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Abstract: This paper proposes an algorithm and hardware realization of generalized chaotic systems
using fractional calculus and rotation algorithms. Enhanced chaotic properties, flexibility, and
controllability are achieved using fractional orders, a multi-scroll grid, a dynamic rotation angle(s) in
two- and three-dimensional space, and translational parameters. The rotated system is successfully
utilized as a Pseudo-Random Number Generator (PRNG) in an image encryption scheme. It preserves
the chaotic dynamics and exhibits continuous chaotic behavior for all values of the rotation angle.
The Coordinate Rotation Digital Computer (CORDIC) algorithm is used to implement rotation and
the Grünwald–Letnikov (GL) technique is used for solving the fractional-order system. CORDIC
enables complete control and dynamic spatial rotation by providing real-time computation of the sine
and cosine functions. The proposed hardware architectures are realized on a Field-Programmable
Gate Array (FPGA) using the Xilinx ISE 14.7 on Artix 7 XC7A100T kit. The Intellectual-Property
(IP)-core-based implementation generates sine and cosine functions with a one-clock-cycle latency
and provides a generic framework for rotating any chaotic system given its system of differential
equations. The achieved throughputs are 821.92 Mbits/s and 520.768 Mbits/s for two- and three-
dimensional rotating chaotic systems, respectively. Because it is amenable to digital realization,
the proposed spatially rotating translational fractional-order multi-scroll grid chaotic system can fit
various secure communication and motion control applications.

Keywords: chaos; CORDIC; encryption; fractional-order systems; Grünwald–Letnikov

1. Introduction

Fractional calculus, the non-integer counterpart of the classical integer calculus, has a
relatively long history in theory, rather than applications [1,2]. It is known for describing a
real object more accurately since it includes memory effects. However, the solution and
implementation of fractional-order systems started to flourish only a few decades ago with
the advances in digital computers and digital realization technologies [3].

In addition, fractional orders provide more controllability of the governing mathe-
matical relations. For example, in their fractional-order form, chaotic systems exhibit the
same aperiodicity, ergodicity, randomness, and sensitivity properties as their integer-order
counterparts [1,2]. Both types of chaotic systems were employed in various applications
such as encryption [4,5], synchronization [6,7], control [8], secure communication [9], mod-
eling of electronic devices [10], diseases [11,12], and biomedical applications [13]. Most
research in this field extended classical single- and double-scroll chaotic systems to the
fractional-order domain. However, fractional-order delayed, hyperchaotic, and multi-scroll
systems appeared less frequently [1].
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Multi-scroll chaotic systems, especially those with grid scroll attractors, exhibit inter-
esting and more complex topologies than systems with fewer scrolls. Various methods
of multi-scroll generation have been presented, such as parameter switching, saturated
sequence, sawtooth, piecewise-linear, step wave, hysteresis series, switching, sine, and hy-
perbolic tangent signals [14]. A fractional-order multi-scroll chaotic system with a staircase
nonlinearity was formed in [15] by time-shifted versions of the signum function. Fractional-
order multi-directional multi-scroll grid chaotic attractors utilized hysteresis [16,17] and
staircase functions [18]. In [19], similar systems were generated using nonlinear state feed-
back controllers with a duality-symmetric multi-segment quadratic function. A piecewise-
linear function [20] and a combination of the saturated nonlinear function and the stair
nonlinear function series [21] were also utilized for similar purposes. Recently, there has
been increasing interest in presenting, analyzing, and implementing integer- [22–26] and
fractional-order [27–29] multi-scroll chaotic systems.

For chaotic systems to take part in real-world applications, implementations that gener-
ate the chaotic signal are required rather than the computer-simulated numerical form [30].
Several new chaotic systems were implemented in a microcontroller-based hardware plat-
form [31–33]. The digital hardware FPGAs, especially when using fixed-point registers,
provide many advantages, including, but not limited to the simple design, fast prototyping,
and reduced hardware cost. Additionally, FPGAs provide high speed, reliability, pro-
grammability, reconfigurability, reproducibility, and immunity to noise. These advantages
strongly encourage utilizing FPGAs for fractional-order chaotic systems’ implementa-
tion [30,34], as long as accuracy and dynamical degradation limitations are considered in
numerical approximations, bit representation, and precision decisions [30]. FPGA imple-
mentations of integer-order multi-scroll chaotic systems [35] have been more frequently
presented than fractional-order ones. This scarcity in implementations applies to other
types of fractional-order systems as well [30], and there is a growing need for researchers
to reach high throughputs and low latency for their FPGA implementations. To overcome
the challenges of the non-locality property of the fractional calculus operators and their
resources and memory requirements, the hardware implementation of the Grünwald–
Letnikov (GL) fractional-order operator was presented in [36]. In addition, the hardware of
fractional-order chaotic systems was implemented with flexibility in the setup of the values
of the parameters without changing the architecture [34]. Among [15–21], only [20,21]
provided analog circuit implementation.

A relatively newer approach employed transformations of chaotic systems for different
purposes [7,31,37–39]. Translation or offset boosting is achieved using additive parameters and
was presented for integer-order [40–43] and fractional-order chaotic systems [44,45]. Rotation,
suitable for multi-scroll generation and motion control applications, was presented for integer-
order [37] and fractional-order [7] classical chaotic systems. It was proven to preserve the chaotic
dynamics independent of the value and variation of the rotation angle [7,37]. Applications of
these rotated chaotic systems and their performance in pseudo-random number generation
and encryption were discussed in [7]. A cosine transform [31] was applied to chaotic maps for
encryption applications. Three grid multi-scroll chaotic attractors based on a one-dimensional
multi-scroll Chua system were presented in [46]. The digital implementations of the integer-
order systems presented in [37,46] used constant values to replace the sine and cosine terms
at design time instead of implementing these functions. The digital design does not provide
automation or control capability for the value of rotation angle, such that it can be specified
during simulation or real-time application.

The accompanying complicated simulation and implementation comprise the main
challenge facing these different approaches to novel and generalized chaotic systems forma-
tion [47]. Few researchers presented analog implementations of chaotic systems, including
trigonometric and/or hyperbolic functions [48]. However, digital implementation has
many advantages, as previously listed. CORDIC is an iterative method to calculate ele-
mentary functions such as trigonometric and hyperbolic using add and shift operations.
It overpasses other methods, including multiplication and division, such as the Taylor
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series and lookup table, which suffer from increased hardware resources and memory
requirements. CORDIC was infrequently employed in realizing the rotation of chaotic
attractors [39], fractals with trigonometric and exponential nonlinearities [49], and in a
reconfigurable manner for a system with several types of nonlinearities [50] on an FPGA.
CORDIC-based blocks were also infrequently employed for the hardware approximation of
activation functions in Artificial-Neural-Network (ANN)-based chaotic generators [51,52].

This paper proposes a spatially rotating translational fractional-order multi-scroll
grid chaotic system and its hardware realization. It employs different approaches to
achieve extra controllability and complex, chaotic behavior. First, a multi-scroll grid chaotic
system is extended to the fractional-order domain. Then, this system is enriched with
rotation angle and translational parameters, which can be dynamic. Two-dimensional
and three-dimensional rotations are presented and implemented, where CORDIC is uti-
lized in rotation and the compact representation of GL, which was presented in [36], is
utilized for the fractional-order system. An image encryption application utilizing the
proposed system as a PRNG is presented, and various evaluation criteria validate its good
performance. Generic digital realization of the proposed system is presented for two-
and three-dimensional rotations with automated control of real-time dynamic parame-
ters. Experimental results exhibit accuracy and efficiency, and the proposed approach is
advantageous compared to recent related works.

The rest of the paper is organized as follows. Section 2 reviews the mathematical back-
ground of the utilized numerical methods and algorithms. Section 3 explains the proposed
translation and rotation transformation to obtain spatially rotating chaotic translational
attractors. In addition, it extends a multi-scroll grid chaotic attractor to the fractional-order
domain and uses it to validate the proposed transformation in two- and three-dimensional
spaces. Section 4 presents an image encryption application for the proposed systems and
validates its good performance by various evaluation criteria. Section 5 presents the hard-
ware design and implementation of the two- and three-dimensional rotation algorithms for
the fractional-order system based on the CORDIC algorithm and compact GL. Section 6
presents the experimental results of the digital realization showing good accuracy, hard-
ware resource utilization, and efficiency. In addition, it compares the proposed system
and hardware realization to recent related works. Finally, Section 7 concludes the main
contributions of the paper and suggests future work directions.

2. Mathematical Background
2.1. Numerical Solution of Fractional-Order Systems

Grünwald–Letnikov (GL) established a general form to solve the fractional-order
derivative [1] given by:

Dt
α f (t) = lim

h→0

1
hα

b t−α
h c

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (1)

where h is the time step of calculation, α is the fractional-order parameter, and (−1)j
(

α
j

)
are binomial coefficients. The general fractional-order differential equation using GL can
be described as follows:

Dt
αx(t) = f (x(t), t),

x(tk) = f (x(tk−1), tk)hα −
k
∑

j=1
cj
(α)x(tk−j),

cj
(α) =

(
1− 1+α

j

)
cj−1

(α), j = 1, 2, 3, . . . , c0
(α) = 1,

(2)

which is composed of two terms. First, the aggregation or the GL term and, second,
the system description term, which is multiplied by the time step h to the power of the
fractional-order parameter α.
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2.2. CORDIC Algorithm

Currently, sine and cosine functions are essential in different applications, such as radio
waves, digital signal processing [53], satellites, and software radio [54]. The trigonometric
functions can be implemented using the Taylor series, lookup table, and CORDIC techniques.

Taylor series expansion is an old technique that contains many challenges. Take as an
example the Taylor series expansion of the cosine:

cos x =
∞

∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+

x4

4!
− · · · . (3)

Implementing such an equation requires a subtractor, multiplier, divider, and expo-
nential, a complex circuit in hardware implementation. This technique requires much
hardware resource and time to calculate the sine and cosine.

Furthermore, lookup table techniques depend on storing sine and cosine values. By
increasing the lookup table size, the accuracy increases, which means it needs more memory,
which is very expensive.

CORDIC calculates trigonometric and hyperbolic functions iteratively using add and
shift operations. It is one of the digit-by-digit algorithms. The analog navigation computer
was replaced by CORDIC on the B-58 bomber [55], as they need high accuracy and per-
formance. Furthermore, Legendre polynomials were calculated based on the CORDIC
algorithm, which was the first step of the International Geomagnetic Reference Field [56].
Besides, an adequate hardware solution for tasks of two mobile robots without applying
any division was designed on an FPGA using the CORDIC algorithm [57]. Moreover,
the CORDIC algorithm can be used in neural networks’ VLSI design, as in [58]: there, it
was used to design the activation and net functions. Accordingly, in hardware, it is more
efficient to use the CORDIC algorithm as it minimizes the number of employed gates more
than any other technique (lookup table, Taylor series).

The CORDIC algorithm has two working modes: rotation mode and vectoring mode.
Volder first described rotation mode in 1959, and it was used to compute the rotation of
a vector in a Cartesian coordinate system and evaluate the angle and length of the vector.
In 1971, the CORDIC algorithm was extended to include multiplication and logarithm
and exponential functions found in many applications such as matrix computation, digital
image processing, and digital signal processing [59].

Rotation mode is used for calculating the sine and cosine by rotating an initial unit vector.
The algorithm rotates the coordinate system by a series step clockwise (−θ) or anti-clockwise
(+θ), as shown in Figure 1. The CORDIC algorithm iteration equations can be given by:

xi+1 = xi − sign(zi)2−iyi,
yi+1 = yi + sign(zi)2−ixi,
zi+1 = zi − sign(zi) arctan(2−i),

(4)

and the expected final output of the iteration equations:

xn = Kn(x0 cos z0 − y0 sin z0),
yn = Kn(y0 cos z0 + x0 sin z0),
zn = 0,

(5)

where Kn is a scale factor calculated as follows:

Kn =
n−1

∏
i=0

√
1 + 2−2i. (6)

It represents the increase in the rotating vector during the micro-rotations, as it is not
a pure rotation, but a rotation expansion. After a certain number of micro-rotations, the
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scale factor Kn is a constant number approximated to 1.64676 [56]. In other words, as the
number of iterations tends to infinity, the scale factor will be a constant number.

𝜃

x

y

(𝑥𝑖𝑛, 𝑦𝑖𝑛)

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)
(𝑥5, 𝑦5)

Figure 1. Rotation of a vector using microrotations.

Since the calculation of sin and cos depends on the rotation of unit vector (x0 = 1, y0 = 0),
the outputs will be as follows:

xn = Knx0 cos z0,
yn = Knx0 sin z0,
zn = 0,

(7)

however, to avoid division in the hardware implementation, the initialization of x0 is

modified by
1

Kn
.

The CORDIC algorithm is an iterative method; therefore, it is required to know how
many iterations are needed to obtain the optimum values of sin(θ) and cos(θ). The final
zn is the desired angle; if it reaches zero, as in (7c), the desired angle is achieved. Table 1
shows the results after testing the CORDIC algorithm. Therefore, it was chosen in the
proposed algorithm to use the number of iterations as 15 to obtain the highest accuracy
without wasting the resources of the FPGA.

Table 1. CORDIC algorithm results zn.

n θ = 45◦ θ = 90◦

13 0.0044 −0.0028

14 −0.0026 0.0042

15 0.000858884 0.00074059

16 0.00088966 −0.001

3. Towards a Spatially Rotating Translational Fractional-Order Multi-Scroll Grid
Chaotic System
3.1. Fractional-Order Multi-Scroll Grid Chaotic System

A multi-scroll 2× 2 grid chaotic system was presented in [60]. Its fractional-order
counterpart is given by:

DαX = AX + BΦ(X), (8)

A =

 0 1 0
0 0 1
−a −a −a

, B =

 −1 0 0
0 0 0
0 0 a

, Φ =

 f1(y)
0
f2(x)

, (9)
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f1(y) = g(y), f2(x) = 2g(x), g(τ) =
{

0 τ ≥ 0.5
−1 τ < 0.5

. (10)

Hence, the final system equations are given by:

Dα1 x = y− g(y),
Dα2 y = z,
Dα3 z = −a(x + y + z− 2g(x)),

(11)

and it is solved using (2) as follows:

xi+1 = (yi − g(yi))hα1 −
i

∑
j=1

cj
α1 xi−j+1,

yi+1 = zihα2 −
i

∑
j=1

cj
α2 yi−j+1,

zi+1 = (−a(xi + yi + zi − 2g(xi)))hα3 −
i

∑
j=1

cj
α3 zi−j+1.

(12)

The projections of the strange attractors and bifurcation diagrams shown in Table 2
show that the system exhibits chaotic behavior at different combinations and against ranges
of the fractional orders at a = 0.81.

Table 2. x− y projections and bifurcation diagrams of the solution of (12).

(α1, α2, α3) =

(1, 0.95, 1) (0.87, 1.15, 0.95) (1.1, 1.1, 1.1)

(α1, 0.95, 1) (1, α2, 1) (1, 0.95, α3)
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3.2. Two-Dimensional Translational Rotating System

Rotation can be applied for any pair of the phase space dimensions. For example, if θ is
the rotation angle in the x− y plane or about the z-axis, the equations of the corresponding
variables u and v in terms of x and y are given by:

Dα1 u = cos θ Dα1 x + sin θ Dα1 y,
Dα2 v = − sin θ Dα2 x + cos θ Dα2 y,
Dα3 w = Dα3 z.

(13)
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The fractional derivatives of x, y, and z in (13) are replaced by the functions on the
right-hand side of the chaotic equations to have a rotation. The inverse transformation
represents the equations in terms of u, v, and w. The resulting system is given by:

t1i = cos(θ)ui − sin(θ)vi + su,
t2i = sin(θ)ui + cos(θ)vi + sv,

ui+1 = (cos(θ)(t2i − g(t2i)) + sin(θ)(wi))hα1 −
i

∑
j=1

cj
α1 ui−j+1,

vi+1 = (− sin(θ)(t2i − g(t2i)) + cos(θ)(wi))hα2 −
i

∑
j=1

cj
α2 vi−j+1,

wi+1 = (−a(t1i + t2i + wi − 2g(t1i)))hα3 −
i

∑
j=1

cj
α3 wi−j+1.

(14)

The terms su and sv are translational parameters that translate or shift the attractor
along the u- and v-axes, respectively. The system achieves rotation only when su = sv = 0.
Figure 2 shows examples of the two-dimensional rotating translational system with gen-
erally dynamic parameters at (α1, α2, α3) = (1, 0.95, 1). From Figure 2a, it can be inferred
that the translation parameters su and sv perform their role in comparison with the original
strange attractor in Table 2. Figure 2b uses dynamic translation parameters, which change
values after a specific duration. Figure 2c shows the generation of more multiple scrolls
using the dynamic rotation angle generated via the same procedure. Two-dimensional
rotation about the y- or x-axes can be achieved similarly. For instance, in the x− z plane.

su = −1, sv = 0.5, θ = 0
(a)

su = {−0.5, 0.5, 1.5},
sv = {1.5, 0.5,−0.5}, θ = 0

(b)

su = sv = 0.5,
θ = {0◦ , 20◦ , . . . , 100◦}

(c)

Figure 2. Two-dimensional (a) static translation, (b) dynamic translation, and (c) dynamic rotation.
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t1i = cos(θ)ui − sin(θ)wi + su,
t2i = sin(θ)ui + cos(θ)wi + sw,

ui+1 = (cos(θ)(vi − g(vi))− a sin(θ)(t1i + vi + t2i − 2g(t1i)))hα1 −
i

∑
j=1

cj
α1 ui−j+1,

vi+1 = (t2i)hα2 −
i

∑
j=1

cj
α2 vi−j+1,

wi+1 = (− sin(θ)(vi − g(vi))− a cos(θ)(t1i + vi + t2i − 2g(t1i)))hα3 −
i

∑
j=1

cj
α3 wi−j+1.

(15)

3.3. Three-Dimensional Rotating System

Two-dimensional rotations can be extended to three-dimensional rotations by con-
structing elementary three-dimensional rotation matrices, which perform rotations individ-
ually about the three coordinate axes z, y, and x by angles θ1, θ2, and θ3, respectively. The
rotations about the two other axes can be derived similarly and applied to create a general
composite three-dimensional rotation as follows: u

v
w

 = R

 x
y
z

, (16)

R =

 cos θ1 cos θ2 cos θ3 sin θ1 + cos θ1 sin θ3 sin θ2 sin θ1 sin θ3 − cos θ1 cos θ3 sin θ2
− cos θ2 sin θ1 cos θ1 cos θ3 − sin θ1 sin θ3 sin θ2 cos θ1 sin θ3 + cos θ3 sin θ1 sin θ2
sin θ2 − cos θ2 sin θ3 cos θ3 cos θ2

. (17)

This procedure is used to obtain the equations of the rotating chaotic system, where R
is an orthogonal matrix, through the Algorithm 1.

Algorithm 1: Three-dimensional rotation algorithm.

Construct the rotation matrix R and RT .
Find Xi = RTUi.
Apply GL method to solve (12), and find Xi+1.
Find Ui+1 = RXi+1.

Figure 3 shows an example of the three-dimensional rotating system at rotation angles
(θ1, θ2, θ3) = (90◦, 90◦, 45◦).

Figure 3. Cont.
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Figure 3. Three-dimensional rotation example at (θ1, θ2, θ3) = (90◦, 90◦, 45◦).

4. Encryption Application

Rotated chaotic systems were shown to theoretically preserve the chaotic dynamics
adding extra controllability and sensitivity through stability analysis, bifurcations, and
Maximum Lyapunov Exponents (MLEs) [7,37]. This section shows that the same result is
valid for practical applications by presenting an image encryption application using the
rotated fractional-order multi-scroll grid chaotic system. The advantage of the rotation
angle as a system parameter is that, unlike the case for chaotic system parameters, the
system remains chaotic and does not drift to stable, periodic, or divergent responses outside
a specific range.

Table 3 shows a simple substitution-based stream cipher scheme with feedback em-
ployed for symmetric-key encryption. It uses the rotated fractional-order multi-scroll grid
chaotic system as a PRNG. The encryption key is composed of seven sub-keys (18, 18, 18,
18, 18, 19, 19 bits) with a total number of 128 bits that resist brute force attacks where the
hacker tries all possible combinations of the encryption key as specified by the Advanced
Encryption Standard (AES) [61]. The value Psum = Rsum + Gsum + Bsum represents the
input-dependent term, which enhances the resistance to different attacks, where Rsum,
Gsum, and Bsum are the sums of the red, green, and blue channels of the input image, respec-
tively. The initial system values, rotation angle, and fractional orders are computed from
the key, for example:

u0 = u f ix + K1 × 2−24 + mod(Psum, 10)/1000,
θ = θ f ix + K4 × 2−24 + mod(Psum, 10)/1000,
α = α f ix + K5 × 2−24 + mod(Psum, 10)/1000,

(18)

where the fixed parts are set to values within the ranges corresponding to chaotic behavior.
After discarding a few transient iterations, the outputs u, v, and w of the chaotic

generator are multiplied by a scaling factor of 109 to be suitable for conversion to an integer
value represented in 64 bits. The original color image is decomposed into three channels:
red, green, and blue. Each component is XORed with the least significant 8 bits of the
outputs of the chaotic generator, respectively, XORed together with a feedback element
from a channel of the previously encrypted pixel selected by the least-significant bits of its
channels. In the decryption scheme, all operations are reversed.
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Table 3. Encryption scheme and its performance analysis.

Encryption Scheme Histograms NIST

Test PV PP

1 3 0.979

2 3 0.958

3 3 1

4 3 0.917

5 3 1

6 3 1

7 3 1

8 3 0.989

9 3 1

Horz. corr. Vert. corr. Diag. corr. 10 3 1

5.5465 ×10−4 2.4273 ×10−4 3.8249 ×10−5 11 3 1

Key Sens. MSE (×103) Entropy 12 3 0.969

(∆K4) 8.9265 7.9998 13 3 0.99

DA
NPCR (%) UACI (%) 14 3 1

99.5607 33.4624 15 3 0.958
3: successful

The encrypted image shown in Table 3 is completely random and noisy. Table 3
validates the good performance of the encryption scheme using various perceptual and
statistical evaluation criteria. The histogram reveals a uniform intensity distribution com-
pared to the original nonuniform distribution of the plain image. The pixel correlation
coefficient ρ between two adjacent pixels (x(i, j) and y(i, j)) is given by:

ρ =
cov(x, y)√

(D(x))
√
(D(y))

, (19)

where cov(x, y) = 1
S

S
∑

i=1

(
xi − 1

S

S
∑

j=1
xj

)(
yi − 1

S

S
∑

j=1
yj

)
, D(x) = 1

S

S
∑

i=1

(
xi − 1

S

S
∑

j=1
xj

)2

,

S = M× N, and M and N are the height and width of the image, respectively. The cor-
relation coefficients between pixels of the encrypted image approach zero. More advanced
statistical tests are provided by the NIST statistical test suite [62], which is a statistical test
suite for PRNGs and cryptographic applications. The following tests are listed: frequency,
block frequency, cumulative sums, runs, longest run, rank, FFT, non-overlapping template,
overlapping template, universal, approximate entropy, random excursions, random excursions
variant, and serial and linear complexity, respectively. They are designed to examine the ran-
domness characteristics of a sequence of bits by evaluating the P-Value distribution (PV) and
the Proportion of Passing sequences (PP). The encrypted image successfully passes the tests.

The Mean-Squared Error (MSE) and entropy are used to ensure the randomness of the
decrypted image using the wrong key with the Least Significant Bit (LSB) change in each
sub-key and are given by:

MSE =
1

M× N

N

∑
i=1

M

∑
j=1

(P(i, j)− D(i, j))2, (20)

Entropy = −
28

∑
i=1

p(si) log2 p(si). (21)
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Here, P(i, j) is the original image pixel and D(i, j) is the wrongly decrypted image
pixel, while p(si) is the probability of symbol si. A high MSE value indicates how far
the wrongly decrypted image is from the plain image. The entropy value approaching
8 indicates the randomness and unpredictability of the encrypted image samples. An
advantage of the encryption system is that perturbation in any parameter affects the three
time series and, hence, the three channels, unlike encryption systems based on independent
discrete maps for each channel, which require a special key design to overcome their
limitation [63,64].

The scheme’s sensitivity to plain-text and immunity against differential attacks is
asserted through the Number of Pixel Change Rate (NPCR) and the Unified Average
Changing Intensity (UACI), given by:

NPCR =
1

N ×M

N

∑
i=1

M

∑
j=1

D(i, j) × 100, (22)

UACI =
1

M× N

N

∑
i=1

M

∑
j=1

∣∣∣∣C1(i, j)− C2(i, j)
255

∣∣∣∣ × 100, (23)

where D(i, j) =
{

1, C1(i, j) 6= C2(i, j)
0, C1(i, j) = C2(i, j)

, C1 is the ciphered pixel, and C2 is the ciphered

pixel corresponding to a slightly modified original image. The values of the NPCR and
UACI of the three channels are averaged over 20 trials in which one pixel in the original
image is changed and found to approach the ideal values 99.60% and 33.46%, respec-
tively [65–67].

5. FPGA Implementation
5.1. 2D Rotation Algorithm

The hardware implementation of rotating the fractional-order chaotic system in two
dimensions is discussed in this section. Figure 4 presents the proposed algorithm’s hard-
ware architecture, which is a generic algorithm for rotating in the x− z plane. First, the
block CORDIC is responsible for calculating and changing the values of sin(θ) and cos(θ)
in real-time. Therefore, the angle θ can be changed in real-time.

Figure 5 shows the hardware architecture of the CORDIC algorithm. To implement
the proposed system, three registers each of 32 bits are used to store the values of Cosine,
Sine, and Angle divided into 8 bits for the integer part and 24 bits for the fractional part.
Additionally, a lookup table is used to store the values of arctan(2−j), where j is a counter.

The input is initialized with the desired angle, and the value is stored in the regis-
ter Angle. Then, the Cosine and Sine registers are used to calculate the sine and cosine

initialized by
1
K

and 0, where K is a scaling factor equal to 1.64676.
The registers Cosine and Sine each clock cycle are shifted by the counter j, where j

counts from 0 to 14 every clock cycle. Then, by checking the sign of the Angle. register,
consequently, the ADD/SUB block in Figure 5 determines whether to add or subtract
according to (4). After looping on this architecture 15 times (the number of iterations
chosen to obtain the optimum results), the values of sin(θ) and cos(θ) will be ready in one
clock cycle. To compute the summation of the fractional-order chaotic system in (12), the
GL block is used. It is realized based on the previous work in [36], where the upper limit
in the summation terms is replaced by a limited window size (L) according to the short
memory principle.
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Figure 4. Fractional-order chaotic system 2D rotation: (a) fractional-order chaotic system after
applying 2D rotation, (b) chaotic system, (c,d) g(τ) architecture, and (e,f) t1 and t2 architectures.
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Figure 5. Architecture of the CORIDC algorithm.

Figure 4b shows the calculations of the three x, y, and z registers, which are used in
calculating the final system registers u, v, and w. t1 and t2 are presented in Figure 4e,f.
Furthermore, gθ(t1) and gθ(v) are presented in Figure 4c,d; both are comparators to the
value of θ, as shown in (10). After that, the three registers x, y, and z will be ready to be
used as illustrated in Figure 4a. This algorithm is a generic one; by changing only the
chaotic system Figure 4b, any chaotic system can be rotated in the x− z plane.
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5.2. Three-Dimensional Rotation Algorithm

Figure 6 presents the hardware design following Algorithm 1, where it is a generic
algorithm for rotating within the three planes x − z, x − y, and z − y, individually or
simultaneously, by changing only the equations of the chaotic attractor in Figure 6b. The
3D algorithm was verified for various systems to ensure its validity. This algorithm is
discussed through three steps, as illustrated in Figure 6.
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Figure 6. Fractional-order chaotic system 3D rotation: (a) first step, (b) second step, and (c) third step.

Figure 6a demonstrates the first step, which is the multiplication between matrices
representing the inverse of matrix R (17), then calculating the three main states of the chaotic
attractor present in Figure 6b, which shows the second step; the blocks gθ(x) and gθ(y) are
demonstrated in Figure 4c,d. Then, the last and third steps, which are the multiplication of
the matrices presented in (17), are realized as shown in Figure 6c, which models one of the
three composite dimensional rotations u. The CORDIC block and GL block were discussed
before in the 2D algorithm implementation.

6. Experimental Results and Discussion

The proposed algorithms were realized using the Verilog Hardware Description Lan-
guage (HDL) with software simulation Xilinx ISE 14.7 and FPGA Artix-7 XC7A100T for
hardware implementation. The software simulation Xilinx ISE results were verified by
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plotting the outputs on MATLAB after extracting them into .dat files. An analog-to-digital
converter, Pmod DAC 2, was used to display the chaotic attractor on an oscilloscope, where
it allows resolution up to 1 mV. It has two channels, each 12 bit, and takes the output
from the FPGA (12 bit) as an input and converts it to an analog signal to display on the
oscilloscope. DPO 4104 is the digital oscilloscope that displays the data waveform with the
four integrated analog input channels.

Table 4 also shows the experimental results on the oscilloscope, where the 2D rotation
is performed in the x− z plane with the angle equal to 90◦. The 3D rotation is performed
in the x− y plane with angles θ1 = θ2 = θ3 = 90◦. Table 4 shows the hardware resources
of the proposed algorithms, with system parameters u1 = 0.1, v1 = 0.1, w1 = 0.1, step
size h = 0.0625, α1 = 1, α2 = 0.9, α3 = 1, a = 0.81, and L = 20. The 2D rotation of the
fractional-order chaotic attractor can be realized using the 3D algorithm. However, it needs
more resources than the 2D algorithm.

The spatially rotating translational fractional-order multi-scroll grid chaotic system
and its implementation based on the compact GL and CORDIC algorithms can enrich the
fields of fractional chaotic dynamics and their applications. It is advantageous compared
to previous related works that proposed multi-scroll chaotic systems and their hardware
realizations. The rotation angle had a static value in [46], so a cascade of transformations
was applied to achieve a circular grid. The angle variable (register) was set to a specific
value during simulation (run)time and was not allowed to vary as time progressed. A
dynamic rotation angle was employed in [37] to obtain an increased number of scrolls with
a single transformation. However, neither work implemented the sine and cosine functions
and only considered the conventional integer-order domain. In the fractional-order domain,
the parameter values were still static. None of [37,46] assessed the performance of their
proposed systems in PRNG or encryption applications. Our paper combines the fractional-
order domain, multi-scroll grid attractors, and two-dimensional and three-dimensional
rotation and translation transformations to obtain a chaotic system with controllable com-
plex behavior. The proposed system was employed in an image encryption application that
successfully passed the performance tests. To enable complete control and dynamic spatial
rotation, it was necessary to have the real-time computation of the sine and cosine functions.
A CORDIC-based algorithm was successfully designed and implemented with compact GL,
yielding an FPGA realization that balances accuracy and efficiency. The proposed design is
generic for rotating any other chaotic system.

Table 4. FPGA summary and experimental results for the fractional-order multi-scroll attractor.

Logic Utilization 2D Rotation 3D Rotation

No. of LUT 1833 out of 63,400 (2.8912%) 5636 out of 63,400 (8.8896%)

No. of slice registers 1091 out of 126,800 (0.8604%) 1106 out of 12,6800 (0.8722%)

Clock speed (MHz) 25.685 16.274

Throughput (Mbit/sec) 821.92 520.768

Oscilloscope results

x− z projection x− y projection
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7. Conclusions

This paper presented the FPGA realization of a fractional-order multi-scroll 2× 2 chaotic
grid system, solved by the GL technique, dynamically translated and rotated in two and three
dimensions using the CORDIC algorithm. The rotation algorithms were implemented as
IP-cores to be applicable for any fractional-order chaotic system. The proposed algorithm im-
plementation showed good performance with one-cycle latency. Furthermore, the proposed
system provides enhanced complex multi-scroll grid attractor structures and controllability
through static and dynamic parameters. It was successfully employed as a PRNG in an image
encryption scheme with good performance. In addition, it can be used in other applications
such as secure multimedia communication and robotic motion control due to its amenability
to digital hardware realization. For future work, a three-dimensional rotating system can be
employed in a switched chaotic encryption scheme, as it allows more degrees of freedom
and different rotation axes.
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