Editorial for Special Issue “Fractional Calculus Operators and the Mittag–Leffler Function”
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.; Alomari, A.; Saad, K.; Hamanah, W. Some Dynamical Models Involving Fractional-Order Derivatives with the Mittag-Leffler Type Kernels and Their Applications Based upon the Legendre Spectral Collocation Method. Fractal Fract. 2021, 5, 131. [Google Scholar] [CrossRef]
- Kondratiev, Y.; da Silva, J. Cesaro Limits for Fractional Dynamics. Fractal Fract. 2021, 5, 133. [Google Scholar] [CrossRef]
- Ryapolov, P.; Postnikov, E. Mittag–Leffler Function as an Approximant to the Concentrated Ferrofluid’s Magnetization Curve. Fractal Fract. 2021, 5, 147. [Google Scholar] [CrossRef]
- Choi, J.; Qureshi, M.; Bhat, A.; Majid, J. Reduction Formulas for Generalized Hypergeometric Series Associated with New Sequences and Applications. Fractal Fract. 2021, 5, 150. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S. Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions. Fractal Fract. 2021, 5, 195. [Google Scholar] [CrossRef]
- Sachan, D.; Jaloree, S.; Choi, J. Certain Recurrence Relations of Two Parametric Mittag-Leffler Function and Their Application in Fractional Calculus. Fractal Fract. 2021, 5, 215. [Google Scholar] [CrossRef]
- Farid, G.; Yussouf, M.; Nonlaopon, K. Fejér-Hadamard Type Inequalities for (α,h−m)−p-Convex Functions via Extended Generalized Fractional Integrals. Fractal Fract. 2021, 5, 253. [Google Scholar] [CrossRef]
- Ebaid, A.; Al-Jeaid, H. The Mittag-Leffler Functions for a Class of First-Order Fractional Initial Value Problems: Dual Solution via Riemann-Liouville Fractional Derivative. Fractal Fract. 2022, 6, 85. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mehmood, S.; Nonlaopon, K.; Yan, T. Generalized k—Fractional Integral Operators Associated with Pólya-Szegö and Chebyshev Types Inequalities. Fractal Fract. 2022, 6, 90. [Google Scholar] [CrossRef]
- Naheed, S.; Mubeen, S.; Rahman, G.; Khan, Z.; Nisar, K. Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function. Fractal Fract. 2022, 6, 93. [Google Scholar] [CrossRef]
- Aljohani, A.; Ebaid, A.; Algehyne, E.; Mahrous, Y.; Cattani, C.; Al-Jeaid, H. The Mittag-Leffler Function for Re-Evaluating the Chlorine Transport Model: Comparative Analysis. Fractal Fract. 2022, 6, 125. [Google Scholar] [CrossRef]
- Li, Y.; Samraiz, M.; Gul, A.; Vivas-Cortez, M.; Rahman, G. Hermite-Hadamard Fractional Integral Inequalities via Abel-Gontscharoff Green’s Function. Fractal Fract. 2022, 6, 126. [Google Scholar] [CrossRef]
- Kumar, D.; Ram, J.; Choi, J. Dirichlet Averages of Generalized Mittag-Leffler Type Function. Fractal Fract. 2022, 6, 297. [Google Scholar] [CrossRef]
- Andrić, M. Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function. Fractal Fract. 2022, 6, 301. [Google Scholar] [CrossRef]
- Zhang, Z. A New Fractional Poisson Process Governed by a Recursive Fractional Differential Equation. Fractal Fract. 2022, 6, 418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrić, M. Editorial for Special Issue “Fractional Calculus Operators and the Mittag–Leffler Function”. Fractal Fract. 2022, 6, 442. https://doi.org/10.3390/fractalfract6080442
Andrić M. Editorial for Special Issue “Fractional Calculus Operators and the Mittag–Leffler Function”. Fractal and Fractional. 2022; 6(8):442. https://doi.org/10.3390/fractalfract6080442
Chicago/Turabian StyleAndrić, Maja. 2022. "Editorial for Special Issue “Fractional Calculus Operators and the Mittag–Leffler Function”" Fractal and Fractional 6, no. 8: 442. https://doi.org/10.3390/fractalfract6080442
APA StyleAndrić, M. (2022). Editorial for Special Issue “Fractional Calculus Operators and the Mittag–Leffler Function”. Fractal and Fractional, 6(8), 442. https://doi.org/10.3390/fractalfract6080442