A. G. (2022). CORDIC-Based FPGA Realization of a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid Chaotic System. Fractal and Fractional, 6(8), 432. https://doi.org/10.3390/fractalfract6080432