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Abstract: The purpose of this study is to offer a systematic, unified approach to the Mellin-Barnes
integrals and associated special functions as Fox H, Aleph ℵ, and Saxena I function, encompassing
the fundamental features and important conclusions under natural minimal assumptions on the
functions in question. The approach’s pillars are the concept of a Mellin-Barnes integral and the
Mellin representation of the given function. A Sinc quadrature is used in conjunction with a Sinc
approximation of the function to achieve the numerical approximation of the Mellin-Barnes integral.
The method converges exponentially and can handle endpoint singularities. We give numerical
representations of the Aleph ℵ and Saxena I functions for the first time.

Keywords: Mellin-Barnes integrals; Sinc methods; Sinc quadrature; Fox functions; Aleph functions;
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1. Introduction

In the past 40 years, the field of fractional calculus has undergone extraordinary devel-
opment. The analytic and numeric approaches in fractional calculus created tremendous
progress, especially the analytic side generated diverse directions which increased the im-
provement tremendously [1]. A large number of methods and approaches were developed,
generating a consistent framework for analysis and symbolic computations [1,2]. However,
the numeric developments are far behind the analytic achievements especially the numeric
representation of special functions like Fox H, Aleph (ℵ), and Saxena I functions [3]. Such
kinds of functions exist nowadays utilized in the analysis of fractional calculus. The spe-
cial functions also found its way to applications in physics, engineering, and computer
science [4]. It turned out during the years that linear transforms like Laplace-, Fourier-, and
Mellin transforms play a vital role to generate special functions like Fox-H, ℵ, and Saxena’s
I function [1]. For the generation of such function, it is always essential to use the inverse of
linear transforms which analytically exists but finally are difficult to compute numerically.
The issue with unknown functions is that they could have previously unknown singulari-
ties. Naturally, this affects both the choice of the numerical method and the convergence
at these singularities. The convergence of the employed numerical technique itself may
also be a concern. This was the case if the approximation was calculated using an inverse
Laplace transform, as mentioned in [5,6]. In a recent paper, we demonstrated by using Sinc
methods that it becomes pretty efficient when Mittag-Leffler functions, a subset of Fox H
functions, are the target in connection with an inverse Laplace transform [7]. Mittag-Leffler
functions are frequently used in representing solutions of fractional differential or integral
equations [8,9]. However, these functions are only a subset of the analytic functions needed
to represent the large assortment of possible solutions to fractional equations.

Generalizations of Fox H functions are ℵ functions which also include the class of Sax-
ena I functions [10]. These exceptional functions, which have been investigated analytically
but are difficult to obtain numerically, are still a painstaking foundation for fractional calcu-
lus today. We aim to offer a numerical technique that solves most numerical difficulties like
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convergence and the occurrence of singularities by applying Sinc methods to the computa-
tion of these functions. Sinc methods initially introduced by Frank Stenger are a powerful
numerical tool that allows representing nearly any calculus operation in an efficient and
exponentially converging way [11]. For example, Sinc methods allow for computing of
definite or indefinite integrals, convolution integrals, linear integral transforms and their
inverse, to solve fractional differential and integral equations, and many other practical
computations [12,13]. One essential characteristic of Sinc methods is the use of a small
number of computing aids; i.e., small programs, a small number of discretization points,
less memory, etc., in connection with a high precision output of numerical results [14]. We
shall apply these approaches to the numerical computation of Mellin-Barnes integrals used
in the presentation of special functions.

Next, we will introduce the definition of Fox, ℵ, and Saxena I functions. In Section 2,
we shall introduce the approximation methods needed for this work. The application of
these Sinc methods is demonstrated in Section 3. Section 4 summarizes the results and
addresses open problems with the current approach.

1.1. The Fox H Function

The Fox H function was introduced by Charles Fox in connection with dual integral
equations in 1965 [15]. As he stated at that time “These H functions contain Bessel functions
as special cases and my aim is to show that, with the help of a suitable terminology, it is
possible to write down a solution by inspection”. Today we know that Fox H functions
are a remarkably broad set of functions and include the elementary as well as special
functions. The application of these functions is versatile and permits to derive solutions
just by “inspection” as Fox noted. A collection of such applications are comprised in the
book by Mathai et al. [4] which extends the classical text by Mathai and Saxena [16]. Both
monographs concentrate on the part of getting solutions “by inspection”. However, since
then there exists a tremendous need and pressure to boil down the solutions to numbers; i.e.,
to represent the symbolic Fox H solutions as numerical estimations at least or as accurate
numbers. Our aim here is to use the analytic and symbolic ideas of Fox and his successors
to evaluate such kinds of solutions numerically. To this end let us introduce some notations
for these functions.

A Fox function Hm,n
p,q (z) is defined via a Mellin-Barnes type integral using integers m,

n, p, q such that 0 ≤ m ≤ q, 0 ≤ n ≤ p, for ai, bj ∈ C with C, the set of complex numbers,
and for αi, β j ∈ R+ = (0, ∞) (i = 1, 2, . . . , p; j = 1, 2, . . . , q) in the form

Hm,n
p,q

(
z

∣∣∣∣∣ (ai, αi)1,p(
bj, β j

)
1,q

)
=

1
2πi

∫
C
Hm,n

p,q (s) z−sds (1)

with

Hm,n
p,q

(
(ai, αi)1,p(
bj, β j

)
1,q

∣∣∣∣∣s
)

=
∏m

j=1 Γ
(
bj + β js

)
∏n

j=1 Γ
(
1− aj − αjs

)
∏

q
j=m+1 Γ

(
1− bj − β js

)
∏

p
j=n+1 Γ

(
aj + αjs

) . (2)

Here

z−s = exp[−s{log |z|+ i arg z}], z 6= 0, i =
√
−1, (3)

where log |z| represents the natural logarithm of |z| and arg z is not necessarily the
principal value. An empty product in (2), if it occurs, is taken to be one, and the poles

bj,l =
−bj − l

β j
(j = 1, . . . , m; l = 0, 1, 2, . . .) (4)

of the gamma function Γ
(
bj + β js

)
and the poles

ai,k =
1− ai + k

αi
(i = 1, . . . , n; k = 0, 1, 2, . . .) (5)
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of the gamma function Γ(1− ai − αis) do not coincide:

αi
(
bj + l

)
6= β j(ai − k− 1) (i = 1, . . . , n; j = 1, . . . , m; l, k = 0, 1, 2, . . .). (6)

The contour C in (1) is the infinite contour which separates all the poles bj,l in (4) to
the left and all the poles ai,k in (5) to the right of C. In fact there are many ways to define
C in the complex plane. However, we will concentrate on the cases where C is parallel to
the imaginary axis in the complex plane. For this reason let s = γ + iσ, where γ and σ are
real; then the contour C along which the integral of (1) is taken is the straight line whose
equation is γ = γ0, where γ0 is a constant. This line is parallel to the imaginary axis in the
complex s plane and separates the poles.

For numeric integration we take C as a contour starting at the point γ − i∞ and
terminating at the point γ + i∞, where γ ∈ R = (−∞, ∞). To simplify the integration we
use the substitutions s = γ + iσ and ds = idσ which delivers

Hm,n
p,q

(
z

∣∣∣∣∣ (ai, αi)1,p(
bj, β j

)
1,q

)
= 1

2πi
∫
C H

m,n
p,q (s) z−sds = 1

2πi
∫ γ+i∞

γ−i∞ H
m,n
p,q (s) z−sds

= 1
2π

∫ ∞
−∞H

m,n
p,q (γ + iσ) z−γ−iσdσ

(7)

allowing a direct integration to represent the Fox H function at points z ∈ C. Note that the
rightmost integral in (7) is a highly oscillating integral. Such kinds of integrals need special
care if treated by standard quadrature methods. We will deal with this problem by using
the Sinc quadrature discussed in Section 2. The absolute convergence of the integral can be
guaranteed under certain conditions on the parameters of the Fox H function; for details
see [3].

1.2. The ℵ Function

The ℵ function was introduced by the authors during the examination of fractional
differential equations particularly the drift less Fokker-Planck equation [17,18]. The function
is a generalization of Fox H function and allows to handle different initial conditions. Today,
the ℵ function is well established and in use in several applications [19–23].

An ℵ function ℵm,n
p,q (z) is defined via a Mellin-Barnes type integral using integers m, n,

pk, qk such that 0 ≤ m ≤ qk, 0 ≤ n ≤ pk, for ai, bj, ai,k, bi,k ∈ C with C, the set of complex
numbers, and for αi, β j, αi,k, βi,k ∈ R+ = (0, ∞) (i = 1, 2, . . . , pk; j = 1, 2, . . . , qk), τkεR for k
= 1,. . .,r. The integration path C extends from γ− i∞ to γ + i∞ , and is such that the poles
of the gamma functions in the numerator Γ

(
1− aj − αjs

)
, j = 1, . . . , n do not coincide with

the poles of the gamma functions Γ
(
bj + β js

)
, j = 1, . . . , m. The parameters pk and qk are

non-negative integers satisfying 0 ≤ n ≤ pk, 0 ≤ m ≤ qk. All the poles of the integrand
(8) are often assumed to be simple, and the empty product is interpreted as unity. The ℵ
function is defined as follows

ℵm,n
pk ,qk ,τk ;r

(
z

∣∣∣∣∣ (ai, αi)1,p(
bj, β j

)
1,q

)
=

1
2πi

∫
C
Am,n

pk ,qk ,τk ;r(s) z−sds (8)

with the Mellin representation of the kernel Am,n
pk ,qk ,τk ;r(s)

Am,n
pk ,qk ,τk ;r

(
(ai, αi)1,p(
bj, β j

)
1,q

∣∣∣∣∣s
)

=
∏m

j=1 Γ
(
bj + β js

)
∏n

j=1 Γ
(
1− aj − αjs

)
∑r

k=1 τk ∏
qk
j=m+1 Γ

(
1− bj,k − β j,ks

)
∏

pk
j=n+1 Γ

(
aj,k + αj,ks

) . (9)

Here
z−s = exp[−s{log |z|+ i arg z}], z 6= 0, i =

√
−1. (10)

Note that the Fox H function follows from the ℵ function in case when r = 1 and
τk = 1. If τk = 1 for k = 1, . . . , r the Aleph function reduces to a Saxena I function [10].
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According to the definition of C we are numerically dealing with a Bromwich integral in
the form

ℵm,n
pk ,qk ,τk ;r

(
z

∣∣∣∣∣ (ai, αi)1,p(
bj, β j

)
1,q

)
=

1
2πi

∫
C
Am,n

pk ,qk ,τk ;r(s) z−sds

=
1

2πi

∫ γ+i∞

γ−i∞
Am,n

pk ,qk ,τk ;r(s) z−sds (11)

=
1

2π

∫ ∞

−∞
Am,n

pk ,qk ,τk ;r(γ + iσ) z−γ−iσdσ.

The Aleph function in the present form is the result of solving integral and differential
equations using linear transform techniques and is now considered the most generalized
special function of a function representation [22].

1.3. The Saxena I Function

A Saxena I function Im,n
pk ,qk ,1;r(z) is similarly defined as an ℵ function via a Mellin-

Barnes type integral using integers m, n, pk, qk such that 0 ≤ m ≤ qk, 0 ≤ n ≤ pk, for
ai, bj, ai,k, bj,k ∈ C with C, the set of complex numbers, and for αi, β j, αi,k, β j,k ∈ R+ = (0, ∞)
(i = 1, 2, . . . , pk; j = 1, 2, . . . , qk), and k = 1, . . . , r [10], in the form

Im,n
pk ,qk ,1;r

(
z

∣∣∣∣∣ (ai, αi)1,p(
bj, β j

)
1,q

)
=

1
2πi

∫
C
Im,n

pk ,qk ,1;r(s) z−sds, (12)

with the Mellin representation of the kernel Im,n
pk ,qk ,1;r(s)

Im,n
pk ,qk ,1;r

(
(ai, αi)1,p(
bj, β j

)
1,q

∣∣∣∣∣s
)

=
∏m

j=1 Γ
(
bj + β js

)
∏n

j=1 Γ
(
1− aj − αjs

)
∑r

k=1 ∏
qk
j=m+1 Γ

(
1− bj,k − β j,ks

)
∏

pk
j=n+1 Γ

(
aj,k + αj,ks

) . (13)

Here
z−s = exp[−s{log |z|+ i arg z}], z 6= 0, i =

√
−1. (14)

The conditions for the contour C are the same as for the ℵ function.

2. Approximations

The approaches for approximating using Sinc functions are discussed in this section.
First, the basic concepts of Sinc approximations are introduced describing the terms and
notion. The second part deals with approximations of definite integrals. Based on these
definitions we introduce the approximation of Mellin-Barnes integrals in the next step. We
use the properties of Sinc functions allowing a stable and accurate approximation based on
Sinc points [24]. For a detailed representation we refer the reader to [11,13].

2.1. Sinc Basis

To start with we first introduce some definitions and theorems allowing us to specify
the space of functions, domains, and arcs for a Sinc approximation.

Definition 1. Domain and Conditions.
Let D be a simply connected domain in the complex plane and z ∈ C having a boundary ∂D.

Let a and b denote two distinct points of ∂D and φ denote a conformal map of D onto Dd, where
Dd = {z ∈ C : |Im(z)| < d}, such that φ(a) = −∞ and φ(b) = ∞. Let ψ = φ−1 denote the
inverse conformal map, and let Γ be an arc defined by Γ = {z ∈ C : z = ψ(x), x ∈ R}. Given φ,
ψ, and a positive number h, let us set zk = ψ(kh), k ∈ Z to be the Sinc points, let us also define
ρ(z) = eφ(z).
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Note the Sinc points are an optimal choice of approximation points in the sense of
Lebesgue measures for Sinc approximations [24].

Definition 2. Function Space.
Let d ∈ (0, π), and let the domains D and Dd be given as in Definition 1. If d′ is a number

such that d′ > d, and if the function φ provides a conformal map of D′ onto Dd′ , then D ⊂ D′.
Let α and β denote positive numbers, and let LLLα,β(D) denote the family of functions u ∈ HolHolHol (D),
for which there exists a positive constant c1 such that, for all z ∈ D. Let LLLα,β(D) be the set of all
analytic functions, for which there exists a constant c1, such that

|u(z)| ≤ c1
|ρ(z)|α

(1 + |ρ(z)|)α+β
. (15)

Now let the positive numbers α and β belong to (0, 1], and let MMMα,β(D) denote the family of all
functions g ∈ HolHolHol (D), such that g(a) and g(b) are finite numbers, where g(a) = limz→a g(z)
and g(b) = limz→b g(z), and such that u ∈ LLLα,β(D) where

u(z) = g(z)− g(a) + ρ(z)g(b)
1 + ρ(z)

. (16)

These definitions directly allow the formulation of an algorithm for a Sinc approxi-
mation. Let Z denote the set of all integers. Select positive integers N and M = [βN/α]
so that m = M + N + 1. The step length is determined by h = (πd/(βN))1/2 where α, β,
and d are real parameters. In addition assume there is a conformal map φ and its inverse ψ
such that we can define Sinc points zj = ψ(jh), j ∈ Z [25]. The following relations define
the basis of a Sinc approximation:

Sinc (z) =
sin(π z)

π z
. (17)

The shifted Sinc is derived from relation (17) by translating the argument by integer
steps of length h and applying the conformal map to the independent variable

S(k, h) ◦ (z) = sin(π(z/h− k))/(π(z/h− k)) = Sinc (z/h− k) . (18)

The approximation of a function f (z) results to the representation

Ch,M,N [ f ](z) =
N

∑
k=−M

f (zk)Sinc
(

φ(z)
h
− k
)
=

N

∑
k=−M

f (zk)S(k, h) ◦ φ(z), (19)

using the set of orthogonal functions

BS = {S(k, h) ◦ φ(z)}N
k=−M, (20)

where φ(z) is the conformal map. This type of approximation allows to represent a function
f (z) on an arc Γ with an exponential decaying accuracy [11]. As proved in [11,13] the
approximation works effectively for analytic functions. The approximations (19) allow us
to formulate the following theorem for Sinc approximations.

Theorem 1. Sinc Approximation [25].
Let u ∈ LLLα,β(D) for α > 0 and β > 0, take M=[β N/α], where [x] denotes the greatest integer

in x, and then set m = M + N + 1. If u ∈ MMMα,β(D), and if h = (πd/(βN))1/2 then there exist
positive constants K1 and k1 independent of N, such that

εN =
∥∥ f (z)− Ch,M,N [ f ](z)

∥∥ = K1N1/2 exp
(
−k1N1/2

)
. (21)

with wk the base function (see (22)).
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The proof of this theorem is given in [13]. Note the choice h = (πd/(βN))1/2 is close
to optimal for an approximation in the space MMMα,β(D) in the sense that the error bound in
Theorem 1 cannot be appreciably improved regardless of the basis [25]. It is also optimal
in the sense of the Lebesgue measure achieving an optimal value less than Chebyshev
approximations [24].

Here zk = ψ(kh) = φ−1(kh) are the discrete points based on Sinc points kh. Note that
the discrete shifting allows us to cover the approximation interval (a, b) in a dense way
while the conformal map is used to map the interval of approximation from an infinite
range of values to a finite one. Using the Sinc basis we are able to represent the basis
functions as a piecewise defined function wj(z) by

wj =


1

1+ρ(z) −∑N
k=−M+1

1
1+ekh S(k, h) ◦ φ(z) j = −M

S(k, h) ◦ φ(z) j = −M + 1, . . . , N − 1
ρ(z)

1+ρ(z) −∑N−1
k=−M

ekh

1+ekh S(k, h) ◦ φ(z) j = N
, (22)

where ρ(z) = exp(φ(z)). This form of the Sinc basis is chosen as to satisfy the interpolation
at the boundaries. The basis functions defined in (22) suffice for purposes of uniform−norm
approximation over (a, b).

This notation allows us to define a row vector VVVm(S) of basis functions

VVVm(S) = (w−M, . . . , wN) (23)

with wj defined as in (22). For a given vector VVVm(u) = (u−M, . . . , uN)
T we now introduce

the dot product as an approximation of the function u(z) by

u(z) ≈ Vm(S).VVVm(u) =
N

∑
k=−M

ukwk. (24)

Based on this notation, we will introduce in the next subsection approximations of
definite integrals [13].

2.2. Definite Integral Approximation

In this section, we pose the query of how to approximate definite integrals on a domain
over R. The approximation will use our basis system introduced in Section 2.1. It turns
out that for the basis systems (20), we can get an approximation converging exponentially.
Specifically, we are interested in a quadrature formula for definite integrals of the type

J( f ) =
∫ b

a
f (t) dt, (25)

where a and b can be finite or infinite. If the function f is approximated by the approxima-
tion given in Section 2.1, we write for J( f ),

J( f ) =
∫ b

a
f (t) dt ≈

Jh,M,N [ f ](x) =
∫ b

a

N

∑
k=−M

f (tk)S(k, h) ◦ φ(t)dt (26)

=
N

∑
k=−M

f (tk)
∫ b

a
S(k, h) ◦ φ(t)dt. (27)
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Scaling the variable ξ = t/h and collocating the expression with respect to ξ, we end
up with the representation

J( f ) ≈ h
N

∑
k=−M

f (tk)
1

φ′(tk)
, with tk = ψ(kh). (28)

Equation (28) represents a quadrature formula applicable to different domains. Com-
pared with a Gaussian quadrature formula (28) delivers the weights as well as the function
values if the discretization is known by tk = ψ(kh) with k = −M, . . . , N and h = π

/√
N .

Note since the conformal map φ depends on the structure of the arc Γ; i.e., finite, semi-
infinite or infinite, the approximation is defined for domains [a, b], (0, ∞), or (−∞, ∞),
respectively [11]. The following Theorem summarizes these results.

Theorem 2. Definite Integrals.
If φ denotes a one−to−one transformation of the interval (a, b) onto the real line R, let h

denote a fixed positive number, and let the Sinc points be defined on (a, b) by zk = φ−1(kh), k ∈ Z,
where φ−1 = ψ denotes the inverse function of the conformal map φ. Let M and N be positive
integers, set m = M + N + 1, and for a given function f defined on (a, b), define the vector
VVVm( f ) = ( f (z−M), . . . , f (zN)), and a vector VVVm(1/φ′) = (1/φ′(z−M), . . . , 1/φ′(zN)), then
the definite integral is approximated by

J( f ) ≈ hVVVm( f ).VVVm(1/φ′) = Jh,M,N [ f ](z), (29)

and the error of this approximation was estimated in [11] as

εN =
∥∥J( f )− Jh,M,N [ f ](z)

∥∥ ∼ K2N1/2 exp
(
−k2N1/2

)
, (30)

where K2 and k2 are constants independent of N.

2.3. Sinc Approximation of Mellin-Barnes Integrals

The Sinc approximation of the Fox H functions needs two discretization steps. Fore-
most the Sinc discretization of the arc Γ on which the function should be represented finite
or semi-infinite and second the Sinc quadrature of the Mellin-Barnes integral at these Sinc
points on the arc. The second discretization is a Sinc quadrature on an infinite interval
corresponding to the line at γ parallel to the imaginary axis in s ∈ C. In formulas this
means

Hm,n
p,q

(
zk|

(ai, αi)1,p(
bj, β j

)
1,q

)
= 1

2π

∫ ∞
−∞H

m,n
p,q (γ + iσ) zk

−γ−iσdσ

≈ h
2πVVVm

(
Hm,n

p,q (γ + iσl)zk
−γ−iσl

)
.VVVm(1/φ′(σl)),

(31)

where σl = ψ(lh), l = −M, . . . , N, and zk = ψ(kh), k = −M, . . . , N, generating a vector
VVVm
(

Hm,n
p,q
)

which approximates the Fox H function pointwise at zk = ψ(kh) on an arc Γ. γ
is selected according to the pole structure of the Γ functions of the numerator in the Mellin
representation. Using the basis functions wk (22) on the arc Γ, we shall approximate the Fox
H function by

Hm,n
p,q (z) ≈ Vm(S).VVVm

(
Hm,n

p,q

)
=

N

∑
k=−M

Hm,n
p,q (zk)wk(z). (32)

This approach guarantees that the error εN will decay as given by (21). Note that a
Sinc point based interpolation is able to deal with singularities at the end points of the
arc Γ.
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Since the ℵ function and the Saxena I functions are similarly defined by Mellin-Barnes
integrals as the Fox H function, the procedure for the approximation follows the same line
delivering for the ℵ function

ℵm,n
pk ,qk ,τk ;r(z) ≈ Vm(S).VVVm

(
ℵm,n

pk ,qk ,τk ;r

)
=

N

∑
k=−M

ℵm,n
pk ,qk ,τk ;r(zk)wk(z), (33)

and the Saxena I function

Im,n
pk ,qk ,1;r(z) ≈ Vm(S).VVVm

(
Im,n
pk ,qk ,1;r

)
=

N

∑
k=−M

Im,n
pk ,qk ,1;r(zk)wk(z). (34)

All three approximations will satisfy the a priory error formula (21) and converge
exponentially to their exact value.

The following section shall demonstrate by a few examples the numerical representa-
tion of the three generalized functions.

3. Numerical Examples

This section collects some examples demonstrating the efficient and accurate numerical
evaluation of Sinc-based methods applied to Mellin-Barnes integrals, Fox H-, Saxena
I-, and ℵ functions. We selected the examples concerning their analytic representation
applied to specific physical or engineering problems. Allowing us to compare our results
with exact expressions and thus delivering an a priori estimation of the numerical errors.
For every comparison in which we calculated local errors, the analytical solution was
employed. The following graphics display the analytical answer as a solid line. Over the
solid line, the equivalent numerical approximation is displayed as a dashed curve. We
may depend on the previously mentioned exponential convergence of the Sinc quadrature
and Sinc approximation if no local errors are calculated in the graphs. The analytic Sinc
approximations, however, are typically not represented because of their large symbolic
representation since we are utilizing a computer algebra system.

3.1. Fox H Functions

In this subsection, we present some examples which are taken from the literature
where the symbolic representation was given [1,2,4]. In most of these cases a numerical
evaluation of the functions is not offered or discussed. For the first time we will show the
numerical evaluation and the a priori error estimation using Sinc methods.

Example 1. Exponential function
It is well-known that the exponential function is connected with the Mellin transform via the

Euler Γ function. The relations between the two functions are as follows

e−x =
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)x−sds, γ > 0, (35)

and
Γ(s) =

∫ ∞

0
e−xxs−1dx, (36)

where the later of these two expressions is the Mellin transform of the exponential function and
the first its inverse given by a Bromwich integral over the vertical line γ = const , of the complex
s-plane. Whereas the last formula (36) is due to L. Euler who communicated it in two letters of 13
October 1729, and 8 January 1730, to Goldbach. The first formula (35) in a somewhat different
form goes back to Pincherle [9,26] as Mellin reported in his paper [27]; but it was Mellin who first
realized its great importance.
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Let us first numerically examine the representation of the exponential function using the Fox
H representation. The exponential function is defined in terms of a Fox H function by

e−x = H2,0
0,2

(
x
2

∣∣∣∣∣ (0, 1
2

) (
1
2 , 1

2

) )
, with H2,0

0,2(s) =
Γ
(

s
2 + 1

2

)
Γ
( s

2
)

2
√

π
. (37)

Using the duplication formula for the Γ function in the right most term of (37), we end up with the
Mellin representation in (35). The line integral is then calculated by the Mellin-Barnes integral via

e−z =
1

2πi

∫
C
H2,0

0,2(s) z−sds =
1

2πi

∫ γ+i∞

γ−i∞
H2,0

0,2(s) z−sds

=
1

2π

∫ ∞

−∞
H2,0

0,2(γ− iσ) z−γ+iσdσ, (38)

where the path C is chosen according to the pole structure of the Γ functions so that γ is a fixed
real number. For different z values selected as Sinc points, we compute the numerical values of
the integral in the domain for σ ∈ (−∞, ∞). The set of values {zk, Ik}N

k=−N is used in a Sinc
approximation delivering an analytic representation of the function f (z) = e−z in terms of the
Sinc basis. Results of such an approximation are illustrated in the following Figure 1. Figure 1
shows the exact function (solid line), the Sinc approximation (dashed), and the discrete set of Sinc
points (dots). The right panel shows the local error of the approximation. In Figure 2, we depict the
error decay of the Sinc approximation as a function of the used number of Sinc points N. A least
square fit was used to get the two parameters K2 and k2 which determine the error formula. The
example demonstrates that the approximation of the Fox H function is accurate and the precision of
the approximation can be a priori estimated using the error decay Formula (30).
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Figure 1. Numerical representation of the Fox H function H2,0
0,2(x) = e−x as a Sinc approximation

based on (35) using N = 24 Sinc points for x. The L2 norm over the local error delivers a value of
1.784 10−6.
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10
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-4

N
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Figure 2. Error decay εN = ‖u− uex ‖ ∼ K2N1/2 exp
(
−k2N1/2

)
with K2 = 2.623 and k2 = 3.017.

The two parameters K2 and k2 are the result of a least square fit.
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Example 2. Mittag-Leffler functions
Over the years it turned out that Mittag-Leffler (ML) functions are of central importance in

fractional calculus [5,8,14,28]. This kind of functions are used in many applications and in theoreti-
cal work [2]. However, these functions need a special approach when it comes to their numerical
representation. Quite recently, we presented an approach to tackle the numerical representation by
an inverse Laplace transform [7]. It was shown that a Sinc based approach has some advantages over
the standard Talbot or Weideman approach used by Garrappa et al. [6,29,30]. A second approach to
numerically represent Mittag-Leffler functions is now available with high accuracy and precision
using Fox H functions in connection with Sinc quadrature. We will restrict our discussions to the
main three types of Mittag-Leffler functions which are classified as single-, two-, and three-parameter
ML functions. The three-parameter ML function is also known as Prabhakar’s function. There are
in fact higher parameter ML functions in use which are defined via Fox H functions [28]. We note
that these functions are also numerically available with high accuracy. However, due to lack of space,
we will not present them here.

The three ML functions we have in mind are defined by the following relations:

Eα(z) = H1,1
1,2

(
−z
∣∣∣∣ (0, 1)
(0, 1) (0, α)

)
, with H1,1

1,2(s) =
Γ(1− s)Γ(s)

Γ(1− sα)
, (39)

Eα,β(z) = H1,1
1,2

(
−z
∣∣∣∣ (0, 1)
(0, 1) (1− β, α)

)
, with H1,1

1,2(s) =
Γ(1− s)Γ(s)

Γ(β− sα)
, (40)

and

Eµ
α,β(z) = H1,1

1,2

(
−z
∣∣∣∣ (1− µ, 1)

(0, 1) (1− β, α)

)
, with H1,1

1,2(s) =
Γ(µ− s)Γ(s)

Γ(β− sα)
. (41)

The line integral is computed by the Mellin-Barnes integral via

I =
1

2πi

∫
C
H1,1

1,2(s) z−sds =
1

2πi

∫ γ+i∞

γ−i∞
H1,1

1,2(s) z−sds

=
1

2π

∫ ∞

−∞
H1,1

1,2(γ− iσ) z−γ+iσdσ, (42)

where the path C is selected according to the pole structure of the Γ functions so that γ is a fixed
real number. For different z values selected as Sinc points, we compute the numerical values of
the integral in the domain for σ ∈ (−∞, ∞). The set of values {zk, Ik}N

k=−N is used in a Sinc
approximation.

In Figure 3 we graph the solution for the one-, two-, and three-parameter ML function for a
specific selection of parameters (left column of Figure 3). The dashed lines correspond to the Sinc
approximation while the solid line represents the Mathematica approximation for the first two ML
functions and a higher order Sinc approximation with N = 128 for the Prabhakar ML function.
Obviously there is no visible difference for all three types of ML functions. This becomes obvious if
we examine the right column of Figure 3. Here the absolute value of the local error is shown for the
two first ML functions and a relative error for Prabhakar’s function. The magnitude in all cases
is less than 10−10. Figure 4 collects the error decay as a function of the number of Sinc points N
used in the approximations. It is obvious that for all three types of ML functions nearly the same
functional error decay results. This indicates that the upper bound estimation of Equation (30) is
satisfied and allows an a priori estimation of the expected error.
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Figure 3. Function representation for Eα(x), Eα,β(x), and Eµ
α,β(x) from top to bottom, left column

with N = 56 Sinc points. The parameters α, β, and µ are indicated in the axis labels, respectively.
The local errors are shown in the right column accordingly. For Prabhakar’s function we have to use
a relative error because the exact representation is not available. The reference solution u(x) was
computed with N = 128 Sinc points.
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Figure 4. Error decay εN = ‖u− uex ‖ ∼ K2N1/2 exp
(
−k2N1/2

)
for the three ML functions Eα, Eα,β,

and Eµ
α,β (dots, solid), (diamond, dot dashed), and (square, dashed), respectively. The least square

fit for each function delivered the values (K2, k2) = (0.421, 3.288), (K2, k2) = (0.347, 3.292), and
(K2, k2) = (0.126, 3.123).

The least square parameters of the three error decays also indicates that all three functions
belong to the same function space introduced in Definition 2.
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Example 3. Krätzel Function
The Krätzel integral Zν

ρ(z) was defined by Krätzel [31] as the kernel of an integral transform
as follows:

Zν
ρ(z) =

∫ ∞

0
yν−1e−yρ−x/ydy. (43)

Today we know that the Krätzel function occurs in many fields of applications, such as the
study of astrophysical thermonuclear reactions, reaction rate probability integrals in the theory of
nuclear reaction rates, in applied analysis, inverse Gaussian distribution, generalized families of
distributions in statistical distribution theory, and in statistical mechanics as well as the general
pathway model are all shown to be connected to the integral (43) [4]. The generalized Krätzel
function was examined by Kilbas and Kumar [32]. Solar radiation data were examined recently in
connection with probability distribution functions by Princy [33]. Due to the versatile applications
of the Krätzel function, we demonstrate the numerical representation as a density function.

The normalized probability density can be represented as Fox H function by

f (z) = czα−1Zν
ρ(z) =

1

Γ(α)Γ
(

α+ν
ρ

)H2,0
0,2

(
z

∣∣∣∣∣ (α− 1, 1)
(

α+ν−1
ρ , 1

ρ

) )
, with

H2,0
0,2(s) = Γ(s + α− 1)Γ

(
s
ρ
+

α + ν− 1
ρ

)
(44)

here x ≥ 0, α > 0, ρ > 0, and ν > 0. The corresponding line integral representation is computed
by the Mellin-Barnes integral via

I =
1

2πi

∫
C
H2,0

0,2(s) z−sds =
1

2πi

∫ γ+i∞

γ−i∞
H2,0

0,2(s) z−sds

=
1

2π

∫ ∞

−∞
H2,0

0,2(γ− iσ) z−γ+iσdσ, (45)

where the path C is selected according to the pole structure of the Γ functions, so that γ is a fixed
real number. For different discrete z values using Sinc points, we compute the numerical values
of the integral in the real domain σ ∈ (−∞, ∞). The set of values {zk, Ik}N

k=−N is used in a Sinc
approximation. An example using specific parameters α = 2 and ρ = ν = 3 is shown in Figure 5.
The left panel of Figure 5 represents the probability density based on N = 128 and N = 56 (dashed)
Sinc points. The right panel of Figure 5 shows the relative local error of these two versions of the
approximation. It is obvious that the local error is small and nearly homogenous on the domain
[0, 10]. In Figure 6, we present the error decay of computations with different number of Sinc
points zk used in the approximation. The solid line represents the least square approximation of the
two parameter error formula (30). Note that for small numbers of Sinc points we already reach an
acceptable small error. If we double the number of Sinc points, we gain more than one decade of
accuracy. Figure 6 clearly demonstrates that we have an exponential decay of the error.
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Figure 5. The Krätzel function used as a probability density function for ρ = 3, ν = 2, and α = 2 (left
panel). The relative local error of the distribution f (x) = xα−1Zν

ρ(x) (right panel). Number of Sinc
points N = 56.
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Figure 6. Error decay εN = ‖u− uex ‖ ∼ K2N1/2 exp
(
−k2N1/2

)
for the Krätzel function with

ρ = ν = 3, α = 2. The least square fit delivered the values (K2, k2) = (5.713, 2.807).

In Figure 7 we demonstrate the variation of the Krätzel function if we change one of the
parameters α or ν, respectively.
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Figure 7. The Krätzel function for ρ = ν = 3 with α variation (left graph) and ν variation (right
graph).

For the special choice ρ = 1, the Krätzel density is reduced to the modified Bessel function
Kν(x) with the specific representation

f (z) = czα−1Zν
ρ(z) =

2
Γ(α)Γ(α + ν)

xα+ν/2−1Kν

(
2
√

x
)
, with x ≥ 0, α > 0, ν > 0. (46)

This relation can be used to check the accuracy of our numerical computations shown in
Figure 8. For a few number of approximation points N = 56, we are able to reach a low level of
local errors.
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Figure 8. The Krätzel function for ρ = 1, ν = 1/3 and α = 2 (left graph). Right panel local error
between the approximation and the Bessel representation. Number of Sinc points N = 56.
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Example 4. Abel Equation
In the current example, we will examine the following Abel integral equation

u(x) = f (x) +
λ

Γ(α)

∫ x

0
(x− ξ)α−1u(ξ)dξ, (47)

where λ and 0 < α < 1 are real parameters [8,34]. The integral can also be identified as a
Riemann-Liouville fractional integral so that (47) can be written as

u(x) = f (x) + λD−α
0,x u(x). (48)

This in turn opens the connection to the fractional kinetic equation for astrophysical systems
examined by Haubold and Mathai [35] using a constant function f (x) = N0 and λ = −cα.
However, such kind of equation was already examined in 1991 by Glöckle and Nonnemacher in
connection with viscoelastic materials [36]. We will numerically demonstrate that the use of Fox H
functions in connection with a Sinc convolution integral allows a general solution as long as the
Laplace transform of f (x) exists. In their work on Mittag-Leffler functions, Gorenflow et al. [8]
state in Theorem 4.2 the problem based on [37] in which the solution of (47) using convolution
integrals are examined. The solution of (47) using two parameter Mittag-Leffler functions [35] reads

u(x) = f (x) + λ
∫ x

0
(x− ξ)α−1Eα,α(λ(x− ξ)α) f (ξ)dξ. (49)

This result goes back to the pioneering work of Hille and Tamarkin in 1930 [37]. Introducing
new variables in (49) by η = x− ξ and using the Fox H representation of the ML function allows
us to rewrite the convolution integral as

u(x) = f (x) + λ
∫ x

0
ηα−1H1,1

1,2

[
−ληα

∣∣∣∣ (0, 1)
(0, 1) (1− β, α)

]
α,β=α(ληα) f (x− η)dη, (50)

which can be rewritten by using properties of the Fox H function [4] as

u(x) = f (x) + λ
∫ x

0
H1,1

1,2

[
−ληα

∣∣∣∣ (α− 1, 1)
(α− 1, 1) (1− β + α(α− 1), α)

]
α,β=α f (x− η)dη. (51)

This representation of the solution is suitable for Sinc convolution computations because we
already know how to get the discrete Sinc representation of the Fox H function. This data at hand,
we only need the Stenger Laplace representation of f to perform the convolution. For details of the
numerical approach and implementation see [7,13].

Applying the numerical Sinc methods, we can generate solution approximations for different
fractional orders α = β (see Figure 9). The results in Figure 9 demonstrate that the solution starts
at x = 0 like the function f (dashed line). A single peak is observed with varying maximum value
and location when α = β is changed. The location of the maximum shifts to the right if the values
for α = β become smaller.
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Figure 9. Solutions of Equation (47) represented by (51) for varying α = β (see inset) using an
inhomogeneity f (x) = x3/2 exp(−x) (dashed line). The parameter value for λ = 1. Number of Sinc
points N = 48.

In astrophysical applications, the Maxwell-Boltzmann distribution is used as a standard model
for idealized gases. Abel’s Equation (47) can be solved by using a Maxwell-Boltzmann distribution
as inhomogeneity. Convolution with the Fox H kernel delivers a shifted distribution as shown in
Figure 10 (top graph). The double logarithmic graph (bottom) of Figure 10 for the same computation
indicates a similarity observed for the solar neutrino spectrum [38] with a sharp decline on the right
side of the function and a linear relation on the left end (in scaled figures).
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Figure 10. Cont.
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Figure 10. Solutions of Equation (47) represented by (51) for varying α = β (see inset) using an
inhomogeneity of Maxwell-Boltzmann type f (x) = x2 exp

(
−3 x2/2

)
(dashed line). The parameter

value for λ = 1. Number of Sinc points N = 32.

The examples demonstrate that our approach to represent numerically Fox H functions
is highly efficient.

3.2. ℵ Functions

This subsection is discussing numerical representations of different ℵ functions as
“simple” functions and advanced applications, as introduced in Equation (8). One charac-
teristic of the ℵ function is the weighted sum of Γ functions in the denominator in Mellin
space. We will present different simple and advanced rational expressions of Γ functions
to represent functions for which their analytic expressions are unknown. In general, we
do not know the specific names of the resulting functions, but we are able to generate
analytic representations based on Sinc approximations. The Sinc representation in turn
allows generalizations of the Fox H and Saxena I functions. In turn, the Sinc representation
allows a numeric computation of function values. Since we do not know what kind of
analytic function is represented by the fractions in Mellin space, we shall use a reference
representation generated by numerous Sinc points (N = 128) to estimate a relative error.
This approach to estimate the error of the approximation can be used because we know
from (21) and (30) that the Sinc approximation converges exponentially. Due to this fact,
the error given in the following examples is always a relative error with respect to this large
Sinc point approximation.

Recently some applications of ℵ functions to engineering and biomedical applications
were discussed in the literature [39–41] while applications are discussed in [42,43]. However,
the authors stop at the analytical representation of their results and do not generate a
numerical verification. We will extend their approaches by going one step further to show
that a numerical representation of ℵ functions is possible. Thus, the discussed models can
be numerically verified. Due to lack of space, we will restrict ourselves to the function
representation only.

Example 5. Characteristic simple ratio
This example uses a rational expression of Γ functions in such a way that it cannot be reduced

to a Fox H or a Saxena I function. The ratio keeps the characteristic of the ℵ function, with a sum of
weighted Γ functions in the denominator. We examine the following ratio numerically

Am,n
pk ,qk ,τk ;r(s) =

Γ(2s + 1)
2Γ(s) + 1

, (52)
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by evaluating the following Mellin-Barnes integral on a line parallel to the imaginary axis

I = 1
2πi
∫
C A

m,n
pk ,qk ,τk ;r(s) z−sds = 1

2πi
∫ γ+i∞

γ−i∞ A
m,n
pk ,qk ,τk ;r(s) z−sds

= 1
2π

∫ ∞
−∞A

m,n
pk ,qk ,τk ;r(γ− iσ) z−γ+iσdσ.

(53)

A reference approximation using N = 128 Sinc points is plotted in the same graph as solid line.
Obviously there is no visual difference between the low and high approximation. The used Sinc
points m = 49 for approximation are shown as dots in the graph. The right panel of Figure 11 shows
the local relative error of the approximation. The reference in this graph is the Sinc approximation
with the large number of Sinc points. The right panel reflects a mean error of approximately 10−8

which is acceptable for applications.
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Figure 11. A true ℵ function using a Mellin representation Γ(1 + 2s)/(1 + 2Γ(s)) approximated with
N = 24 Sinc points (left panel). The right panel shows the local relative error where u(x) is given by
a Sinc approximation with N = 128.

First, we verify the accurate representation of the approximation shown in Figure 11. The left
panel shows the function approximation using N = 24. In Figure 12 we examine the error based on
the L2 norm of the relative local error. The error εN shows an exponential decay if the number of
approximation points N is increased. The upper bound of this decay follows the relation (30) which
is indicated by the solid line.
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Figure 12. Error decay εN = ‖u− uex ‖ ∼ K2N1/2 exp
(
−k2N1/2

)
. The least square fit delivered the

values (K2, k2) = (0.007, 2.391). The • and the H indicate the error estimation based on the relative
L2 norm error and the L2 norm, respectively. In the L2 norms, the exact function is replaced by the
Sinc approximation using N = 128 Sinc points. It is obvious that the two error estimations deliver
nearly the same numerical values.

We were also curious to see how the ℵ function changes when some Mellin representation
elements are changed. As a result, we included four factors at various points in (53). Because the
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current form in (53) is so straightforward, we modified it to a single parameter representation as
follows:

Aα(s) =
Γ(2s + 1)
αΓ(s) + 1

, Aβ(s) =
Γ(βs + 1)

Γ(s)/2 + 1
, (54)

and

Aδ(s) =
Γ(s + 1)

Γ(s)/2 + δ
, Aη(s) =

Γ(s + 1)
Γ(ηs)/2 + 1

. (55)

The Mellin-Barnes integral yields the equivalent function

I =
1

2πi

∫
C
Am,n

pk ,qk ,τk ;r(s) z−sds =
1

2πi

∫ γ+i∞

γ−i∞
Am,n

pk ,qk ,τk ;r(s) z−sds

=
1

2π

∫ ∞

−∞
Am,n

pk ,qk ,τk ;r(γ− iσ) z−γ+iσdσ, (56)

where α, β, δ, and η are all derived from R+. Variation of the parameters α, β, δ, and η result in
distinct variations of the function according to the definition of the ℵ function in (54) and (55).
Figure 13 depicts the variation results. We can see that the function behavior varies continuously
within a defined region of parameters.
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Figure 13. Variation of parameters (indicated in the panels) for Aα(s), Aβ(s), Aδ(s), and Aη(s).

Example 6. Two parameter weighted Mittag-Leffler (wML) function
It is simple to generalize some types of functions when a tool like the ℵ function is available. In

the next example, we will demonstrate this. A Fox H function defines the two-parameter Mittag-
Leffler (ML) function, as shown in (40). We may introduce the following representation by following
the same line of representation as an ℵ function.

Eδ,γ
α,β(s) =

Γ(1− s)Γ(s)
δΓ(β− sα) + γΓ(1− s)

= A(s). (57)

I = 1
2πi
∫
C A

m,n
pk ,qk ,τk ;r(s) z−sds = 1

2πi
∫ γ+i∞

γ−i∞ A
m,n
pk ,qk ,τk ;r(s) z−sds

= 1
2π

∫ ∞
−∞A

m,n
pk ,qk ,τk ;r(γ− iσ) z−γ+iσdσ,

(58)

The Mellin representation of the extended Mittag-Leffler function is similar to the two pa-
rameter Mittag-Leffler function represented as Fox H function with three Γ terms. The numerator
is exactly the same as the Equation (40). The denominator term is weighted by the coefficients δ
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and γ. The term containing the weight of δ is the same as (40). The difference exists only in the
γ weighted term. If we select γ = 0 and δ = 1, we reproduce the two parameter Mittag-Leffler
function Eα,β(−x). To examine the influence of the two weight parameters δ, γ ∈ R+, we vary
them and represent the results in Figure 14. The Figure indicates that a variation of either of δ or γ
in a fractional or integer way will approach the two parameter Mittag-Leffler function from above
or below, respectively. In Figure 14 we represent in each row the variation of the parameter δ and
γ. The left column of the Figure show changes approaching values larger than one, while the right
column shows an approach to smaller values than one. Larger values than one separate the graph of
the wML function from the two parameter ML function. Smaller values than one move the graphs of
the wML function towards the unweighted ML function, or transpass the ML function in case of δ
variation. In addition, we observe that the asymptotic values for larger x values approach a different
asymptotic behavior of the ML function. While for γ = 1 (top row) the asymptotic slope is nearly
the same for δ = 1 (bottom row) we observe a fanning out of the asymptotic behavior. In general, we
can state that the asymptotic behavior of the wML function assumes a different slope than the ML
function, which is typically larger than the slope of the ML function.
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Figure 14. Variation of parameters (indicated in the panels) for the weighted Mittag-Leffler function
Eδ,γ

α,β(−x) = Ẽα,β(−x) using α = 1/3 and β = 1/2. The top row uses γ = 1and the bottom row δ = 1.
The Mittag-Leffler function Eα.β(−x) is shown as reference (dashed line). The number of Sinc points
in all approximations is N = 72.

This example demonstrates that well-known functions can be modified straightfor-
wardly if we introduce weights in an ℵ representation in Mellin space. This bears the
potential that we can adapt specific functions which do not fit to practical data properly
within a well-defined function environment. Such a tool is of utmost practical importance
if the data set is of experimental origin.

Example 7. Solution of Abel’s Integral Equation (47) Generalized
The present example deals with Abel’s equation’s solution (51). We assume that (51) is a

function (u(x)) produced by a convolution based on a known function f (x). If we view (51) as
a convolution integral, we may alter the restrictions α = β to α 6= β and/or substitute the ML
function with a wML function based on ℵ functions. These modifications will produce a convolution
integral representation of the type:

u(x) = f (x) + λ
∫ x

0
ℵ1,1

1,2,τk ;2

[
−ληα

∣∣∣∣ (α− 1, 1)
(α− 1, 1) (1− β + α(α− 1), α)

]
f (x− η)dη; (59)
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i.e., in the convolution, we replace the Fox H function with an ℵ function. This is a simple
assignment in terms of basic arithmetic. The related integral equation, on the other hand, will
convert to an unknown equation. We will employ Sinc convolution techniques to produce the
function u(x) once more, [7,13]. Consider first the case when α < β with α = 1/3 and β = 1/2.
As previously stated, the weights γ and δ allow for the adaptation of the function u(x) to a desired
structure, which is more adaptable to a specific instance than the Fox H example. This trait is
depicted in Figure 15. The weights allow the curves in the double logarithmic representations to be
spread out by approximately four decades in amplitude.
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Figure 15. Variation of parameters (indicated in the panels) for the convolution integral (56) using
a weighted Mittag-Leffler function Eδ,γ

α,β(−x) = Ẽα,β(−x) based on ℵ functions. The parameters are
α = 1/3 and β = 1/2. The top row uses γ = 2 and the bottom row δ = 2. The number of Sinc points
in all approximations is N = 48. The inhomogeneity used is f (x) = x2 exp(−3x) (dashed line).

The second situation considered is given by α > β with α = 1/2 and β = 1/3. We also
modified the weights δ and γ for this set of parameters, resulting in Figure 16. A comparison of
Figures 15 and 16 illustrates that changing the relationship between α and β modifies the original
function f (x) = x2 exp(−3x). If α < β pronounced peaks and minima appear, while just a
prominent maximum and shallow minima appear in the opposite case. The position of maxima is
marked by dots in both Figures.
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Figure 16. Cont.
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Figure 16. Variation of parameters (indicated in the panels) for the convolution integral (56) using
a weighted Mittag-Leffler function Eδ,γ

α,β(−x) = Ẽα,β(−x) based on ℵ functions. The parameters are
α = 1/2 and β = 1/3. The top row uses γ = 2 and the bottom row δ = 2. The number of Sinc points
in all approximations is N = 48. The inhomogeneity used is f (x) = x2 exp(−3x) (dashed line).

The examples revealed that we can get numerical values for unknown functions with
a few discretization points. The parameter variation allows for a continual modification in
the functions, resulting in the desired representation.

3.3. Saxena I Functions

Rather of examining the Saxena I function, we compare the three special functions in
this section. As a result, we utilize the case of stable distributions, which Schneider initially
looked at in conjunction with Fox H functions [44]. Later, Mainardi and Pagnini used
Mellin-Barnes integrals to investigate the Schneider technique [45]. This representation
of Fox H functions in Mellin space will be extended to ℵ- and Saxena I functions. We
already know that this change in the Mellin model of "stable distributions" leads to various
distributions. However, it is fascinating how close some of these functions are to one
another. We can use the restrictions on the weights to go back to the Fox H function for the
ℵ function. The purpose of this section is to compare these classes of functions graphically
by graphing their numerical representations.

Example 8. Stable Distributions
Schneider established stable one-sided Lévy distributions using a Fourier-Stieltjes transform

in conjunction with the Mellin transform [44]. As a result, the density representation in Mellin
space is as follows:

f̂α,β(s) = ε
Γ(s)Γ(ε− εs)

Γ(η − ηs)Γ(1− η + ηs)
, with ε = α−1and η =

α− β

2α
, (60)

where 0 < α < 2 and β = max(α, α− 2). In Mellin space, however, relation (60) is nothing more
than a Fox H representation. As a result, we may write

Ĥ1,1
2,2(s) = εH1,1

2,2

(
s
∣∣∣∣ (1− ε, ε) (1− η, η)

(0, 1) (1− η, η)

)
= f̂α,β(s), (61)

which will deliver using the Mellin-Barnes integral the probability density fα,β

fα,β(z) =
1

2πi

∫
C
Ĥ1,1

2,2(s) z−sds =
1

2πi

∫ γ+i∞

γ−i∞
Ĥ1,1

2,2(s) z−sds

=
1

2π

∫ ∞

−∞
Ĥ1,1

2,2(γ− iσ) z−γ+iσdσ, (62)

with 0 < γ < 1. Now we may ask what happens if we replace H with either the ℵ or the Saxena I
function in (62); i.e., we set

Âm,n
pk ,qk ,τk ;2(s) = εAm,n

pk ,qk ,τk ;2

(
s
∣∣∣∣ (1− ε, ε) (1− η, η)

(0, 1) (1− η, η)

)
= âα,β(s), (63)
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or

Îm,n
pk ,qk ,1;2(s) = εIm,n

pk ,qk ,1;2

(
s
∣∣∣∣ (1− ε, ε) (1− η, η)

(0, 1) (1− η, η)

)
= îα,β(s), (64)

as integrand in (62) and get aα,β(z) or iα,β(z), respectively. The results are quite interesting
and have some similarities with the original definition of the one-sided stable distribution func-
tion. The results are collected for a view examples in Figure 17. We depict the Cauchy-Lorentz
case with (α, β) = (1, 0), the Lévy case using (α, β) = (1/2,−1/2), and one of the Whit-
taker cases using (α, β) = (2/3,−2/3) shown in each row, respectively. The Fox column in
Figure 17 shows the one-sided stable distribution. The Aleph- and the Saxena columns repre-
sent the graphs based on the respective function representation. As a reference, we graph in each
row the analytic representation of the function as a dashed line. For Cauchy-Lorentz we have

f1,0(z) = 1
/(

z2 + 1
)

, the Lévy distribution is f1/2,−1/2(z) = x−3/2e−
1

4x

2
√

π
, and the Whittaker

distribution is f2/3,−2/3(z) =
√

3/π exp
(
− 4

2(27z2)

)
z−1W1/2,1/6

(
4

27z2

)
, where Wα,β(z) is Whit-

taker’s W function. The “distributions” based on Aleph or Saxena are graphed as solid lines. We
also included an inset to each graph that shows the approximation’s local absolute error. The Aleph
and Saxena-based approximations clearly resemble the original distribution in various ways. If the
weights are experiencing some limiting process like τ1 → 0 and τ2 → 1, the original distribution
can be restored using the Aleph approximation. We don’t have the freedom to adjust the numerical
approximation in the Saxena approximation; the numerical approximation is set. The local absolute
and relative error εN is a minor number, as seen in the insets. Furthermore, we may infer from
Figure 17 that the asymptotic behavior of the Aleph and Saxena approximations take the values of
the Fox H function.

The example shows that, in addition to the Fox and Aleph approximations, the Mellin-
Barnes representation technique also works for the Saxena I function.
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Figure 17. Three one sided stable distributions and their Aleph and Saxena variants. The number of
Sinc points in all approximations is N = 48.
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4. Conclusions

We showed that a Sinc approximation of the Mellin-Barnes integral produces accept-
able numerical results for three classes of special functions. We were able to construct
numerical representations of the Aleph- and Saxena I functions for the first time. The
above example demonstrates how simple it is to deal numerically with new and unknown
functions. It was observed that the Sinc approximation works effectively with an expo-
nential convergence rate. The calculation benefits greatly from the very small number of
discretization points. Furthermore, the approximation approach can handle singularities at
the approximation interval’s endpoints. This is only foreseeable by an asymptotic analysis
for a certain choice of parameters in the Mellin representation of the functions. In this work,
we looked at standard integration pathways parallel to the imaginary axis. However, the
Mellin-Barnes contour C is not limited to this particular example. In future studies, we are
going to investigate alternative contours that may be useful in numerically representing
special functions.
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