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Abstract: The main goal of this work is to optimize the chaotic behavior of a three-dimensional
chaotic-spherical-attractor-generating fractional-order system and compare the results with its novel
hyperchaotic counterpart. The fractional-order chaotic system is a smooth system perturbed with
a hyperbolic tangent function. There are two major contributions in this investigation. First, the
maximum Lyapunov exponent of the chaotic system was optimized by applying evolutionary
algorithms, which are meta-heuristics search algorithms, namely, the differential evolution, particle
swarm optimization, and invasive weed optimization. Each of the algorithms was populated with
one hundred individuals, the maximum generation was five hundred, and the total number of design
variables was eleven. The results show a massive increase of over 5000% in the value of the maximum
Lyapunov exponent, thereby leading to an increase in the chaotic behavior of the system. Second, a
hyperchaotic system of four dimensions was constructed from the inital chaotic system. The dynamics
of the optimized chaotic and the new hyperchaotic systems were analyzed using phase portraits,
time series, bifurcation diagrams, and Lyapunov exponent spectra. Finally, comparison between
the optimized chaotic systems and the hyperchaotic states shows an evidence of more complexity,
ergodicity, internal randomness, and unpredictability in the optimized systems than its hyperchaotic
counterpart according to the analysis of their information entropies and prediction times.

Keywords: chaos; evolutionary algorithms; fractional order; hyperchaos; optimization

1. Introduction

The subject of chaos and its application continues to attract research interests since it
was made popular by Edward Norton Lorenz in 1963. His work on deterministic chaos [1]
provided the foundation for chaos theory, which set the stage for enormous research
focusing on the behavior of nonlinear dynamical systems, which display high sensitivity
to initial values [2–5]. Basically, a nonlinear dynamical system has a state space, the
coordinates of which show the state at any given time. The future states of any nonlinear
dynamical system are crucial and they can be determined through a systematic approach.
Beginning from an initial value, the entire future states of a nonlinear dynamical system,
called trajectory or orbit, can be ascertained by iterating the system for a considerable
number of times with a small time step advancement in each iteration.

Nowadays, chaos is increasingly becoming a subject of multidisciplinary research.
Hence, it is being widely applied in security, communication, electronics, medicine, robotics,
and so on. The dynamics of chaotic systems is crucial to the unpredictability property [6],
and measuring the chaotic behavior is often done by computing the Lyapunov exponents
(LEs) [7–13]. The LE measures the specific average rate of convergence or divergence of
nearby orbits in the phase space. As a matter of fact, in a system that shows exponential
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orbital divergence, a very small difference in the initial conditions is magnified rapidly,
resulting to a loss of predictability. The number of state variables in a chaotic system
determines the number of LEs that it possesses. Hence, a 3-D chaotic system should have
three LEs, and the largest positive LE is often termed the maximum Lyapunov exponent
(MLE), which can vary under different parameter sets.

It is noted that the chaotic behavior of dynamical systems at their original states is
not always the optimum as shown in [14–16]. Fundamentally, the parameters of chaotic
dynamical systems (and the fractional order, in case of fractional-order systems) are set
to give the basic dynamics of the systems, and the MLE can increase or decrease under
different parameter and fractional-order values. Since a single system parameter can
produce different behaviors over a wide range of values based on the MLE; therefore, it
becomes a daunting challenge to search for a set of parameter values that give the best
result. The larger the MLE of a chaotic system, the more complex its chaotic behavior.
Hence, the need to maximize the MLE is imperative, for example, as seen in [6,14–16],
whereby the task was performed as an optimization problem using evolutionary algorithms
(EAs). It is believed that maximizing the MLE of a chaotic oscillator brings about better
performance in chaos-based secure communication system [17]. Therefore, the motivation
behind our work is the need to develop more complex and unpredictable chaotic systems
for cryptosystems, secure communication systems, and random number generators.

Optimization is a procedure which seeks to find the global optimal solutions to an
objective function or functions operating under constraints by systematically choosing
input values from within a defined set. The EA uses a technique that mimics the natural
biological evolution and social behavior of organisms to perform a stochastic search [18].
The choice of EA is justified in view of its advantages over classical search and optimization
methods. The most relevant to this investigation is that the applied EAs, namely, the
differential evolution (DE), the particle swarm optimization (PSO), and the invasive weed
optimization (IWO), require only the value of the objective function to work. In addition,
EAs are robust, simple, and flexible, and they make use of prior information in their
optimization process.

For example, the work in [14] showed the application of the EAs to optimize the
parameters of a saturated nonlinear function-based multi-scroll chaotic oscillator. The
metaheuristics applied were the DE and PSO. Using the same conditions for the two algo-
rithms, the four parameters of two to six scrolls SNLF chaotic oscillators were optimized,
with the two algorithms giving basically the same result. In [15], the authors applied the
DE and simple genetic algorithm to optimize the four parameters of a four-scroll SNLF
chaotic oscillator, with the DE being more suitable. Furthermore, in [16], the parameters
optimization was based on the nondominated sorting genetic algorithm (NSGA) applied to
two multiscroll chaotic oscillators of type SNLF and Chua’s diode, considering two to six
scrolls. The authors in [19] presented their work on optimizing the fractional-order Chen
system using the DE, PSO, and IWO. The optimized values were the three parameters and
the fractional order. In all the investigations cited above, it was shown that optimizing the
parameters of the chaotic systems led to an increase in the MLE and ultimately, an increase
in the unpredictability of the chaotic systems.

Hyperchaotic system is a class of dynamical system that has more than one positive
LE. Since Rössler discovered the first hyperchaotic systems [20] and with advancement
in the study of chaos theory, many high-dimensional hyperchaotic oscillators have been
proposed [21–23]. Moreover, hyperchaotic systems are being exploited in communication,
most importantly for encryption due to their higher unpredictability than regular chaotic
systems [24–27]. Like in 3-D chaotic systems, the hyperchaos generated via the state
variables are pseudo-random sequences having the qualities for ciphering data. Precisely,
the sequences are systematically applied for encoding, diffusion, and distortion of the
plaintext to induce enormous confusion in the final ciphertext.

In this investigation, a 3-D chaotic nonlinear system proposed in [28] was considered.
The system is capable of generating spherical attractors. The major work presented is the
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optimization of the spherical-attractor-generating fractional-order system by EA, which
is compared with a novel four-dimensional (4-D) hyperchaotic system modelled from the
3-D system. Therefore, the contributions arising from this investigation are highlighted
as follows:

(i) Optimizing the chaotic behavior of the 3-D spherical-attractor-generating system
by maximizing the MLE with the application of DE, PSO and IWO metaheuris-
tics. The results showed a significantly larger MLEs than the non-optimized system,
which is evident in the phase space portraits, time series and the entropy of the
optimized systems.

(ii) Construction of a hyperchaotic system of 4-D. The hyperchaotic system was created
with a state feedback controller added to the second equation of the original 3-D sys-
tem. The analyses of the hyperchaotic system revealed that it possesses rich dynamics,
exhibiting three different states, namely, hyperchaotic, chaotic, and periodic.

This article is organized into sections. Section 2 presents the 3-D chaotic dynamical
system considered in this work. Section 3 contains the modelling of a new 4-D hyperchaotic
system. In Section 4, we introduce the EA optimization algorithms applied to optimized
the 3-D system. The procedure for evaluating the LEs is presented in Section 5. The results
of this investigation, including the MLE optimization and comparison of the optimized
systems with the novel hyperchaotic system, are shown in Section 6. In Section 7, we
present the discussion of the results. Lastly, Section 8 contains the conclusion drawn from
this investigation.

2. Chaotic Dynamical System Considered

This section describes the model and dynamical behavior of the 3-D fractional-order
system that will be optimized in this investigation. The authors in [28] proposed a smooth,
quadratic, and autonomous chaotic system with a hyperbolic tangent function. The chaotic
system was constructed based on the Shilnikov criterion [29,30] and it can generate spherical
attractors. The constructed chaotic system is presented in the next system of Equation (1),
with its fractional-order counterpart given in (2).

ẋ = a1x− a2y + a3z + 2
(

1− e−200 sin y

1 + e−200 sin y

)
ẏ = −dxz + b + ex

ż = c1xy + c2yz + c3z + c

 (1)

Ḋq
∗x = a1x− a2y + a3z + 2

(
1− e−200 sin y

1 + e−200 sin y

)
Ḋq
∗y = −dxz + b + ex

Ḋq
∗z = c1xy + c2yz + c3z + c

 (2)

where ai 6= 0, ci 6= 0 (1 ≤ i ≤ 3), b 6= 0, c 6= 0, and d 6= 0 are all real parameters. The
original values of the parameters are a1 = −4.1, a2 = 1.2, a3 = 13.45, b = 0.161, c = 3.5031,
c1 = 2.76, c2 = 0.6, c3 = 13.13, d = 1.6, and e = 0. The numerical evidences of the system
have (x0, y0, z0) = (−0.04, −15.8, −1.4) as the initial condition. The chaotic system has one
equilibrium point, which is (xe, ye, ze) = (0.7217,−2.5698, 0.1394), while the eigenvalues at
this point are (λ1, λ2, λ3) = (−0.3150, 3.9016 + 6.1032i, 3.9016− 6.1032i). For the fractional-
order system (2), which is the focus of this investigation, the numerical integration was
performed using optimized predictor-corrector Adams–Bashforth–Moulton (ABM) scheme
with an integration step-size of h = 0.001. All numerical simulations were done in Matlab
version 2016b. The phase diagrams of System (2) from the data of the last 100 seconds, to
remove transient states, are presented in Figure 1.
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Figure 1. Phase diagrams with simulation time t = 2000 s for System (2).

Applying a long simulation time of t = 2000 s to system (2), chaos is kept in the spher-
ical attractor as seen in the phase portraits in Figure 1, in which we can see a permanent
chaotic behavior in the system. In the next section, System (2) is considered for generating
hyperchaos while Section 6 shows the optimization of its chaotic behavior via the MLE.
In Figure 2 are found the bifurcation diagrams with the peak of state x against varying
parameter e, together with its corresponding LE spectrum for System (2).
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Figure 2. Bifurcation diagrams (left) and Lyapunov exponent spectrum (right) for System (2).

3. Novel Hyperchaotic System

Hyperchaotic systems usually possess more complex dynamics than the traditional
chaotic systems. We intend to compare the 3-D fractional-order system, whose chaotic
behavior will be optimized through the MLE in this work, with a fractional-order hyper-
chaotic system, to see how the optimized systems measure up against the hyperchaotic
system. To achieve this, we present in this section a new 4-D non-linear system modelled
from System (1). Presently, one popular method for constructing hyperchaotic systems from
an existing 3-D chaotic system is to add state feedback controllers, linear or nonlinear, to the
system. In general, the following two conditions must be satisfied to generate hyperchaos
from a system: (1) The autonomous system should have a phase space of at least four
dimensions, meaning that the number of the coupled first-order autonomous ordinary
differential equations should be a minimum of four. (2) The coupled equations should
have at least two terms responsible for instability, and a minimum of one should have
a nonlinear function. In this work, we created the hyperchaotic system by including a
periodic driving signal in the second equation of System (1), as shown in the next equation:

ẋ = a1x− a2y + a3z + 2
(

1− e−200 sin y

1 + e−200 sin y

)
ẏ = −dxz + b + ex + r sin(cos (w))

ż = c1xy + c2yz + c3z + c

ẇ = g


(3)
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where the values of ai, ci(1 ≤ i ≤ 3), d, b, c, and e remain the same as in the chaotic version,
and r and g are parameters determining the dynamics of the hyperchaotic system. Hence,
the controller w transformed the System (1) into a four-order autonomous system having
four LEs. The fractional-order counterpart is modelled using the Caputo’s derivative
as follows:

Ḋq
∗x = a1x− a2y + a3z + 2

(
1− e−200 sin y

1 + e−200 sin y

)
Ḋq
∗y = −dxz + b + ex + r sin(cos (w))

Ḋq
∗z = c1xy + c2yz + c3z + c

Ḋq
∗w = g


(4)

We observed that the hyperchaotic system is invariant with respect to the following
transformation:

(x, y, z, w)→ (x, y, z,−w) (5)

The flow means that the hyperchaotic system is symmetric with respect to x, y, and z
planes. Therefore, we note that if (x, y, z, w) is a solution in the context that g is definite,
there is a twin solution (x, y, z,−w) when g is negative. Furthermore, we define the vector
field on the right-hand side of System (3) as follows:

f (x) =


f1(x)
f2(y)
f3(z)
f4(w)

 =


a1x− a2y + a3z + 2

(
1−e−200 sin y

1+e−200 sin y

)
−dxz + b + ex + r sin (cos (w))

c1xy + c2yz + c3z + c
g

 (6)

Consequently, the divergence of the vector field (6) is

∇ ·V ∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
+

∂ f4

∂w
= a1 + yc2 + c3, (7)

and the hyperchaotic system is dissipative if (a1 + yc2 + c3) < 0. Therefore,

dV(t) = V(0)e(a1+yc2+c3)t. (8)

The volume of the hyperchaotic system reduces to zero as t tends to infinity at an
exponential rate of a1 + yc2 + c3.

To obtain the equilibrium points of the novel hyperchaotic system, we equate each of
the system’s equations to zero and evalute them to find the values of x, y, z, and w. Hence,
at a1 = −4.1, a2 = 1.2, a3 = 13.45, b = 0.161, c = 3.5031, c1 = 2.76, c2 = 0.6, c3 = 13.13,
d = 1.6, e = 0, and r = 15, the proposed hyperchaotic system has one equilibrium point:

(xe, ye, ze, we) = (−0.3874, 0,−0.2668, 1.5705) (9)

The eigenvalues at the equilibrium point P(xe, ye, ze, we) were obtained by evaluating
the characteristic equation

det(JP − λI) = 0, (10)

where JP is the Jacobian matrix for the equilibrium point P(xe, ye, ze, we), I is an identity
matrix of the same size as JP, and λ is the eigenvalue. After some mathematical steps, the
resulting characteristic equation is:

λ4 − 9.03λ3 − 53.833λ2 = 0 (11)
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Then, the eigenvalues are λ1 = 0, λ2 = 0, λ3 = −4.1, and λ4 = 13.13. Hence,
the equilibrium point P(xe, ye, ze, we) is unstable, which is an indication of chaos in the
proposed hyperchaotic system.

4. Optimization Algorithms

Enhancing the chaotic behavior of the fractional-order system (2) by optimization
involves applying metaheuristics to explore the huge search space for the new system
parameters and fractional-order that will increase the value of the MLE. In this work, three
evolutionary algorithms, namely DE, PSO, and IWO, were applied to maximize the MLE
of the chaotic system. Generally, the choice of DE, PSO, and IWO relies in the fact that they
need only the value of the objective function to work, and it is not necessary to get any
information about the derivative of the function.

4.1. Differential Evolution

The DE [31,32] is one of the most popular evolutionary algorithms that has been widely
applied in systems optimization, especially chaotic systems. Some of the advantages of this
algorithm are that it uses a few control parameters and has the ability to find the true global
optimization of a multimodal search space, regardless of the initial parameter values. The
DE uses a set of solution vectors N called individuals as a population in each generation G.
Basically, the population of randomly created solution vectors is successfully improved by
applying genetic operators in the following order: mutation, crossover and selection. There
exists several variants of DE but the one used in this investigation is rand/1/bin, where the
base vector at mutation are randomly selected, only one vector difference is used to create
the mutant vector, and binomial recombination is used during crossover. The following
equations in (12)–(14) represent the three genetic operators,

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G), (12)

where Vi,G is the mutant vector, random indexes r1, r2, r3 ε {1, 2, ·, N}, and r1 6= r2 6=
r3 6= i, while F ∈ [0, 1] is the scaling factor controlling the amplification of the differential
variation (Xr2,G − Xr3,G).

Ui,j,G =

{
Vi,G, if (rand ≤ pCR or j = jrand).
Xi,G, otherwise.

(13)

whereby Ui,j,G is the trial vector, j = [1, 2, . . . , D], rand is a random number within [0, 1],
pCR ε [0 1] is the crossover probability, jrand ε [1, 2, . . . , D], and D represents the number of
decision variables.

Xi,G+1 =

{
Ui,G, if f (Ui,G > f (Xi,G)).
Xi,G, otherwise.

(14)

whereby Xi,G+1 represents the admitted vector into the next generation, while Ui,G and
Xi,G are the trial vector and parent vector, respectively.

4.2. Particle Swarm Optimization

Just like the DE, the PSO is another popularly applied algorithm for systems optimiza-
tion. Some of the benefits of the PSO are that it is a swarm intelligent algorithm that is based
on a simple concept, and it is robust to control parameters and easy to implement. The
PSO was inspired by the social behavior of birds and fish to solve optimization problems
in a cooperative and intelligent framework using a simple mathematical model [33]. It
uses a set of vectors N, which are potential solutions called particles, as a population for
each generation G. The particles move through the problem space while following the
latest optimal particles. In the problem space, each particle preserves its coordinates, which
are linked to the best solution (fitness) it has ever achieved. The stored fitness value is
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often called pbest. In the event that a particle has the entire population as its topological
neighbours, then the best value is a global best, which is often called gbest. Moreover, the
velocity of each particle is changed at each time step toward its pbest and the best location,
and it is weighted by a random term. However, separate random numbers are generated
for acceleration toward pbest and the best location. The core of the PSO is the velocity and
position update, represented by the next two models, respectively.

vj,k+1 = wkvj,k + c1r1(Pbj,k − xj,k) + c2r2(Pg,k − xj,k), (15)

xj,k+1 = xj,k + vj,k+1, (16)

where k denotes the current generation, w is the inertia weight or constriction coefficient, c1
and c2 represent the cognitive and social coefficients, r1 and r2 are uniformly distributed
random numbers in [0, 1], Pbj is the personal best of a particle (coordinates of the best
solution achieved so far by a particular particle), and Pg represents the global best, which is
the overall best solution obtained in the swarm at generation k.

4.3. Invasive Weed Optimization

The IWO has similar advantages as the PSO in that it is also a swarm intelligent
algorithm with a simple concept, easy to implement, and robust to control parameters as
well. It is a stochastic global optimization method inspired by the spreading and colonizing
strategy of weeds [34]. The core of the IWO algorithm is reproduction and spatial dispersal
of seeds. At the reproduction stage, seeds grow to become flowering plants and produce
seeds depending on their fitness obtained from the objective function. Next is the spatial
dispersal stage, during which the seeds produced are randomly dispersed over the search
space. These operations are represented in the following models in (17) and (18).

Ns =
fi − fwst

fbst − fwst
(Smax − Smin) + Smin, (17)

where fi is the fitness of the i-th weed, fwst and fbst are the worst and the best fitness in
the weed population, respectively. Smin and Smax represent the minimum and maximum
number of seeds, respectively.

σitr =

(
itrmax − itr

itrmax

n)
(σin − σf n) + σf n, (18)

where itrmax denotes the maximum iteration (generation), itr represents the current iter-
ation, n is the nonlinear modulation index, and σin and σf n are the previously defined
standard deviations.

5. Evaluation of the Lyapunov Exponents

The numerical evaluation of the LEs was by Benettin–Wolf algorithm, which employs
the Continuous Gram–Schmidt orthogonalization (CGSO) procedure as seen in [35]. The
procedure for evaluating the n Lyapunov exponents of an n-dimensional dynamical system
requires finding the evolution of small perturbation to an orbit over a long time. The
evaluation of the LEs is summarized in the following steps:

(i) A variational system Ḋq
∗y(t) = J f (x)y(t) of the original dynamical system Ḋq

∗x = f (x)
is formed using the n× n Jacobian matrix J of f .

(ii) The original dynamical system is given the initial condition X0 = (−0.04,−15.8,−1.4),
while the initial condition of the variational system is set to I, an n× n identity matrix.

(iii) The integration of the original and variational systems are done until the orthonor-
malization period K is reached.

(iv) The variational system is then orthonormalized using the Continuous Gram–Schmidt
orthogonalization.
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(v) Next, the algorithm obtains and gathers in time the logarithm of the norm of each
Lyapunov vector in the variational system.

(vi) The next integration begins with the new orthonormalized vectors as the
initial conditions.

(vii) Steps (iii) to (vi) are repeated until the integration period T is reached.
(viii) The n Lyapunov exponents are obtained by evaluating:

Lm ≈
1
T

K

∑
i=1

ln ‖ ωm ‖, (19)

where m = 1, 2, . . . , n, T is the integration period, K is the orthonormalization pe-
riod, and ωi

n are the orthonormal vectors. The largest of L1, L2, . . . , Ln, is called the
maximum Lyapunov exponent.

To maximize the MLE in this work, the optimization algorithms have to compute
the Lyapunov exponents each time a likely optimal solution parameters are found, which
might have a major impact on the running time.

6. Results

We present in this section the results of optimizing the chaotic behavior of the
fractional-order system (2) by the evolutionary algorithms introduced in Section 4. In
addition, analyses of the dynamic behavior of the hyperchaotic system (4) are presented
and both the optimized systems and hyperchaotic system are compared.

6.1. MLE Optimization

The DE, PSO, and IWO algorithms were given the same conditions: randomly popu-
lated with 100 individuals, maximum generation of 500, and five individual optimization
runs were performed. We considered two factors in choosing the search spaces for the
design variables. First, we decided that the values of the parameters should not be dis-
crete but continuous, real numbers of four decimal places in our work, that will vary
continuously with no gaps within a specified range. Second, defining the lower and
upper bounds of the search space for each design variable was based on the paramet-
ric studies through initial bifurcation analysis with each of the parameters. In doing
this, we ensured that the search spaces are not overly restricted. The following are the
search spaces of the parameters: −6.0000 ≤ a1 ≤ 0.0000, −10.0000 ≤ a2 ≤ 30.0000,
0.0000 ≤ a3 ≤ 50.0000, 0.0000 ≤ b ≤ 2.0000, 0.0000 ≤ c ≤ 15.0000, 0.0000 ≤ c1 ≤ 20.0000,
0.0000 ≤ c2 ≤ 10.0000, 0.0000 ≤ c3 ≤ 20.0000, 0.0000 ≤ d ≤ 5.0000, −12.0000 ≤ e ≤ 2.0000,
and 0.0001 < q ≤ 1.0000. The specifications of the computer used for the optimization and
the specific parameters of each algorithm are given next:

(i) Computer configuration: Intel(R) Core(TM) i7-4790, 3.60 GHz; RAM: 12 GB; Operating
System: Windows 10;

(ii) DE: Crossover probability = 0.3;
(iii) PSO: Constriction coefficient K = 2

φ−2+
√

φ2−4φ
; φ = c1 + c2; c1 = 2.05; c2 = 2.05;

Damping ratio = 1;
(iv) IWO: Minimum number of seeds = 0; Maximum number of seeds = 5; Initial value of

standard deviation = 0.75; Variance reduction exponent = 4; Final value of standard
deviation = 1× 10−6.

In this optimization, the best results, in terms of the MLEs from the optimized param-
eters and fractional order, were obtained in 500 generations for all the three algorithms.
Therefore, any mention of the DE, PSO, and IWO-optimized fractional-order systems in
the rest of this paper refers to the best results obtained in the respective algorithms. The
optimized MLEs in the five runs for each algorithm were higher than the non-optimized
systems, with increase in the MLE having a corresponding increase in the chaotic behavior.
In Table 1, we present the global optimized parameters for the highest MLE in the five runs
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from each algorithm. As seen in the Table, the MLEs in all the cases are higher than the
non-optimized system. The effectiveness of the applied EAs was noticed in the variance
among the MLEs in the five runs, as the maximum variation was approximately ±0.05.

Table 1. Optimization results for fractional-order chaotic system (2), showing the DE, PSO, and
IWO-optimized systems against the non-optimized system.

Parameter MLE Equilibrium Point Eigenvalue Information Instability
(λ1, λ2, λ3) Entropy Condition

Non-optimized Spherical
a1 = −4.1000, a2 = 1.2000, a3 = 13.4500, 0.0183 [0.7217, {−0.3150, 0.9772 q > 0.6378

b = 0.1610, c = 3.5031, c1 = 2.7600, −2.5698, 3.9016 + 6.1032i,
c2 = 0.6000, c3 = 13.1300, d = 1.6000, 0.1394] 3.9016− 6.1032i)}

e = 0.0000, q = 0.9999

DE-optimized Spherical
a1 = −4.9206, a2 = 14.5710, a3 = 18.0771, 1.0808 [5.1098, {−5.9584, 6.93343 q > 0.9150

b = 1.3100, c = 4.4500, c1 = 19.9999, −0.0798, 3.6694 + 27.3886i,
c2 = 4.9999, c3 = 6.7000, d = 1.4089, 1.3264] 3.6694− 27.3886i}

e = 1.6126, q = 0.9417

PSO-optimized Spherical
a1 = −4.9500, a2 = 17.1430, a3 = 18.0771, 1.0775 [5.1000, {−6.0344, 6.8620 q > 0.9145

b = 1.3100, c = 4.4500, c1 = 19.9999, −0.0800, 3.6969 + 27.3943i,
c2 = 5.0000, c3 = 6.7093, d = 1.4156, 1.3206] 3.6969− 27.3943i}

e = 1.6126, q = 0.9408

IWO-optimized Spherical
a1 = −4.9589, a2 = 27.4290, a3 = 18.0771, 1.0662 [5.2151, {−6.1480, 6.5619 q > 0.9150

b = 1.2720, c = 4.4900, c1 = 19.9999, −0.0785, 3.7533 + 28.0013i,
c2 = 5.0000, c3 = 6.7100, d = 1.4156, 1.3114] 3.7533− 28.0013i}

e = 1.6126, q = 0.9408

Furthermore, Table 1 shows the equilibrium points, eigenvalues, information entropies,
and the instability analysis results. The instability analysis, examined from the eigenvalues,
is determined according to the instability theorem in [19]. To get the equilibrium point, we
equate each of the three equations of the chaotic system to zero and by simplification and
substitutions, we arrived at the following equations to compute z, y, and x, respectively:

z =
ex + b

dx
, (20)

y =
a1dx2 + a3ex + a3b

a2dx
, (21)

and
(a1c1d2)x4 + (a3c1de + a1c2de)x3 + (a3bc1d + a3c2e2

+a1bc2d + a2c3de)x2 + (2a3bc2e + a2bc3d)x + c = 0,
(22)

where (22) gives one real root for x. Hence, the chaotic system has one equilibrium point,
denoted by P(xe, ye, ze). To compute the eigenvalues, the characteristic polynomial of the
Jacobian matrix at the equilibrium point P(xe, ye, ze) is in the form:

−λ3 + p1λ2 + p2λ + p3 = 0, (23)

where p1 = 1.3804, p2 = −719.8723 and p3 = −4549.8224 for DE-optimized system,
p1 = 1.3593, p2 = −719.5002 and p3 = −4611.0113 for PSO-optimized system, and
p1 = 1.3586, p2 = −752.0069 and p3 = −4907.0811 for IWO-optimized system. The
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information entropy H, which describes the degree of uncertainty in an information source,
is defined as:

H(s) = −
n

∑
n=1

P(si)log2P(si), (24)

where s is the information source and P(si) = Pr(s = si) is the probability of the ith value
of s.

We note that the LEs of a chaotic system can change if there is a slight change in the
value of a parameter, the fractional order, or initial condition. For example, the MLE of
the non-optimized fractional-order system computed in this work when q = 0.9999 is
almost the same as that of the integer order when q = 1 using the same parameters. The
slight difference of 0.0024 is caused by the change in the q value. In Figure 3, the evolution
of the phase diagrams in 3-D planes obtained from the MLEs of the DE-optimized, PSO-
optimized, and IWO-optimized systems are presented, simulated with a time-step h = 0.001
and integration period T = 2000 s. The increased chaotic behavior in the optimized systems
can be observed in the phase diagrams. Moreover, the improved chaoticity in the optimized
systems can also be observed in the time series presented in Figure 4. It is noted that the
usual spherical shape seen in the non-optimized system has been greatly altered. This is
due to the increased chaos in the optimized systems. Furthermore, the dynamics of the
non-optimized and optimized systems was examined by plotting their bifurcation diagrams
with the peak of state x against varying parameters a1, a2, c1, d, and fractional-order q, as
shown in Figures 5–8. The LE spectra have a good agreement with the bifurcation diagrams.

The maximization of the MLE in this investigation further shows the effectiveness of
the EAs as global optimization algorithm [6,7,15,16,19,36,37]. Table 1 reveals that the three
algorithms obtained system parameter and fractional order values that produced better
MLEs than the non-optimized fractional-order system. The higher MLEs obtained is an
indication that the optimized systems have more unpredictability than the non-optimized
system.

(a) (b)

(c)
Figure 3. Phase diagrams of the optimized fractional-order chaotic system (2) as presented in Table 1:
(a) DE-optimized; (b) PSO-optimized; (c) IWO-optimized.
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Figure 4. Time series of states x, y and z of the non-optimized and optimized fractional-order
chaotic systems presented in Table 1: (a) non-optimized; (b) DE-optimized; (c) PSO-optimized;
(d) IWO-optimized.
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Figure 5. Bifurcation diagrams and Lyapunov exponents spectra of the optimized fractional-order
system (2), using parameters a1, a2, c1, d and fractional-order q, for the non-optimized system.



Fractal Fract. 2022, 6, 448 13 of 22

-15 -10 -5 0 5

Parameter a
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

L
E

s

-30 -20 -10 0 10 20 30

Parameter a
2

-2

-1

0

1

2

L
E

s

0 5 10 15 20

Parameter c
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

L
E

s

0 1 2 3 4 5

Parameter d

-2

-1.5

-1

-0.5

0

0.5

1

1.5

L
E

s

0 0.2 0.4 0.6 0.8 1

Fractional order q

-2

-1.5

-1

-0.5

0

0.5

1

1.5

L
E

s

Figure 6. Bifurcation diagrams and Lyapunov exponents spectra of the optimized fractional-order
system (2), using parameters a1, a2, c1, d and fractional-order q, for the DE-optimized system.
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Figure 7. Bifurcation diagrams and Lyapunov exponents spectra of the optimized fractional-order
system (2), using parameters a1, a2, c1, d and fractional-order q, for the PSO-optimized system.
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Figure 8. Bifurcation diagrams and Lyapunov exponents spectra of the optimized fractional-order
system (2), using parameters a1, a2, c1, d and fractional-order q, for the IWO-optimized system.
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6.2. Optimized Systems against Hyperchaotic System

In this segment, we compare the optimized systems with the new hyperchaotic
fractional-order system (4). We begin by examining the dynamics of the hyperchaotic sys-
tem, considering the bifurcation diagram, LE spectrum, and the phase portraits. The initial
value for simulating the hyperchaotic system is (x0, y0, z0, w0) = (−0.04,−15.8,−1.4,−0.12),
integration step time h = 0.001, and integration time interval I = [0, 1000]. Unlike the
parameters of the original 3-D system, parameters r and g are responsible for the dynamic
behavior of the new hyperchaotic system. Hence, they were selected as the bifurcation
parameters to observe their effect on the new system.

For the purpose of identification, L1, L2, L3, and L4 denote the four LEs of System (4).
The peak of state x and the LEs were separately plotted against the varied value of parame-
ter −10 ≤ r ≤ 20 and −10 ≤ g ≤ 20 to generate bifurcation diagrams and LE spectra. In
Figure 9a is found the bifurcation diagram and the corresponding LE spectrum when g = 5
and r varies. In addition, Figure 9b contains the bifurcation diagram and LE spectrum,
respectively, when r = 15 and g varies, while Table 2 shows selected LEs. It is observed
in the table that the system exhibits three different behaviors with changing values of
parameter r and g, namely hyperchaotic, chaotic, and periodic. The LE spectra revealed
that the hyperchaotic state has two positive, one negative, and one zero LEs with L1, L2 > 0,
L3 = 0 and L4 < 0, chaotic state has one positive, two negative, and one zero LEs with
L1 > 0, L2, L4 < 0 and L3 = 0, and the periodic state has three negative and one zero LEs
with L1, L2, L4 < 0 and L3 = 0.
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(b)
Figure 9. Dynamics of fractional-order hyperchaotic system (4) showing the bifurcation diagram
(left) and Lyapunov exponent spectrum (right), when (a) g = 5 and r varies; (b) r = 15 and g varies.
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Table 2. Selected Lyapunov exponents for the hyperchaotic fractional-order system of (4) when
(i) g = 5 was fixed and r varies, and (ii) when r = 15 was fixed and g varies.

Parameter g Parameter r L1 L2 L3 L4 Dynamical State

5.00 −1.50 −0.0016 −0.0085 0 −0.0118 Periodic
5.00 −9.25 0.0536 −0.0232 0 −0.0727 Chaotic
5.00 −3.25 0.0756 −0.0391 0 −0.0631 Chaotic
5.00 15.00 0.0375 0.0307 0 −0.1507 Hyperchaotic
5.00 15.25 0.0452 0.0438 0 −0.2146 Hyperchaotic
5.00 15.50 0.0206 0.0200 0 −0.1071 Hyperchaotic
5.00 17.00 −0.0091 −0.0121 0 −0.0232 Periodic

−10.00 15.00 0.0935 −0.0312 0 −0.0701 Chaotic
−5.00 15.00 0.0354 0.0316 0 −0.1549 Hyperchaotic
−4.75 15.00 −0.0500 −0.0500 0 −0.3764 Periodic
1.75 15.00 0.0484 0.0124 0 −0.3185 Hyperchaotic
5.00 15.00 0.0360 0.0344 0 −0.1518 Hyperchaotic

12.50 15.00 −0.0128 −0.4866 0 −0.4861 Periodic
19.25 15.00 0.0433 −0.0321 0 −0.0608 Chaotic

The Kolmogorov–Sinai entropy hks, which is the sum of the positive LEs, was com-
puted. The highest hks of the hyperchaotic state when r varies, obtained at r = 15.25, is
shown in (25), while for when g varies, obtained at g = 5, the highest hks is in (26).

hks = L1 + L2 = 0.0452 + 0.0438 = 0.0890 (25)

hks = L1 + L2 = 0.0360 + 0.0344 = 0.0704 (26)

To further validate the dynamics of the new hyperchaotic system, the geometric illus-
tration of the trajectories in the phase plane were plotted and projected on both 3-D and 2-D
planes using the data of the final 100 s to remove transient states. The various projections
of the hyperchaotic state when r = 15.25 and g = 5 are presented in Figure 10. We noted
in our investigation that the integer-order hyperchaotic system (3) and its fractional-order
counterpart produced similar dynamics shown in the bifurcation and LE spectra plots
when both parameters r and g were varied.

(a) (b)

(c)
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0

1

z

(d)
Figure 10. Phase portraits of the hyperchaotic state when r = 15.25 and g = 5 (a) w-z-x plane (b) x-y-z
plane (c) x-z-w plane (d) y-z plane.

In this work, we applied information entropy and prediction time as the basis for
comparing the optimized chaotic systems and the hyperchaotic system. Particularly in a
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chaotic dynamical system, the information entropy, defined in (24), quantifies the ergodicity
and randomness inherent in the system, and the larger the information entropy, the better
the chaos in the system. On the other hand, the prediction time can be used to measure the
security strength of dynamical systems, depending on the positive Lyapunov exponents.
Generally, a dynamical system with shorter prediction time provides higher security for
encryption algorithms [38]. In this work, the prediction times of the non-optimized and
optimized chaotic systems and the three hyperchaotic states were computed. The prediction
time is defined as:

µp =
ln2
K1

(27)

where K1 is the Kolmogorov–Sinai entropy.
Table 3 shows the information entropies for state x(t) of the non-optimized and op-

timized systems in Table 1, juxtaposed with that of the hyperchaotic states from the new
hyperchaotic system (4) that has the best three Kolmogorov–Sinai entropies. They are
named hyperchaotic 1, 2, and 3. In addition, the table presents the prediction times of
the systems. In the table, it can be seen that the information entropies of the optimized
fractional-order systems are higher than those of the hyperchaotic states. This is an indi-
cation of more complexity, ergodicity, and internal randomness in the optimized systems
than the hyperchaotic states. On the other hand, the optimized chaotic systems have
shorter prediction times than the non-optimized chaotic and the hyperchaotic systems.
The prediction times of the hyperchaotic system are only shorter than the non-optimized
chaotic system. Specifically, DE-optimized system has the largest entropy and the shortest
prediction time.

Table 3. Information entropies and prediction times of the non-optimized and optimized chaotic
systems, and the best three hyperchaotic states of the new hyperchaotic system.

System Entropy H(s) Prediction Time µp

Non-optimized 0.9772 37.8769
DE-optimized 6.9334 0.6413
PSO-optimized 6.8620 0.6433
IWO-optimized 6.5619 0.6501

Hyperchaotic 1
(r = 15.00, g = 5.00) 4.6306 10.1635
Hyperchaotic 2
(r = 15.25, g = 5.00) 4.6047 7.7882
Hyperchaotic 3
(r = 15.00, g = −5.00) 4.5144 10.3455

7. Discussion

In the investigation on optimizing the chaotic behavior of the fractional-order spherical
system, the best MLEs were obtained with optimized fractional orders 0.9400 < q < 0.9420
(see Table 1). Although the DE, PSO and IWO algorithms produced almost the same
optimized MLEs, the DE has overall best MLE of 1.0808, which is a whopping 5, 806%
increase over the non-optimized system. The structure of the strange attractors obtained
from the optimized systems (see Figure 3) is a clear indication of the increased irregularity
and non-periodicity in the systems [39,40], as a result of the optimization of the MLE. It
is observed that the values of parameters a3, c1 and e are the same in the three optimized
results. The maximization of the MLE further affirms the EAs as an effective optimization
algorithm. The DE, PSO, and IWO algorithms obtained system parameter and fractional
order values that produced higher MLE than the non-optimized chaotic system.

At this juncture, it is relevant to note that the global optimization by IWO is the fastest
in terms of the average running time. The reason that can be adduced to this is that IWO
performed the least computational activities than DE and PSO. Overall, DE required 163 h,
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PSO 167 h, and IWO 144 h, to complete an optimization run of 500 generations. The
asymptotic analysis results presented in Table 1 shows that the equilibrium points of the
DE, PSO and IWO-optimized systems are saddle points, just like the non-optimized system.
Specifically, the equilibrium points of the DE, PSO and IWO-optimized systems are saddle
points of index 2. From the instability analysis, we can observe that the DE-optimized
system can be asymptotically stable for fractional order q < 0.9150, PSO-optimized system
for q < 0.9145, and IWO-optimized system for q < 0.9150 as well.

The computed information entropy to measure the complexity of the systems shows
consistency with the optimized MLEs, having higher entropy than the three best hyper-
chaotic states, with the DE-optimized system producing the best value of 6.9334 while the
non-optimized has the lowest with 0.9772 (see Table 3). This means that the DE-optimized
system exhibits the most randomness in it. Consequently, the optimized systems are
more complex and have more internal randomness and greater unpredictability than the
non-optimized 3-D system and the hyperchaotic system, which is beneficial to encryption
systems and random number generators. Moreover, the shorter prediction times in the opti-
mized systems, 0.6413, 0.6433 and 0.6501, respectively, for the DE, PSO and IWO-optimized
systems, resulted from the increase in the MLE (see Table 3). A system that has a low
prediction time is regarded as safer for designing security systems [38]. Hence, a better
secure communication system is guaranteed in the optimized fractional-order systems.

In the information provided in Table 4, we can see the comparison of our investigation
on the chaotic behavior optimization with some other works in [6,7,15,16,36,37], which
were performed on global optimization of dynamical behavior and parameter estimation
in chaotic systems. It can be seen that we used more algorithms than others to determine
their performance for the optimization problem. In our investigation, the fractional order
was part of the design variables, making a total of eleven. Furthermore, this investigation
used a wider search space for each of the design variables. Therefore, the considerably high
MLEs obtained for the chaotic spherical attractor can be mostly accredited to the higher
population size, higher number of generations, and wider search space. In addition, unlike
the compared works, we studied the bifurcation and LE spectra of the optimized chaotic
systems, varying the parameters and the fractional order, and both were in agreement with
each other for each parameter and the fractional order.

Table 4. Comparison of the chaotic behavior optimization with some other similar works.

Reference Maximum Maximum Implementation Algorithms Chaotic
Population Iteration System

[6] 40 80 MATLAB DE SNLF

[7] 25 50 N/A MVO New Chaotic
WOA oscillator

[15] 40 60 N/A DE, GA SNLF
[16] 100 N/A N/A NSGA-II SNLF, Chua
[36] 40 100 MATLAB OSOA Lorenz, Chen
[37] 120 100 MATLAB TLBO Lorenz
This 100 500 MATLAB DE, PSO, IWO 3-D fractional-order

investigation System
N/A—Not available, MVO—Multi-verse optimizer, WOA—Whale optimization algorithm, GA—Genetic al-
gorithm, NSGA-II—Nondominated sorting genetic algorithm II, OSOA—Oppositional seeker optimization
algorithm, TLBO—Teaching-learning-based optimization.

It should be noted that the sum of the LEs of the hyperchaotic systems as the parame-
ters were varied is negative, meaning that the hyperchaotic system is dissipative [41]. As a
result, the phase space volume contracts along a trajectory with a strange attractor formed,
such as the hyperchaotic attractors projected in Figure 10. It can be seen in the hyperchaotic
attractors that the spherical shape observed in chaotic systems (1) and (2) has been replaced
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with spiral-like shape of multiple scrolls. Hence, there is an evidence of hyperchaos in the
new systems.

Finally, the optimization results provided in Table 1 are very dependent not only on
the time averaging, but also on the numerical method that was used to solve the dynamical
systems. However, the length of the time simulation is enough to observe the attractors in
the phase space and for this reason, we can conclude on the appropriateness of applying
evolutionary algorithms for the optimization of chaotic systems through the MLE. We note
that Matlab is time-consuming, but this can be mitigated by programming the algorithms
in C or Python language. In addition, one can save more computing time if the numerical
method is also improved by paying attention to the selection of the highest time-step, which
can be estimated according to the numerical method and eigenvalues. Another important
point is that the optimized results can be used to design integrated chaotic systems, as
shown in [2].

8. Conclusions

This work considers a 3-D fractional-order nonlinear, smooth, autonomous system,
having a hyperbolic tangent function and capable of generating spherical chaotic attractors.
First and foremost, the investigation shows the MLE maximization of the fractional-order
chaotic system using three evolutionary algorithms, namely, differential evolution, particle
swarm optimization, and invasive weed optimization. To achieve this, a total of eleven
design variables, including ten parameters and one fractional order, were optimized. The
result of the optimization shows improved chaotic behavior resulting from over 5000 per-
cent increase in the MLE value, compared to the non-optimized system. In addition, the
optimization shows that the chaotic behavior of the fractional-order system considered
in this work is multifaceted in relation to the parameters and fractional-order. The main
advantage of using the DE, PSO, and IWO for this work is that they only need the value
of the objective function to work, and it is not necessary to get any information about the
derivative of the function.

Furthermore, we modelled a new 4-D hyperchaotic system from the initial 3-D sys-
tem and examined its dynamical behavior. Based on the four Lyapunov exponents, the
hyperchaotic system has multistates, namely, periodic, chaotic, and hyperchaotic. The DE,
PSO and IWO-optimized systems were compared with the non-optimized chaotic system
and the three best hyperchaotic states using information entropy and prediction time. The
results show that the DE-optimized system has the best MLE, information entropy, and
prediction time. Therefore, we can conclude that the DE-optimized system has the best
unpredictability and internal randomness.

This investigation offers two major contributions. First and to the best of our knowl-
edge, optimization of the chaotic behavior of the considered 3-D dynamical system was
performed for the first time. The MLE was maximized, which increases the chaotic behavior
of the system, evidenced in the phase space portraits, time series, and the information
entropy analysis. Second, a novel hyperchaotic system was created using a state feedback
controller. The new hyperchaotic system possesses rich dynamics and it is symmetric and
dissipative. Lastly, based on the contributions highlighted above, the significance of this
investigation is that the optimized systems and the hyperchaotic system are promising
tools for developing cryptosystems, secure communication systems, and random number
generators.
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Abbreviations

The following abbreviations are used in this manuscript:

3-D Three-Dimension
4-D Four-dimensional
ABM Adams–Bashforth–Moulton
CGSO Continuous Gram–Schmidt Orthogonalization
DE Differential Evolution
EA Evolutionary Algorithm
hKS Kolmogorov–Sinai entropy
IWO Invasive Weed Optimization
LE Lyapunov Exponent
MLE Maximum Lyapunov Exponent
ODE Ordinary Differential Equation
PSO Particle Swarm Optimization
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