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Abstract: In our present investigation, a subclass of starlike function S∗n−1,L connected with a domain
bounded by an epicycloid with n− 1 cusps was considered. The main work is to investigate some
coefficient inequalities, and second and third Hankel determinants for functions belonging to this
class. In particular, we calculate the sharp bounds of the third Hankel determinant for f ∈ S∗4L with
z f ′(z)

f (z) bounded by a four-leaf shaped domain under the unit disk D.
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1. Introduction

Assuming that the class of analytic functions defined in the domain of open unit disk
D = {z ∈ C : |z| < 1} be denoted by the notationH(D). Suppose that A is the subclass of
H(D) consisting of functions f with the series expansion of the form

f (z) = z +
∞

∑
k=2

akzk, z ∈ D. (1)

Let S denote the class of functions f ∈ A which are univalent in D. For two given
functions, g1, g2 ∈ H(D), we say that g1 is subordinated to g2, if there exists a regular
function v in D with the restrictions v(0) = 0 and |v(z)| < 1 such that

f (z) = g(v(z)). (2)

Although the function theory was developed in 1851, the coefficient hypothesis pro-
posed by Bieberbach [1] in 1916 made the field a hit as a potential new research field. De
Branges [2] proved this conjecture in 1985. Between 1916 and 1985, several of the world’s
most famous scholars attempted to validate or refute this conjecture. As a result, they in-
vestigated a number of sub-families of the class S of univalent functions that are associated
with various image domains. The most fundamental and significant subclasses of the set
S are the families of starlike and convex functions, represented by S∗ and K, respectively.
Ma and Minda [3] defined the general form of the family in 1992 as

S∗(φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z)

}
, (3)

where φ is a holomorphic function with φ′(0) > 0 and has a positive real part. In addition,
the function φ maps D onto a star-shaped region with respect to φ(0) = 1 and is symmetric
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about the real axis. Several sub-families of the set A have been explored as a special
instance of the class S∗(φ) in recent years. For example, If we select φ(z) = 1+Lz

1+Mz with

−1 ≤ M < L ≤ 1, then we obtain the class S∗[L, M] ≡ S∗
(

1+Lz
1+Mz

)
, which is defined as the

class of Janowski starlike functions investigated in [4]. By selecting φ(z) = 1 + sin z, the
class S∗(φ) leads to the family S∗sin, which was explored in [5] while S∗e ≡ S∗(ez) has been
produced in the article [6].

The Hankel determinantHq,m( f )(q, m ∈ N) for a function f ∈ S was given by Pom-
merenke [7,8] as

Hq,m( f ) :=

∣∣∣∣∣∣∣∣∣
am am+1 . . . am+q−1
am+1 am+2 . . . am+q
...

... . . .
...

am+q−1 am+q . . . am+2q−2

∣∣∣∣∣∣∣∣∣. (4)

After that, many researchers were drawn to the problem of finding the sharp bounds
of Hankel determinants in a given family of functions. For example, the sharp bound of
|H2,2( f )| for the class of convex and starlike functions were calculated by Janteng et al. [9,10].

The calculation of |H3,1( f )| is far more challenging compared with finding the bound
of |H2,2( f )|. Babalola [11] investigated the bounds of third order Hankel determinant for
the families of convex and starlike functions. Later, many authors [12–14] obtained their
results regarding |H3,1( f )| for certain sub-families of analytic and univalent functions. It
needs to be pointed out that there are relatively few results on the sharp bounds of the third
order Hankel determinant. In [15], Kowalczyk et al. and Lecko et al. [16] obtained a sharp
bound of third Hankel determinant given by

|H3,1( f )| ≤
{ 4

135 , f ∈ K,
1
9 , f ∈ S∗

(
1
2

)
,

(5)

where S∗
(

1
2

)
is the starlike function family of order 1

2 . In [17], the authors obtained the
sharp bounds of third Hankel determinant for the subclass of S∗sin and more sharp bounds
of Hankel determinant for some interesting subclasses of univalent can be found in [18,19].

A curve with the parametric form of ( f (t), g(t)) has a cusp at the point ( f (t0), g(t0))
if f ′(t0) and g′(t0) is zero but either f ′′(t0) or g′′(t0) is not equal to zero; see [20]. It is
noted that the special classes of S∗(φ) with the function has no cusp under the unit disk
have been widely studied, for example, by choosing φ to be equal to ez, 1 + sin z and 2

1+e−z ,
see [5,6,21]. In [22], Wani et al. studied the function of two cusps associated with a nephroid
domain. The lune domain [23] and pental shaped domain [24] also have two cusps at the
angles. In [25], Gandhi introduced a family of starlike functions connected with a three-leaf
shaped domain defined by

S∗3L :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 +

4
5

z +
1
5

z4, z ∈ D
}

. (6)

For function belonging to this class, it maps z f ′(z)
f (z) onto a domain containing three

cusps, one on the real axis and the other two at the angles π
3 and 5π

3 under the unit disk.
Later, a more general function ϕn−1,L : D→ C defined by

ϕn−1,L = 1 +
n

n + 1
z +

1
n + 1

zn, (z ∈ D) (7)

was introduced in [26] by Gandhi, Gupta, Nagpal, and Ravichandran. It is noted that, for
n ≥ 4, it maps the unit disk D onto a domain bounded by an epicycloid with n− 1 cusps,
where an epicycloid is a plane curve produced by tracing the path of a chosen point on the
circumference of a circle which rolls without slipping around a fixed circle, see [27].
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Using the function ϕn−1,L(z), the authors introduced a subclass of starlike functions
S∗n−1,L(n ≥ 4) given by

S∗n−1,L :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 +

n
n + 1

z +
1

n + 1
zn, z ∈ D

}
. (8)

For n = 4, we obtain the function class S∗3L connected with a three-leaf shaped domain
which has been studied in [28,29]. For n = 5, it reduces to

S∗4L :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 +

5
6

z +
1
6

z5, z ∈ D
}

. (9)

It is associated with a four-leaf shaped domain. If we take n→ ∞, it is observed that
the class S∗n−1,L reduces to S∗(1 + z). Gandhi et al. studied the sharp bounds for the first
fifth coefficients for functions belonging to S∗n−1,L and some interesting properties such
as various inclusion relations between the class S∗n−1,L and various subclasses of starlike
functions. Some sharp radius results are also established.

In the present article, we obtain the Fekete–Szegö inequality, upper bounds for second
and third Hankel determinants for the general class S∗n−1,L. In particular, we calculate the
sharp bounds of third Hankel determinants for the class S∗4L.

2. A Set of Lemmas

We say a function p ∈ P if and only if it has the series expansion

p(z) = 1 +
∞

∑
k=1

ckzk (z ∈ D) (10)

along with the <p(z) ≥ 0(z ∈ D).

Lemma 1 (see [30]). Assuming that p ∈ P with the series expansion of the form (10). Then, for
x, δ, ρ ∈ D, we have

2c2 = c2
1 +

(
4− c2

1

)
x, (11)

4c3 = c3
1 + 2c1x

(
4− c2

1

)
− x2c1

(
4− c2

1

)
+ 2
(

1− |x|2
)(

4− c2
1

)
δ, (12)

8c4 = c4
1 + x

[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
(4− c2

1)− 4(4− c2
1)(1− |x|

2)[
c1(x− 1)δ + xδ2 − (1− |δ|2)ρ

]
. (13)

Lemma 2 (see [31]). If p ∈ P has the series form (10), then

|cm+k − µcmck| ≤ 2 max(1, |2µ− 1|), (14)

|cm| ≤ 2 for m ≥ 1, (15)

|cm+k − µcmck| ≤ 2, 0 ≤ µ ≤ 1. (16)

Lemma 3 ([32]). If p ∈ P and has the form (10), then∣∣∣c3 − 2Bc1c2 + Dc3
1

∣∣∣ ≤ 2, (17)

if B ∈ [0, 1] and B(2B− 1) ≤ D ≤ B.

3. Coefficient Inequalities for the Class S∗n−1,L
We begin this section by finding the Fekete–Szegö inequality for the functions in the

class S∗n−1,L.



Fractal Fract. 2022, 6, 437 4 of 15

Theorem 1. Let f ∈ S∗n−1,L be of the form (1). Then, for λ ∈ C,

∣∣∣a3 − λa2
2

∣∣∣ ≤ n
2(n + 1)

max
{

1,
∣∣∣∣ (2λ− 1)n

n + 1

∣∣∣∣}.

This inequality is sharp.

Proof. Assuming that f ∈ S∗n−1,L. Then, from the definition, we see that there is Schwarz
function ω such that

z f ′(z)
f (z)

= 1 +
n

n + 1
ω(z) +

1
n + 1

[ω(z)]n = $(z).

Define

p(z) :=
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + · · · . (18)

It follows that

ω(z) =
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3

+

(
1
2

c4 −
1
2

c1c3 −
1
4

c2
2 −

1
16

c4
1 +

3
8

c2
1c2

)
z4 + · · · . (19)

Using (1), we obtain

z f ′(z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3

+
(

4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3

)
z4 + · · · . (20)

Utilizing the series expansion of (19) and some easy calculations, we obtain

$(z) = 1 +
n

2(n + 1)
c1z +

[
n

2(n + 1)
c2 −

n
4(n + 1)

c2
1

]
z2

+

[
n

2(n + 1)
c3 −

n
2(n + 1)

c1c2 +
n

8(n + 1)
c3

1

]
z3 + · · · . (21)

Now by comparing (20) and (21), we find that

a2 =
n

2(n + 1)
c1, (22)

a3 =
n

8(n + 1)2

[
2(n + 1)c2 − c2

1

]
, (23)

a4 =
n

48(n + 1)3

[
(n + 2)c3

1 − 2
(

n2 + 5n + 4
)

c1c2 + 8
(

n2 + 2n + 1
)

c3

]
, (24)

a5 =
n

384(n + 1)4

[
48(n + 1)3c4 − (n + 2)(2n + 3)c4

1 − 12(n + 2)(n + 1)2c2
2 (25)

−16(n + 3)(n + 1)2c1c3 + 4(n2 + 7n + 9)(n + 1)c2
1c2

]
.

From (22) and (23), we have∣∣∣a3 − λa2
2

∣∣∣ =
2n(n + 1)

8(n + 1)2

∣∣∣∣c2 −
[

2λn2 + n
2n(n + 1)

]
c2

1

∣∣∣∣,
=

n
4(n + 1)

∣∣∣∣c2 −
[

2λn + 1
2(n + 1)

]
c2

1

∣∣∣∣.
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Implementation of (14) and using triangle inequality, we obtain∣∣∣a3 − λa2
2

∣∣∣ ≤ n
2(n + 1)

max
{

1,
∣∣∣∣ (2λ− 1)n

n + 1

∣∣∣∣}. (26)

Equality is determined by using the function defined by

f2(z) = z exp

∫ z

0

(
ϕn−1,L(t)

2
)
− 1

t
dt

 = z +
n

2(n + 1)
z3 + · · · . (27)

For λ = 1, we obtain the following corollary:

Corollary 1. Let f ∈ S∗n−1,L. Then,∣∣∣a3 − a2
2

∣∣∣ ≤ n
2(n + 1)

. (28)

This inequality is sharp and can be obtained by using (27).

Theorem 2. Let f ∈ S∗n−1,L with the series expansion (1). Then,

|a4 − a2a3| ≤
n

3(n + 1)
. (29)

This result is sharp.

Proof. From (22)–(24), we obtain

|a4 − a2a3| =
1

24(n + 1)3

∣∣∣(2n2 + n
)

c3
1 −

(
4n3 + 8n2 + 4n

)
c1c2 +

(
4n3 + 8n2 + 4n

)
c3

∣∣∣.
After some easy calculations, it follows that

|a4 − a2a3| =
n

6(n + 1)

∣∣∣∣∣c3 − 2
(

1
2

)
c1c2 +

2n + 1

4(n + 1)2 c3
1

∣∣∣∣∣.
It is easy to be verified that

0 ≤ B =
1
2
≤ 1, B =

1
2
≤ D =

2n + 1

4(n + 1)2 ,

and
B(2B− 1) = 0 ≤ D =

2n + 1

4(n + 1)2 .

For an application of Lemma 3, we obtain

|a4 − a2a3| ≤
n

3(n + 1)
.

Equality is determined by using

f3(z) = z exp

∫ z

0

(
ϕn−1,L(t)

3
)
− 1

t
dt

 = z +
n

3(n + 1)
z4 + ...· (30)
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Theorem 3. If f ∈ S∗n−1,L is given by (1), then

|H2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ n2

4(n + 1)2 . (31)

This result is sharp.

Proof. From (22)–(24), we have

H2,2( f ) =
1

192(n + 1)4

∣∣∣(2n3 + n2
)

c4
1 −

(
4n4 + 8n3 + 4n2

)
c2

1c2 +
(

16n4 + 32n3 + 16n2
)

c1c3

−
(

12n4 + 24n3 + 12n2
)

c2
2

∣∣∣.
Using (11) and (12) to express c2 and c3 in terms of c1 and assuming that c1 = c, with

0 ≤ c ≤ 2, we obtain

|H2,2( f )| =
1

192(n + 1)4

∣∣∣∣−(3n4 + 6n3 + 3n2
)

x2
(

4− c2
)2

+
(

8n4 + 16n3 + 8n2
)

(
4− c2

)(
1− |x|2

)
cδ−

(
4n4 + 8n3 + 4n2

)
x2c2

(
4− c2

)
− c4n4

∣∣∣.
Let |x| = b with b ≤ 1. By invoking |δ| ≤ 1 and the triangle inequality, we see that

|H2,2( f )| ≤ 1

192(n + 1)4

{(
3n4 + 6n3 + 3n2

)
b2
(

4− c2
)2

+
(

8n4 + 16n3 + 8n2
)

(
4− c2

)(
1− b2

)
c +

(
4n4 + 8n3 + 4n2

)
b2c2

(
4− c2

)
+ c4n4

}
:= Ξ(c, b).

Since Ξ(c, b) is an increasing function with respect to b, Ξ(c, b) ≤ Ξ(c, 1). This leads to

|H2,2( f )| ≤ 1

192(n + 1)4

{(
3n4 + 6n3 + 3n2

)(
4− c2

)2
+ c4n4

+
(

4n4 + 8n3 + 4n2
)

c2
(

4− c2
)}

:= G(c).

It is clear that G(c) attains its maximum at c = 0. Thus, we obtain

|H2,2( f )| ≤ 48n4 + 96n3 + 48n2

192(n + 1)4 =
n2

4(n + 1)2 .

The equality holds for the extremal function given by

f2(z) = z exp

∫ z

0

(
ϕn−1,L(t)

2
)
− 1

t
dt

 = z +
n

2(n + 1)
z3 + · · · . (32)

This completes the proof of Theorem 3.

Corollary 2. If f ∈ S∗4L is given by (1), then

|H2,2( f )| ≤ 25
144

.

This inequality is sharp.
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Theorem 4. If f ∈ S∗n−1,L is given by (1), then

|H3,1( f )| ≤ n2(26n + 17)

72(n + 1)3 .

Proof. The third order Hankel determinant can be written as

|H3,1( f )| ≤ |a3|
∣∣∣a2a4 − a2

3

∣∣∣+ |a4||a4 − a2a3|+ |a3|
∣∣∣a3 − a2

2

∣∣∣.
Applying the bounds

|a3| ≤
n

2(n + 1)
, |a4| ≤

n
3(n + 1)

, |a5| ≤
n

4(n + 1)
,

which was proved by Gandhi et al. in [26] along with (28), (29) and (31), we obtained the
required result.

Corollary 3. If f ∈ S∗3L is given by (1), then

|H3,1( f )| ≤ 242
1125

≈ 0.215.

Corollary 4. If f ∈ S∗4L is given by (1), then

|H3,1( f )| ≤ 1225
5184

≈ 0.2363.

4. Sharp Bounds of Third Hankel Determinant for the Class S∗4L
It is seen that the upper bound of the third Hankel determinant for f ∈ S∗4L is less

than 1225
5184 from Corollary 4. However, this bound is not sharp. In this section, we aim to

give a sharp bound of third Hankel determinant for the class of S∗4L.

Theorem 5. Let f ∈ S∗4L. Then,

H2,3( f ) =
∣∣∣a3a5 − a2

4

∣∣∣ ≤ 25
324
≈ 0.0772. (33)

This result is sharp.

Proof. By using (23)–(25) for n = 5, along with c1 = c ∈ [0, 2], we have∣∣∣a3a5 − a2
4

∣∣∣ =
1

M0

(
A1c6 + A2c4c2 + A3c3c3 + A4c2c2

2

+A5c2c4 + A6c2c4 + A7cc2c3 + A8c3
2 + A9c2

3

)
, (34)

where A1 = 1925, A2 = −54,900, A3 = −57,600, A4 =550,800, A5 =9,331,200,
A6 = −777,600, A7 =2,073,600, A8 = −2,721,600, A9 = −8,294,400 and M0 =429,981,696.

Applying Lemma 1, it can be obtained that∣∣∣a3a5 − a2
4

∣∣∣ = 1
M0

(
τ1(c, x) + τ2(c, x)δ + τ3(c, x)δ2 + Ψ(c, x, δ)ρ

)
, (35)

where
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τ1(c, x) = −450
(

4− c2
)

x
[
18
(

4− c2
)

x
(
−8x2c2 − 50xc2 + 85c2 − 120x

)
−1080c4x2 + 1480c4x + 125c4 − 4320xc2

]
− 15,625c6,

τ2(c, x) = −14,400
(

4− c2
)(

1− |x|2
)

c
[(

18x2 + 90x
)(

4− c2
)
+ 135xc2 − 25c2

]
,

τ3(c, x) = −129,600
(

4− c2
)(

1− |x|2
)[(

2|x|2 + 16
)(

4− c2
)
+ 15x̄c2

]
,

Ψ(c, x, δ) = 388,800
(

4− c2
)(

1− |x|2
)(

1− |δ|2
)[

6
(

4− c2
)

x + 5c2
]
.

Now, by utilizing |δ| = y, |x| = x and taking |ρ| ≤ 1, we achieve∣∣∣a3a5 − a2
4

∣∣∣ ≤ 1
M0

(
|τ1(c, x)|+ |τ2(c, x)|y + |τ3(c, x)|y2 + |Φ(c, x, y)|

)
,

≤ 1
M0

Γ(c, x, y), (36)

where
Γ(c, x, y) = χ1(c, x) + χ2(c, x)y + χ3(c, x)y2 + χ4(c, x)

(
1− y2

)
(37)

and

χ1(c, x) = 450
(

4− c2
)

x
[
18
(

4− c2
)

x
(

8c2x2 + 50c2x + 120x + 85c2
)

+1080c4x2 + 1480c4x + 4320c2x + 125c4
]
+ 15,625c6,

χ2(c, x) = 14,400
(

4− c2
)(

1− x2
)

c
[(

18x2 + 90x
)(

4− c2
)
+ 135xc2 + 25c2

]
,

χ3(c, x) = 129,600
(

4− c2
)(

1− x2
)[(

2x2 + 16
)(

4− c2
)
+ 15xc2

]
,

χ4(c, x) = 388,800
(

4− c2
)(

1− x2
)[

6x
(

4− c2
)
+ 5c2

]
.

Let the closed cuboid be ∆ : [0, 2] × [0, 1] × [0, 1]. It can easily be observed that
Γ(0, 0, 1) = 33,177,600. Denote m0 = 3.31776× 107. Thus, we know

maxΓ(c, x, y) ≥ m0, (c, x, y) ∈ ∆. (38)

Now, we will prove that

maxΓ(c, x, y) = m0, (c, x, y) ∈ ∆. (39)

To do this, we first show that Γ(c, x, y) is sure to obtain its global maximum value with
y = 1.

For x = 1, Γ(c, x, y) is a function independent of y defined by

ς(c) = 450
(
−111c6 − 12,012c4 + 41,184c2 + 34,560

)
. (40)

It is not hard to calculate that ς(c) achieved its maximum value 1.5552× 107 at c0 = 0.
Thus, it is impossible for Γ to obtain its global maxima on the face of x = 1. On the face of
c = 2, it is seen that Γ(c, x, y) ≡ 106. Therefore, we can assume x ∈ [0, 1) and c ∈ [0, 2) in
the following discussion.

Let (c, x, y) ∈ [0, 2)× [0, 1)× (0, 1). Taking the partial derivative, it follows that

∂Γ
∂y

= 14,400
(

4− c2
)(

1− x2
){

18y(x− 1)
[
(2x− 16)

(
4− c2

)
+ 15c2

]
+108cx

[(
4− c2

)
+ c2(135x + 25)

]}
. (41)
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Assume ∂Γ
∂y = 0 yields

y =
c
[
108
(
4− c2)x + c2(135x + 25)

]
18(1− x)[(4− c2)(2x− 16) + 15c2]

. (42)

If y0 is a critical point inside ∆, then y0 ∈ (0, 1), which is possible only if

18
(

4− c2
)[

16 + 6cx− 18x + 2x2
]
+ c3(135x + 25) < 270(1− x)c2 (43)

and

c2 >
4(16− 2x)

31− 2x
. (44)

For the existence of critical points, we must now find solutions that satisfy both
inequality (43) and (44). Letting

v(x) =
4(16− 2x)

31− 2x
. (45)

Since v′(x) < 0 for x ∈ (0, 1), we see that v(x) is a decreasing function in (0, 1).
Hence, c2 > 56

29 . A simple exercise shows that (43) does not hold in this case for all values
of x ∈ [ 1

2 , 1). This means that there are no critical points of Γ in [0, 2)× [ 1
2 , 1)× (0, 1).

If there is a critical point (c̃, x̃, ỹ) with ỹ ∈ (0, 1) of Γ existing in ∆, it is clear that
x̃ < 1

2 and c̃2 > v(1/2) = 2. Now, we will prove that Γ(c̃, x̃, ỹ) < m0. In fact, for

(c, x, y) ∈
(√

2, 2
)
× (0, 1

2 )× (0, 1), by invoking x < 1
2 and 1− x2 < 1, it is not hard to be

seen that

χ1(c, x) ≤ χ1

(
c,

1
2

)
= φ1(c) (46)

and

χj(c, x) ≤ 4
3

χj

(
c,

1
2

)
:= φj(c), j = 2, 3, 4. (47)

Therefore, we have

Γ(c, x, y) ≤ φ1(c) + φ2(c)y + φ3(c)y2 + φ4(c)
(

1− y2
)

:= Υ(c, y). (48)

Obviously, it can be seen that

∂Υ
∂y

= φ2(c) + 2[φ3(c)− φ4(c)]y (49)

and
∂2Υ
∂y2 = 2[φ3(c)− φ4(c)] = 3,888,000(4− c2)(−c2 + 2). (50)

Since φ3(c)− φ4(c) ≤ 0 for c ∈ (
√

2, 2), we obtain that ∂2Υ
∂y2 ≤ 0 for y ∈ (0, 1) and thus

it follows that

∂Υ
∂y
≥ ∂Υ

∂y
|y=1 = 14,400(4− c2)(540 + 198c− 270c2 + 43c3) ≥ 0. (51)

Therefore, we have

Υ(c, y) ≤ Υ(c, 1) = φ1(c) + φ2(c) + φ3(c) := ι(c). (52)

It is calculated that ι(c) attains its maximum value 3.042114× 107 at c =
√

2. Thus,
we have

Γ(c, x, y) < m0, (c, x, y) ∈
(√

2, 2
)
× (0,

1
2
)× (0, 1). (53)
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Hence, Γ(c̃, x̃, ỹ) < m0. Thus, we conclude that Γ(c, x, y) < m0 for all y ∈ (0, 1).
Second, we will show that

Γ(c, x, 0) ≤ m0, (c, x) ∈ [0, 2)× [0, 1), (54)

which implies that we can only consider the global maximum value of Γ on the face of
y = 1.

It is noted that
Γ(c, x, 0) = χ1(c, x) + χ4(c, x) := Ω(c, x) (55)

For x ≤ 1
2 , we have

χ1(c, x) ≤ χ1

(
c,

1
2

)
(56)

and

χ4(c, x) ≤ 4
3

χ4

(
c,

1
2

)
. (57)

Thus, we know

Ω(c, x) ≤ χ1

(
c,

1
2

)
+

4
3

χ4

(
c,

1
2

)
:= $(c). (58)

A basic calculation shows that $(c) attains its maximum value 2.208844 × 107 at
c ≈ 1.109813. Now, we assume that x ∈

(
1
2 , 1
]
. As it is observed that

Γ(c, x, 1) = χ1(c, x) + χ2(c, x) + χ3(c, x), (59)

we see
Γ(c, x, 1)− Γ(c, x, 0) = χ2(c, x) + χ3(c, x)− χ4(c, x). (60)

A simple calculation shows that

χ3(c, x)− χ4(c, x) = 129,600
(

4− c2
)(

1− x2
)

U(c, x), (61)

where
U(c, x) =

(
4− c2

)(
2x2 − 18x + 16

)
+ 15c2(x− 1). (62)

Written in another form, we have

U(c, x) = 8
(

x2 − 9x + 8
)
+
(
−2x2 + 33x− 31

)
c2. (63)

As −2x2 + 33x− 31 ≤ 0, it follows that

U(c, x) ≥ 8
(

x2 − 9x + 8
)
≥ 0, x ∈

[
0,

1
2

)
. (64)

This implies that χ3(c, x) ≥ χ4(c, x). In virtue of χ2(c, x) ≥ 0, we obtain that χ2(c, x) +
χ3(c, x)− χ4(c, x) ≥ 0 for (c, x) ∈ [0, 2)×

(
1
2 , 1
)

. It yields to

Γ(c, x, 0) ≤ Γ(c, x, 1), (c, x) ∈ (1, 2]×
[

0,
1
2

)
. (65)

Therefore, we only need to find the global maximum value of Γ on the face of y = 1
if (c, x) ∈ [0, 2) ×

[
0, 1

2

)
. As it has been proved that Γ(c, x, y) ≤ m0 = Γ(0, 0, 1) for

(c, x) ∈ [0, 2)×
[

1
2 , 1
)

, it is enough to consider the points of (c, x, y) on the face of y = 1 to
find the global maxima of Γ in ∆.
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From the above discussion, we find that we can restrict on the face y = 1 to find the
maximum value of Γ(c, x, y), which is Γ(c, x, y) ≤ maxΓ(c, x, 1).

On y = 1, we see that

Γ(c, x, 1) = 15,625c6 + 450
(

4− c2
)[

800c3 +
(

125c4 + 4320c3 + 4320c2
)

x(
1480c4 − 800c3 + 4320c2

)
x2 + 1080

(
c2 − 4c− 4

)
c2x3

]
+450

(
4− c2

)2[
4608 + 288cx +

(
1530c2 + 576c− 4032

)
x2

+
(

900c2 − 288c + 2160
)

x3 + 144
(

c2 − 4c− 4
)

x4
]

:= Q(c, x).

First, we suppose that x ≤ 2
3 . As it is observed that c2 − 4c− 4 ≤ 0 with c ∈ [0, 2], we

deduce that

Q(c, x) ≤ 15,625c6 + 450
(

4− c2
)[

800c3 +
(

125c4 + 4320c3 + 4320c2
)

x

+
(

1480c4 − 800c3 + 4320c2
)

x2
]
+ 450

(
4− c2

)2
[4608

+288cx +
(

1530c2 + 576c− 4032
)

x2
]

+
(

900c2 − 288c + 2160
)

x3 := S(c, x),

In virtue of 900c2 − 288c + 2160 ≥ 0 and x ≤ 2
3 , we have(

900c2 − 288c + 2160
)

x3 ≤
(

600c2 − 96c + 1440
)

x2. (66)

Hence, we know

S(c, x) ≤ 15,625c6 + 450
(

4− c2
)[

800c3 +
(

125c4 + 4320c3 + 4320c2
)

x

+
(

1480c4 − 800c3 + 4320c2
)

x2
]
+ 450

(
4− c2

)2
[4608 + 288cx

+
(

2130c2 + 480c− 2592
)

x2
]

:= T(c, x).

For c ≤ 7
10 , it is clear that 1480c4 − 800c3 + 4320c2 ≥ 0 and 2130c2 + 480c− 2592 ≥ 0.

Using x ≤ 2
3 , x2 ≤ 4

9 and x2 ≤ 2
3 x, we have

T(c, x) ≤ 15,625c6 + 500
(

4− c2
)(

667c4 + 2992c3 + 4320c2
)

+450
(

4− c2
)2[

4608 +
(

1420c2 + 1248c− 1728
)

x
]

:= L(c, x).

In virtue of 1420c2 + 1248c− 1728 ≤ 0 for c ∈
[
0, 7

10
]
, we know

L(c, x) ≤ 15,625c6 + 500
(

4− c2
)(

667c4 + 2992c3 + 4320c2
)

+2,073,600
(

4− c2
)2

:= ϑ(c).

It is a simple excise to be verified that ϑ(c) attains its maximum value m0 = 3.31776×
107 at c = 0 for c ∈

[
0, 7

10
]
.

For c > 7
10 , it is easy to find that ∂T

∂x ≥ 0 with x ∈
[
0, 2

3
)
. Thus, obtain

T(c, x) ≤ T
(

c,
2
3

)
≤ 3.205172× 107 < m0. (67)
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Hence, we conclude that

Q(c, x) ≤ m0, (c, x) ∈ [0, 1)×
[

0,
2
3

]
. (68)

Second, we assume that x ∈
( 2

3 , 1
)
. In this case, we have x4 ≤ 2

3 x3. Since c2− 4c− 4 ≤
0 for c ∈ [0, 2], we obtain that

114
(

c2 − 4c− 4
)

x4 ≤ 96
(

c2 − 4c− 4
)

x3. (69)

It follows that

Q(c, x) ≤ 15,625c6 + 450
(

4− c2
)[

800c3 +
(

125c4 + 4320c3 + 4320c2
)

x(
1480c4 − 800c3 + 4320c2

)
x2 + 1080

(
c2 − 4c− 4

)
c2x3

]
+450

(
4− c2

)2[
4608 + 288cx +

(
1530c2 + 576c− 4032

)
x2

+
(

996c2 − 672c + 1776
)

x3
]

:= K(c, x).

By observing that c2 − 4c− 4 ≤ 0 and 996c2 − 672c + 1776 ≥ 0 with c ∈ [0, 2], it is
clear that

1080
(

c2 − 4c− 4
)

c2x3 ≤ 720
(

c2 − 4c− 4
)

c2x2 (70)

and (
996c2 − 672c + 1776

)
x3 ≤

(
996c2 − 672c + 1776

)
x2. (71)

This yields to

K(c, x) ≤ 15,625c6 + 450
(

4− c2
)[

800c3 +
(

125c4 + 4320c3 + 4320c2
)

x(
2200c4 − 3680c3 + 1440c2

)
x2
]
+ 450

(
4− c2

)2
[4608 + 288cx

+
(

2526c2 − 96c− 2256
)

x2
]

:= Π(c, x).

Let Π(c, x) = d1(c) + d2(c)x + d3(c)x2. For c < 9
10 , it is noted that d2(c) ≥ 0 and

d3(c) ≤ 0. Then, we have

Π(c, x) ≤ d1(c) + d2(c) +
4
9

d3(c) := ζ(c). (72)

A basic calculation shows that ζ(c) achieves its maximum value 3.214558× 107 at
c = 9

10 . If c > 9
10 , it is not hard to be checked that ∂K

∂x ≥ 0 for all x ∈
( 2

3 , 1
)
. Therefore, we

obtain that
K(c, x) ≤ K(c, 1) ≤ 3.215749× 107 < m0. (73)

Hence, we have

Q(c, x) < m0, (c, x) ∈ [0, 2)×
(

2
3

, 1
)

. (74)

Combining (68) and (74), we have

Γ(c, x, 1) = Q(c, x) ≤ m0, (c, x) ∈ [0, 2)× [0, 1). (75)

Since it is proved that the global maximum value of Γ is sure to be attained on the face
y = 1 of ∆, we have
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Γ(c, x, y) ≤ m0, (c, x) ∈ [0, 2)× [0, 1)× [0, 1]. (76)

In addition, it is shown that, for all the points on the faces of c = 2 and x = 1, Γ have a
maxima less than m0. Then, we can conclude that

Γ(c, x, y) ≤ m0, (c, x) ∈ [0, 2]× [0, 1]× [0, 1]. (77)

Using (36), we obtain that ∣∣∣a3a5 − a2
4

∣∣∣ ≤ m0

M0
=

25
324

. (78)

The equality is achieved by the function given by

f3(z) = z exp
(∫ z

0

(
5
6

t2 +
1
6

t14
)

dt
)
= z +

5
18

z4 + · · · . (79)

The proof of Theorem 5 is thus completed.

Now we will determine the bounds ofH3,1( f ) for f ∈ S∗4L.

Theorem 6. Let f be the form of (1) and f ∈ S∗4L, then

|H3,1( f )| ≤ 25
324
≈ 0.0772. (80)

This result is sharp.

Proof. By using (22)–(25) for n = 5, along with c1 = c, we have

H3,1( f ) = 2a2a3a4 − a2
2a5 − a3

3 + a3a5 − a2
4 (81)

=
1

M0

(
B1c6 + B2c4c2 + B3c3c3 + B4c2c2

2 + B5c2c4

+B6c2c4 + B7cc2c3 + B8c3
2 + B9c2

3

)
, (82)

where B1 =51,425, B2 = −801,900, B3 =2,534,400, B4 = −97,200, B5 =9,331,200,
B6 = −8,553,600, B7 =12,441,600, B8 =6,609,600 and B9 = −8,294,400. By using Lemma 1,
we deduce that

H3,1( f ) =
1

M0

(
v1(c, x) + v3(c, x)δ2 + v2(c, x)δ + Φ(c, x, δ)ρ

)
, (83)

where

v1(c, x) = −450
(

4− c2
)

x
[
18
(

4− c2
)

x
(
−8x2c2 + 50xc2 − 35c2 + 120x

)
+1080c4x2 − 680c4x− 125c4 + 4320xc2

]
− 15,625c6,

v2(c, x) = −14,400
(

4− c2
)(

1− |x|2
)

c
[(

18x2 − 90x
)(

4− c2
)
− 135xc2 − 25c2

]
,

v3(c, x) = −129,600
(

4− c2
)(

1− |x|2
)[(

2|x|2 + 16
)(

4− c2
)
− 15x̄c2

]
,

Φ(c, x, δ) = 388,800
(

4− c2
)(

1− |x|2
)(

1− |δ|2
)[

6
(

4− c2
)

x− 5c2
]
.

Now by utilizing |δ| = y, |x| = x and taking |ρ| ≤ 1, we achieve

|H3,1( f )| ≤ 1
M0

(
|v1(c, x)|+ |v2(c, x)|y + |v3(c, x)|y2 + |Φ(c, x, y)|

)
,

≤ 1
M0

H(c, x, y), (84)
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where
H(c, x, y) = h1(c, x) + h2(c, x)y + h3(c, x)y2 + h4(c, x)

(
1− y2

)
(85)

and

h1(c, x) = 450
(

4− c2
)

x
[
18
(

4− c2
)

x
(

8x2c2 + 50xc2 + 35c2 + 120x
)

+1080c4x2 + 680c4x + 125c4 + 4320xc2
]
+ 15,625c6,

h2(c, x) = 14,400
(

4− c2
)(

1− x2
)

c
[(

18x2 + 90x
)(

4− c2
)
+ 135xc2 + 25c2

]
,

h3(c, x) = 129,600
(

4− c2
)(

1− x2
)[(

2x2 + 16
)(

4− c2
)
+ 15xc2

]
,

h4(c, x) = 388,800
(

4− c2
)(

1− x2
)[

6
(

4− c2
)

x + 5c2
]
.

By observing that h1(c, x) ≤ χ1(c, x), h2(c, x) = χ2(c, x), h3(c, x) = χ3(c, x) and
h4(c, x) = χ4(c, x), we have

H(c, x, y) ≤ Γ(c, x, y) ≤ m0. (86)

It follows that
H3,1( f ) ≤ m0

M0
=

25
324

. (87)

If f ∈ S∗4L, then the equality is achieved by the function given by

f3(z) = z exp
(∫ z

0

(
5
6

t2 +
1
6

t14
)

dt
)
= z +

5
18

z4 + · · · . (88)

Theorem 6 is thus proved as asserted.

5. Conclusions

In the current article, we consider a subfamily of starlike function S∗n−1,L associated
with a domain bounded by an epicycloid with n− 1 cusps. For functions belonging to this
class, we obtain some coefficient inequalities and the upper bounds of second and third
Hankel determinants. In particular, for a four-leaf shaped domain, we obtain the sharp
bounds of the third Hankel determinant. For the general class, we conjecture that the sharp
upper bounds of |H3,1( f )| for f ∈ S∗n−1,L is n2

9(n+1)2 with equality achieved by the function

given in (30).
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