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1. Introduction

For many years, integer-order differential equations have been used to describe natural
or real-life occurrences. However, the factors at play in these situations are extremely
complex and diverse. Therefore, it has been realized that integer-order differential equations
cannot incorporate all of such features. One can cover up this gap by using fractional-order
differential equations which provide better description and interpretation to construct
these models. The origin of fractional calculus is the same as that of classical calculus.
However, the growth of fractional calculus has stagnated due to insufficient geometrical and
unsuitable physical interpretations of fractional derivatives. Researchers came to appreciate
the importance of these derivatives with the advent of high-speed computers and precise
computational techniques by creating and applying a specific fractional differential operator
to a real-life situation. Fractional calculus has become a popular topic in practically every
branch of science and engineering. Indeed, it has been expanded rapidly due to the nonlocal
character of fractional operators. As a result, fractional calculus and its many applications
have piqued the interest of many researchers [1,2].

For specific reasons, most of the real-life phenomena in the world are non-linear.
Therefore, it is possible to understand the nonlinear phenomenon of the actual model
through the nonlinear equation. Unlike linear equations, it is not always possible to calcu-
late analytical solutions for nonlinear equations. However, one can obtain an approximate
solution to the nonlinear equation to better understand how the equation works. The
qualitative properties of nonlinear equations such as existence, uniqueness, stability, os-
cillation, controllability, bifurcation, chaos, etc., can be easily discussed without solving
them. Commenting on solutions to equations without solving them can help scientists
tackle many research problems.

Nonlinearity is a qualitative property of equations that can be utilized to create or
remove oscillation. Torsion oscillations, cardiac oscillations, sinusoidal oscillations, and
harmonic oscillations are all examples of practical applications of the theory of oscillation
of differential equations. Many academics have developed a systematic examination of the
oscillation and non-oscillation of solutions of integer order differential equations. Because
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of the remarkable interest in the theory of fractional calculus, oscillation of solutions
for fractional differential equations has been investigated for the past twenty years. By
studying the oscillation of nonlinear fractional differential equations, Grace and other
scholars initiated and pioneered this topic. The line has continued to progress, and some
notable outcomes have been established and elaborated; the reader can consult the papers
cited herein.

This study intends to bring together the recent advances in the field of oscillation theory
of linear and nonlinear fractional differential equations, as well as provide researchers with
insight into future needs in the field of oscillation of fractional differential equations. The
results of this paper will be presented based on different fractional operators.

We use the following notations, definitions and known results of fractional calculus
throughout the article. Denote by R the set of all real numbers, and R+ the set of all positive
real numbers.

Definition 1 ([1,2]). The Euler gamma function is defined by

Γ(z) =
∫ ∞

0
ζz−1e−ζdζ, <(z) > 0.

Using its reduction formula, the Euler gamma function can also be extended to the half-plane
<(z) ≤ 0 except for z ∈ {. . . ,−2,−1, 0}.

2. Oscillation Results via Riemann–Liouville and Caputo Operators

Definition 2 ([1,2]). Let [a, b], (−∞ < a < b < ∞), be a finite interval on the real axis R. The
(left-sided) Riemann–Liouville fractional integral Iκ

a of order κ ∈ C, <(κ) > 0, is defined by

Iκ
a f(ζ) =

1
Γ(κ)

∫ ζ

a
(ζ − s)κ−1f(s)ds, ζ > a.

The (left-sided) Riemann–Liouville fractional derivative Dκ
a of order κ ∈ C, <(κ) ≥ 0, is

defined by

Dκ
a f(ζ) =

(
d

dζ

)n
In−κ

a f(ζ), n = [<(κ)] + 1, ζ > a.

The (left-sided) Caputo fractional derivative CDκ
a of order κ ∈ C, <(κ) ≥ 0, is defined via the

above (left-sided) Riemann–Liouville fractional derivative by

CDκ
a f(ζ) = Dκ

a

[
f(ζ)−

n−1

∑
k=0

f(k)(a)
k!

(ζ − a)k

]
, n = [<(κ)] + 1, ζ > a.

Grace et al. initiated the study of oscillation theory for fractional differential equations.
Grace et al. obtained oscillation criteria for a class of nonlinear fractional differential
equations of the form{

Dκ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,
Dκ−k

a u(a) = bk, k = 1, 2, · · · , m− 1; limζ→a+ Im−κ
a u(ζ) = bm,

(1)

and {
CDκ

a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,
u(k)(a) = bk, k = 0, 1, 2, · · · , m− 1,

(2)

where m− 1 < κ ≤ m, m ≥ 1 is an integer; f1, f2 ∈ C([a, ∞)×R,R), and v ∈ C([a, ∞),R).
The authors considered those solutions of (1) (or (2)) which are continuous and con-

tinuable to (a, ∞), and are not identically zero on any half-line (b, ∞) for some b ≥ a.
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A solution of (1) (or (2)) is said to be oscillatory if it has arbitrarily large zeros on
(a, ∞); otherwise, it is called non-oscillatory. An equation is said to be oscillatory if all of its
solutions are oscillatory.

Let p1, p2 ∈ C([a, ∞),R+) and β, γ are positive real numbers. The authors made the
following assumptions:

(H1) ufi(ζ, u) > 0, i = 1, 2, u 6= 0, ζ ≥ a.
(H2) |f1(ζ, u)| ≥ p1(ζ)|u|β and |f2(ζ, u)| ≤ p2(ζ)|u|γ, u 6= 0, ζ ≥ a.
(H3) |f1(ζ, u)| ≤ p1(ζ)|u|β and |f2(ζ, u)| ≥ p2(ζ)|u|γ, u 6= 0, ζ ≥ a.

We find the following popular results of Grace et al. in Reference 20 of [3].

Theorem 1. Let f2 = 0 and condition (H 1 ) holds. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1v(s)ds = −∞, (3)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1v(s)ds = ∞, (4)

then (1) is oscillatory.

Theorem 2. Let conditions (H 1) and (H 2) hold with β > 1 and γ = 1. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s) + Hβ(s)

]
ds = −∞, (5)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s)− Hβ(s)

]
ds = ∞, (6)

where

Hβ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)p
β

β−1
2 (s),

then (1) is oscillatory.

Theorem 3. Let conditions (H 1) and (H 2) hold with β = 1 and γ < 1. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s) + Hγ(s)]ds = −∞, (7)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s)− Hγ(s)]ds = ∞, (8)

where

Hγ(s) = (1− γ)γ
γ

γ−1 p
γ

γ−1
1 (s)p

1
1−γ

2 (s),

then (1) is oscillatory.

Theorem 4. Let conditions (H 1) and (H 2) hold with β > 1 and γ < 1. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s) + Hβ,γ(s)

]
ds = −∞, (9)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1[v(s)− Hβ,γ(s)

]
ds = ∞, (10)
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where

Hβ,γ(s) = (β− 1)β
β

1−β p
1

1−β

1 (s)ξ
β

β−1 (s) + (1− γ)γ
γ

1−γ ξ
γ

γ−1 (s)p
1

1−γ

2 (s),

with ξ ∈ C([a, ∞),R+), then (1) is oscillatory.

Theorem 5. Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1v(s)ds = −∞, (11)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1v(s)ds = ∞, (12)

then (2) is oscillatory.

Theorem 6. Let conditions (H 1) and (H 2) hold with β > 1 and γ = 1. If

lim inf
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1[v(s) + Hβ(s)

]
ds = −∞, (13)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1[v(s)− Hβ(s)

]
ds = ∞, (14)

where Hβ is defined as in Theorem 2, then (2) is oscillatory.

Theorem 7. Let conditions (H 1) and (H 2) hold with β = 1 and γ < 1. If

lim inf
ζ→∞

t1−m
∫ ζ

a
(ζ − s)κ−1[v(s) + Hγ(s)]ds = −∞, (15)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1[v(s)− Hγ(s)]ds = ∞, (16)

where Hγ is defined as in Theorem 3, then (2) is oscillatory.

Theorem 8. Let conditions (H 1) and (H 2) hold with β > 1 and γ < 1. If

lim inf
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1[v(s) + Hβ,γ(s)

]
ds = −∞, (17)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1[v(s)− Hβ,γ(s)

]
ds = ∞, (18)

where Hβ,γ is defined as in Theorem 4, then (2) is oscillatory.

In continuation to the above work, Chen et al. [3] established several oscillation
theorems for (1) and (2). The authors in [3] observed that the cases β > γ > 1 and
1 > β > γ > 0 were not considered for (1) and (2) in Reference 20 of [3]. The purpose of
the paper [3] was to cover this gap and establish new oscillation criteria that improve the
results in Reference 20 of [3].

Theorem 9 ([3]). Assume (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
(ζ − s)κ−1[v(s) + G(s)]ds = −∞, (19)
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and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
(ζ − s)κ−1[v(s)− G(s)]ds = ∞, (20)

for every sufficiently large T, where

G(s) =
(

β

γ
− 1
)[

γp2(s)
β

] β
β−γ

p
γ

γ−β

1 (s),

then (1) is oscillatory.

Theorem 10 ([3]). Let κ ≥ 1. Assume (H 1) and (H 3) hold with β < γ. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
(ζ − s)κ−1[v(s)− G(s)]ds = −∞, (21)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
(ζ − s)κ−1[v(s) + G(s)]ds = ∞, (22)

for every sufficiently large T, where G is defined as in Theorem 9, then every bounded solution of (1)
is oscillatory.

Theorem 11 ([3]). Assume (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

ζ1−m
∫ ζ

T
(ζ − s)κ−1[v(s) + G(s)]ds = −∞, (23)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

T
(ζ − s)κ−1[v(s)− G(s)]ds = ∞, (24)

for every sufficiently large T, where G is defined as in Theorem 9, then (2) is oscillatory.

Theorem 12 ([3]). Let κ ≥ 1. Assume (H 1) and (H 3) hold with β < γ. If

lim inf
ζ→∞

ζ1−m
∫ ζ

T
(ζ − s)κ−1[v(s)− G(s)]ds = −∞, (25)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

T
(ζ − s)κ−1[v(s) + G(s)]ds = ∞, (26)

for every sufficiently large T, where G is defined as in Theorem 9, then every bounded solution of (2)
is oscillatory.

Shao et al. [4] considered the oscillation theory for a fractional differential equation
with mixed nonlinearities of the type{

Dκ
a u− p(ζ)u(ζ) + ∑n

i=1 qi(ζ)|u(ζ)|λi−1 = r(ζ), ζ > a,
Dκ−k

a u(a) = bk, k = 1, 2, · · · , m− 1; limζ→a+ Im−κ
a u(ζ) = bm,

(27)

and {
CDκ

a u− p(ζ)u(ζ) + ∑n
i=1 qi(ζ)|u(ζ)|λi−1 = r(ζ), ζ > a,

u(k)(a) = bk, k = 0, 1, 2, · · · , m− 1,
(28)
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where m− 1 < κ ≤ m, m ≥ 1 is an integer, p, r, qi ∈ C([a, ∞),R) (1 ≤ i ≤ n), λi (1 ≤ i ≤ n)
are ratios of odd positive integers with λ1 > · · · > λl > 1 > λl+1 > · · · > λn.

Theorem 13 ([4]). Let

p(ζ) > 0 and qi(ζ)

{
≥ 0, 1 ≤ i ≤ l;
≤ 0, l + 1 ≤ i ≤ n.

(29)

If for some constant K > 0, we have

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
ds = −∞, (30)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
ds = ∞, (31)

then (27) is oscillatory.

Corollary 1 ([4]). Let l = n in (27), then λ1 > λ2 > · · · λn > 1. Suppose p(ζ) > 0, qi(ζ) ≥ 0,
i = 1, 2, · · · n. If (30) and (31) hold for some constant K1 > 0, then (27) is oscillatory.

Corollary 2 ([4]). Let l = 0 in (27), then 1 > λ1 > λ2 > · · · λn. Suppose p(ζ) < 0, qi(ζ) ≤ 0,
i = 1, 2, · · · n. If (30) and (31) hold for some constant K2 > 0, then (27) is oscillatory.

Corollary 3 ([4]). Let

p(ζ) ≡ 0 and qi(ζ)

{
≥ 0, 1 ≤ i ≤ l;
≤ 0, l + 1 ≤ i ≤ n.

(32)

If there exists a positive function v1 on [a, ∞) such that for some constant K3 > 0, we have

lim inf
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K3

n

∑
i=1

v
λi

λi−1
1 (s)|qi(s)|

1
1−λi

]
ds = −∞, (33)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K3

n

∑
i=1

v
λi

λi−1
1 (s)|qi(s)|

1
1−λi

]
ds = ∞, (34)

then (27) is oscillatory.

Theorem 14 ([4]). Assume that condition (29) holds. If

lim inf
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
ds = −∞, (35)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K

n

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

]
ds = ∞, (36)

for some constant K > 0, then (28) is oscillatory.

Corollary 4 ([4]). Suppose p(ζ) > 0, qi(ζ) ≥ 0, i = 1, 2, · · · n. If (35) and (36) hold for some
constant K1 > 0, then (28) is oscillatory.
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Corollary 5 ([4]). Suppose p(ζ) > 0, qi(ζ) ≤ 0, i = 1, 2, · · · n. If (35) and (36) hold for some
constant K2 > 0, then (28) is oscillatory.

Corollary 6 ([4]). Let (32) hold. If there exists a positive function v1 on [a, ∞) such that for some
constant K3 > 0, we have

lim inf
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K3

n

∑
i=1

v
λi

λi−1
1 (s)|qi(s)|

1
1−λi

]
ds = −∞, (37)

and

lim sup
ζ→∞

ζ1−m
∫ ζ

a
(ζ − s)κ−1

[
r(s) + K3

n

∑
i=1

v
λi

λi−1
1 (s)|qi(s)|

1
1−λi

]
ds = ∞, (38)

then (28) is oscillatory.

In this line, Wang et al. [5] discussed the oscillations of the fractional order differential
equation

Dκ
a u + q(ζ)f3(u) = 0, ζ > a > 0, (39)

where 0 < κ ≤ 1, q is a positive real-valued function and f3 : [0, ∞)→ [0, ∞) is a continuous
functional satisfying

f3(u)
I2−κ

a u
≥ K4 > 0.

The Riccati transformation technique is used to obtain some sufficient conditions
which guarantee that every solution of the equation is oscillatory or the limit inferior
converges to zero.

Theorem 15 ([5]). If there exists a positive function σ ∈ C′(0, ∞) and a sufficiently large ζ2 ≥ a
such that

lim sup
ζ→∞

∫ ζ

ζ2

[
K4σ(s)q(s)− (σ′+(s))

2

4σ(s)

]
ds = ∞, (40)

where σ′+(s) = max{σ′(s), 0}, then either (39) is oscillatory or

lim inf
ζ→∞

u(ζ) = 0.

Corollary 7 ([5]). If there exists a sufficiently large ζ2 such that

lim sup
ζ→∞

∫ ζ

ζ2

[
K4sq(s)− 1

4s

]
ds = ∞, (41)

then either (39) is oscillatory or
lim inf

ζ→∞
u(ζ) = 0.

Corollary 8 ([5]). If there exists a sufficiently large ζ2 such that

lim sup
ζ→∞

∫ ζ

ζ2

q(s)ds = ∞, (42)

then either (39) is oscillatory or
lim inf

ζ→∞
u(ζ) = 0.

Theorem 16 ([5]). Assume that there exist functions H ∈ C(D,R+), σ ∈ C′(0, ∞) such that

H(ζ, ζ) = 0, H(ζ, s) > 0 for ζ > s ≥ a,
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where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ a} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D with respect to the second variable. Also assume there exists a nonnegative
continuous function h defined on D and a differentiable positive function σ satisfying for all ζ ≥ a

σ′+(s)
σ(s)

H(ζ, s) + H′s(ζ, s) =
1

σ(s)
h(ζ, s)H

1
2 (ζ, s), (43)

where σ′+(s) = max{σ′(s), 0}. If these assumptions hold and

lim sup
ζ→∞

1
H(ζ, ζ1)

∫ ζ

ζ1

[
K4σ(s)q(s)H(ζ, s)− h2(ζ, s)

4σ(s)

]
ds = ∞, (44)

then either (39) is oscillatory or
lim inf

ζ→∞
u(ζ) = 0.

Theorem 17 ([5]). Assume there is a positive function σ such that σ′ is continuous on (0, ∞) and
a sufficiently large ζ1 satisfies

lim sup
ζ→∞

1
ζm

∫ ζ

ζ1

(ζ − s)m

[
K4σ(s)q(s)− (σ′+(s))

2

4σ(s)

]
ds = ∞, (45)

where m > 1, then either (39) is oscillatory or

lim inf
ζ→∞

u(ζ) = 0.

In this line, Grace established some new criteria for the oscillation of fractional differ-
ential equations with the Caputo derivative of the form

CDκ
a u = e(ζ) + f4(ζ, u), a > 1, κ ∈ (1, 2). (46)

Moreover, the conditions under which all solutions of this equation are asymptotic
to aζ + b as ζ → ∞ for some real numbers a and b, are presented. We find the following
results in Reference 10 of [6].

Theorem 18. Suppose that p > 1, γ > 0, p(κ − 2) + 1 > 0, p(γ− 1) + 1 > 0, q = p
p−1 , and

the function e : R→ R is continuous such that

1
ζ

∫ ζ

a
(ζ − s)κ−1|e(s)|ds is bounded for all t ≥ a, (47)

and the function f4(ζ, u) satisfies the following conditions:

1. f4(ζ, u) is continuous in D = {(ζ, u) : ζ ≥ 0, u ∈ R};
2. There are continuous nonnegative functions g, h : [0, ∞)→ [0, ∞), g is nondecreasing and

let 0 < γ ≤ 3− α− 1
p such that

|f4(ζ, u)| ≤ ζγ−1h(ζ)g
(
|u|
ζ

)
, ζ > 0, (ζ, u) ∈ D, (48)

and ∫ ∞

a
sθq/phq(s)ds < ∞, (49)

where θ = p(κ + γ− 3) + 1 ≤ 0;
3. ∫ ∞

a

τq−1

gq(τq)
dτ = ∞. (50)
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If u is a solution of (46), then |u(ζ)| = O(ζ) as ζ → ∞, that is,

lim sup
ζ→∞

|u(ζ)|
ζ

< ∞. (51)

Note that the Theorem 18 is remains valid if g(z) = z.

Theorem 19. Let the constants κ, p, q, γ and θ be defined as is in Theorem 18, conditions (47)–(50)
hold. If for every constant c, 0 < c < 1,

lim inf
ζ→∞

[
cζ +

∫ ζ

a
(ζ − s)κ−1e(s)ds

]
= −∞, (52)

and

lim sup
ζ→∞

[
cζ +

∫ ζ

a
(ζ − s)κ−1e(s)ds

]
= ∞, (53)

then (46) oscillatory.

Theorem 20. Let the constants κ, p, q, γ and θ be defined as is in Theorem 18. Assume that
f4 : [a, ∞)×R→ (0, ∞) is continuous and there exists a continuous function h : [a, ∞)→ (0, ∞)
and a real number λ with 0 < λ < 1 such that

0 ≤ uf4(ζ, u) ≤ ζγ−1h(ζ)|u|λ+1, u 6= 0, ζ ≥ a. (54)

Denote by

g±(ζ) =
1

Γ(κ)

∫ ζ

ζ1

(ζ − s)κ−1
[

e(s)± (1− λ)λ
λ

1−λ sγ−1m
λ

λ−1
1 (s)h

1
1−λ (s)

]
ds. (55)

Here ζ ≥ ζ1 for some ζ1 ≥ a, and m1 : [a, ∞) → (0, ∞) is a given continuous function.
Suppose

lim inf
ζ→∞

(
g+(ζ)

ζ

)
> −∞, lim sup

ζ→∞

(
g−(ζ)

ζ

)
< ∞, (56)

and ∫ ∞

a
sθq/pmq

1(s)ds < ∞. (57)

If u is a non-oscillatory solution of (46), then

lim sup
ζ→∞

|u(ζ)|
ζ

< ∞.

Theorem 21. Let 0 < λ < 1 and condition (56) of Theorem 20 be replaced by∫ ζ

ζ1

(ζ − s)κ−1
[∫ τ

ζ1

sγ−1m
λ

λ−1
1 (s)h

1
1−λ (s)ds

]
dτ < ∞, (58)

and

lim inf
ζ→∞

1
ζ

∫ ζ

a
(ζ − s)κ−1e(s)ds > −∞, lim sup

ζ→∞

1
ζ

∫ ζ

a
(ζ − s)κ−1e(s)ds < ∞, (59)

then the conclusion of Theorem (20) holds.

Theorem 22. Let 0 < λ < 1, the constants κ, p, q, γ and θ be defined as is in Theorem 18, and
conditions (54)–(57) hold. If for every constant M, 0 < M < 1,

lim inf
ζ→∞

[Mζ + g+(ζ)] = −∞, (60)
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and
lim sup

ζ→∞
[Mζ + g−(ζ)] = ∞, (61)

then (46) oscillatory.

Theorem 23. Let λ = 1, the constants κ, p, q, γ and θ be defined as is in Theorem 18, and
conditions (57) and (59) hold with h(ζ) = m1(ζ). Then every non-oscillatory solution of (46)
satisfies (51).

Theorem 24. Let λ = 1, the constants κ, p, q, γ and θ be defined as is in Theorem 18, and
conditions (57) and (59) hold with h(ζ) = m1(ζ). If for every constant M, 0 < M < 1,

lim inf
ζ→∞

[
Mζ +

∫ ζ

a
(ζ − s)κ−1e(s)ds

]
= −∞, (62)

and

lim sup
ζ→∞

[
Mζ +

∫ ζ

a
(ζ − s)κ−1e(s)ds

]
= ∞, (63)

then (46) oscillatory.

Yang et al. [7] studied forced oscillatory properties of solutions to nonlinear fractional
differential equations with damping,{

Dκ+1
0 u + p1(ζ)Dκ

0u + q1(ζ)f5(u) = g1(ζ), ζ > 0,
limζ→0+ I1−κ

0 u(ζ) = b ∈ R,
(64)

where 0 < κ < 1, p1 ∈ C(R+,R), q1 ∈ C(R+,R+), f5 ∈ C(R,R), g1 ∈ C(R+,R), and

f5(u)
u

> 0, u 6= 0.

Theorem 25 ([7]). Suppose that

lim inf
ζ→∞

∫ ζ

0

(ζ − s)κ−1

V(s)

[
M +

∫ s

ζ0

g1(ξ)V(ξ)dξ

]
ds < 0, (65)

and

lim sup
ζ→∞

∫ ζ

0

(ζ − s)κ−1

V(s)

[
M +

∫ s

ζ0

g1(ξ)V(ξ)dξ

]
ds > 0, (66)

where M is a constant and

V(ζ) = exp
(∫ ζ

ζ0

p(s)ds
)

.

Then (64) is oscillatory.

Using Riccati type transformations, Tunč et al. [8] established some new oscillation
criteria for the fractional differential equation

Dκ+1
0 u + p2(ζ)Dκ

0u + q2(ζ)f6(G1(ζ)) = 0, ζ ≥ t0 > 0, (67)

where 0 < κ < 1, p2 ∈ C([ζ0, ∞),R) with p2(ζ) < 0, q2 ∈ C([ζ0, ∞),R+) with q2(ζ) ≥ 0,
f6 ∈ C(R,R) with

uf6(u) > 0, u 6= 0,

and there exists a constant K5 > 0 such that
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f6(u)
u
≥ K5, u 6= 0,

and

G1(ζ) =
∫ ζ

0
(ζ − s)−κu(s)ds.

Theorem 26 ([8]). If

lim
ζ→∞

[
1

4Γ(1− κ)

∫ ζ

ζ0

(
4Γ(1− κ)K5q2(s)− p2

2(s)
)

ds
]
= ∞, (68)

then (67) oscillatory.

Theorem 27 ([8]). Assume that there exists a positive function g2 ∈ C′[ζ0, ∞) such that

lim
ζ→∞

∫ ζ

ζ0

Γ(1− κ)

g2(s)
ds = ∞, (69)

and

lim
ζ→∞

[
− 1√

4Γ(1− κ)

∫ ζ

ζ0

Ψ(s)ds +
g′2(s)√

4Γ(1− κ)

]
= ∞, (70)

where

Ψ(s) = p2
2(s)g2(s) +

[g′2(s)]
2

g2(s)
− 2p2(s)g′2(s)− 4KΓ(1− κ)g2(s)q2(s), (71)

then (67) oscillatory.

Grace dealt with the asymptotic behavior of non-oscillatory solutions of fractional
differential equations of the form

CDκ
a v = e(ζ) + f4(ζ, u), ζ ≥ a ≥ 0, κ ∈ (0, 1). (72)

The following particular cases are considered:

v(ζ) =
(

r1(ζ)
∣∣u′∣∣δ−1u′

)′
, δ ≥ 1, (73)

v(ζ) = u′, (74)

v(ζ) = u, (75)

where r1 : [a, ∞) → (0, ∞) and f4 : [a, ∞)×R → R satisfies uf4(ζ, u) > 0 for u 6= 0 and
ζ ≥ a. We find the following results in Reference 8 of [9].

Theorem 28. Consider (72) with (73). Assume that the function f4 satisfies

uf4(ζ, u) ≤ tγ−1h1(ζ)|u|β+1, u 6= 0, t ≥ a,

for some function h1 : (a, ∞) → R+ and real numbers γ > 0 and 0 < β < δ. For the sake of
simplification, define

R(ζ) =
∫ ζ

a
r−1/δ

1 (s)ds,

and

g2(ζ) =
∫ ζ

a
(ζ − s)κ−1sγ−1mβ/(β−δ)

2 (s)hδ/(δ−β)
1 (s)ds,

where m2 : (a, ∞) → R+ is continuous function. Let q be a conjugate number of p > 1,
p(κ − 1) + 1 > 0, and γ = 2− κ − 1

p . Suppose that for any T ≥ max{1, a}, we have
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∫ ∞

ζ
sqRqδ(s)mq

2(s)ds < ∞, (76)

lim sup
ζ→∞

1
ζ

∫ ζ

ζ
g2(s)ds < ∞, (77)

lim inf
ζ→∞

1
ζ

∫ ζ

ζ

∫ τ

a
(τ − s)κ−1e(s)dsdτ > −∞, (78)

lim sup
ζ→∞

1
ζ

∫ ζ

ζ

∫ τ

a
(τ − s)κ−1e(s)dsdτ < ∞. (79)

Then every non-oscillatory solution u of (72) satisfies

|u(ζ)| = O
(

ζ1/δR(ζ)
)

, ζ → ∞.

Theorem 29. Consider (72) with (74). Assume that the function f4 satisfies

uf4(ζ, u) ≤ tγ−1h1(ζ)|u|λ+1, u 6= 0,

for some function h1 : [a, ∞) → R+ and real numbers γ > 0 and 0 < λ < 1. For the sake of
simplification, define

g3(ζ) =
∫ ζ

a
(ζ − s)κ−1sγ−1mλ/(λ−1)

3 (s)h1/(1−λ)
1 (s)ds,

where m3 : (a, ∞) → R+ is continuous function. Let q be a conjugate number of p > 1,
p(κ − 1) + 1 > 0, and γ = 2− κ − 1

p . Suppose that for any T ≥ max{1, a}, we have

∫ ∞

ζ
sqmq

3(s)ds < ∞, (80)

lim sup
ζ→∞

g3(ζ) < ∞, (81)

lim inf
ζ→∞

∫ ζ

ζ
(ζ − s)κ−1e(s)ds > −∞, (82)

lim sup
ζ→∞

∫ ζ

ζ
(ζ − s)κ−1e(s)ds < ∞. (83)

Then every non-oscillatory solution u of (72) satisfies

|u(ζ)| = O(ζ), ζ → ∞.

Theorem 30. Consider (72) with (75). Let q be a conjugate number of p > 1, p(κ − 1) + 1 > 0,
and γ = 2− κ − 1

p . Suppose that for any T ≥ max{1, a}, we have

∫ ∞

ζ
mq

3(s)ds < ∞, (84)

lim sup
ζ→∞

g3(ζ) < ∞, (85)

lim inf
ζ→∞

∫ ζ

ζ
(ζ − s)κ−1e(s)ds > −∞, (86)

lim sup
ζ→∞

∫ ζ

ζ
(ζ − s)κ−1e(s)ds < ∞. (87)

Then every non-oscillatory solution u of (72) is bounded.
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Grace et al. [10] established some new criteria for the oscillation of fractional differen-
tial equations with the Caputo derivative of the form

CDκ
a u = e(ζ) + f4(ζ, u), a > 1, ζ > 0, (88)

where κ = α + n − 1, α ∈ (0, 1), and n ≥ 1 is a natural number. Assume that f4 :
[a, ∞)×R→ (0, ∞) is continuous and there exists a continuous function h : [a, ∞)→ (0, ∞)
and a real number λ with 0 < λ ≤ 1 such that (54) holds. Denote by

g4(ζ) =
1

Γ(κ)

∫ ζ

ζ1

(ζ − s)κ−1(1− λ)λ
λ

1−λ sγ−1m
λ

λ−1
4 (s)h

1
1−λ (s)ds. (89)

Here, 0 < λ < 1, t ≥ ζ1 for some ζ1 ≥ a, and m4 : [a, ∞) → (0, ∞) is a given
continuous function.

Theorem 31 ([10]). Let 0 < λ < 1. Suppose that p > 1, p(κ − 1) + 1 > 0, p(γ− 1) + 1 > 0,
q = p

p−1 , γ = (n− κ) + 1
q , and the function e : R→ R is continuous such that

g4(ζ)

ζn−1 is bounded for all ζ ≥ a, (90)

1
ζn−1

∫ ζ

a
(ζ − s)κ−1|e(s)|ds is bounded for all ζ ≥ a, (91)

and ∫ ∞
s(n−1)qmq

4(s)ds < ∞. (92)

If u is any non-oscillatory solution of (88), then

lim sup
ζ→∞

|u(ζ)|
ζn−1 < ∞. (93)

Theorem 32 ([10]). Let λ = 1, the constants κ, p, q, γ and θ be defined as is in Theorem 31,
and conditions (90)–(92) hold with h(ζ) = m4(ζ). Then every non-oscillatory solution of (88)
satisfies (93).

Theorem 33 ([10]). Let 0 < λ < 1, the constants κ, p, q, γ and θ be defined as is in Theorem 31,
and conditions (90)–(92) hold. If for every constant M > 0,

lim inf
ζ→∞

[
Mζn−1 +

∫ ζ

ζ1

(ζ − s)κ−1e(s)ds
]
= −∞, (94)

and

lim sup
ζ→∞

[
Mζn−1 +

∫ ζ

ζ1

(ζ − s)κ−1e(s)ds
]
= ∞, (95)

then (88) oscillatory.

Theorem 34 ([10]). Let λ = 1 and let the hypotheses of Theorem 33 hold with h(ζ) = m4(ζ).
Then the conclusion of Theorem 33 holds.

Grace [11] presented the conditions under which every non-oscillatory solution of the
forced fractional differential equation

CDκ
a v = e(ζ) + f4(ζ, u), a > 1, κ ∈ (0, 1), (96)

where f4 : [a, ∞)×R→ R is continuous and assume that there exists a continuous function
h : [a, ∞)→ (0, ∞) and a real number λ with 0 < λ ≤ 1 such that
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0 ≤ uf4(ζ, u) ≤ h(ζ)|u|λ+1, u 6= 0, ζ ≥ a,

holds. Assume, for ζ ≥ a ≥ 1,

R1(ζ) =
∫ ζ

a
r−1/δ

1 (s)ds→ ∞ as ζ → ∞. (97)

Denote by

g5(ζ) =

(
δ− λ

λ

)(
λ

δ

) δ
δ−λ

∫ ζ

ζ1

(ζ − s)κ−1m
λ

λ−δ
5 (s)h

δ
δ−λ (s)ds. (98)

Here, 0 < λ < 1, ζ ≥ ζ1 for some ζ1 ≥ a, and m5 : [a, ∞) → (0, ∞) is a given
continuous function.

Theorem 35 ([11]). Consider (96) with the particular case

v(ζ) =
(

r1(ζ)
(
u′(ζ)

)δ
)′

, c0 = y(a), δ ≥ 1,

where r1 : [a, ∞) → (0, ∞) is a continuous function. Let 0 < λ < 1. Suppose that p > 1,
p(κ − 1) + 1 > 0, q = p

p−1 ,
lim

ζ→∞
g5(ζ) < ∞, (99)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e(s)|ds < ∞, (100)

and ∫ ∞

ζ1

sqmq
5(s)Rδq

1 (s)ds < ∞. (101)

If u is any non-oscillatory solution of (96), then

lim sup
ζ→∞

e−t|u(ζ)|
ζ1/δR1(ζ)

< ∞. (102)

Theorem 36 ([11]). Consider (96) with the particular case

v(ζ) = u′(ζ), c0 = y(a), δ ≥ 1.

Let 0 < λ < 1. Suppose that p > 1, p(κ − 1) + 1 > 0, q = p
p−1 ,

lim
ζ→∞

g5(ζ) < ∞ for all ζ ≥ ζ1 ≥ a, (103)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e(s)|ds < ∞, (104)

and ∫ ∞

ζ1

sqmq
5(s)ds < ∞. (105)

If u is any non-oscillatory solution of (96), then

lim sup
ζ→∞

e−t|u(ζ)|
ζ

< ∞. (106)

Theorem 37 ([11]). Consider (96) where u(a) = c0 and c0 is a real constant. Let 0 < λ < 1.
Suppose that p > 1, p(κ − 1) + 1 > 0, q = p

p−1 ,
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lim
ζ→

g5(ζ) < ∞ for all ζ ≥ ζ1 ≥ a, (107)

lim
ζ→

∫ ζ

a
(ζ − s)κ−1|e(s)|ds < ∞, (108)

and ∫ ∞

ζ1

mq
5(s)ds < ∞. (109)

If u is any non-oscillatory solution of (96), then e−ζ |u(ζ)| is bounded.

Theorem 38 ([11]). Let λ = 1 and the hypotheses of Theorems 35–37 hold with m5(ζ) = h(ζ).
Then the conclusion of Theorems 35–37 holds.

Grace et al. dealt with the boundedness of non-oscillatory solutions of the forced
fractional differential equation with positive and negative terms

CDκ
a v + f6(ζ, u) = e1(ζ) + k1(ζ)u + h2(ζ, u), a > 1, κ ∈ (0, 1), ζ ≥ a, (110)

with the particular cases

v(ζ) =
(
r2(ζ)u′

)′, (111)

v(ζ) = r2(ζ)u′. (112)

The following conditions are always assumed to hold:

1. r2, k1 : [a, ∞)→ (0, ∞) and e1 : [a, ∞)→ R are continuous functions;
2. f6, h2 : [a, ∞)×R→ R are continuous functions and there exist continuous functions

m6, m7 : [a, ∞)→ (0, ∞) and positive real numbers λ1 and γ1 with λ1 > γ1 such that
for u 6= 0 and ζ ≥ a,

uf6(ζ, u) ≥ m6(ζ)|u|λ1+1, 0 ≤ uh2(ζ, u) ≤ m7(ζ)|u|γ1+1.

We find the following results in Reference 11 of [9].

Theorem 39. Assume there exist real number p > 1 such that p(κ − 1) + 1 > 0, and there are
real numbers S > 0 and σ1 > 1 such that(

ζ

r2(ζ)

)
≤ Se−σ1ζ . (113)

If ∫ ∞

a
e−qskq

1(s)ds < ∞, q =
p

p− 1
, (114)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e1(s)|ds < ∞, (115)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1g6(s)ds < ∞, (116)

where

g6(ζ) =

(
λ1 − γ1

γ1

)[
γ1

λ1
m7(ζ)

] λ1
λ1−γ1

[m7(ζ)]
γ1

γ1−λ1 , (117)

then every non-oscillatory solution of (110), (111) is bounded.

Theorem 40. Assume there exist real number p > 1 such that p(κ − 1) + 1 > 0, and there are
real numbers S > 0 and σ1 > 1 such that
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(
1

r2(ζ)

)
≤ Se−σ1ζ . (118)

If ∫ ∞

a
e−qskq

1(s)ds < ∞, q =
p

p− 1
, (119)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e1(s)|ds < ∞, (120)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1g6(s)ds < ∞, (121)

where

g6(ζ) =

(
λ1 − γ1

γ1

)[
γ1

λ1
m7(ζ)

] λ1
λ1−γ1

[m7(ζ)]
γ1

γ1−λ1 , (122)

then every non-oscillatory solution of (110), (112) is bounded.

Seemab et al. [6] established the oscillation criteria and asymptotic behavior of solu-
tions for a class of fractional differential equations by considering equations of the form{

Dκ
0u + λ2u = f7(ζ, u), ζ > 0,
Dκ−1

0 u(0) = u0, limζ→0+ I2−κ
a u(0) = u1,

(123)

where 1 < κ ≤ 2, λ2 ∈ [1, ∞); u0, u1 ∈ [0, ∞) and f7 : [0, ∞)× R → R be a continuous
function.

Theorem 41 ([6]). Let 1 < κ < 2, u1 = 0, f7 : [0, ∞)×R → [0, ∞) be a continuous function,
and there exists a constant M1 > 0 such that

|f7(ζ, u)| ≤ M1

Γ(1− κ)(ζ − a)κ
, for some ζ > a > 0. (124)

Then all unbounded solutions of (123) are oscillatory.

Theorem 42 ([6]). Let u1 = 0 and f7 : [0, ∞)×R→ [0, ∞) satisfy f7(ζ,−u) = −f7(ζ, u) and
u2 ≤ u3 implies f7(ζ, u2) ≥ f7(ζ, u3) for each fixed ζ. Let

lim
ζ→∞

∫ ζ

ρ
f7(s, L)ds = ∞, for some ζ ≥ ρ > 0, L > 0. (125)

Then all bounded solutions of (123) are oscillatory.

Theorem 43 ([6]). Let f7 : [0, ∞)×R → [0, ∞) satisfy f7(ζ,−u) = −f7(ζ, u) and f7(ζ, u) be
monotonically increasing in u for each fixed t. Let

lim inf
ζ→∞

∫ ζ

0
f7(s, L)ds = −∞, for some L > 0. (126)

Then all bounded solutions of (123) are non-oscillatory.

Theorem 44 ([6]). Let f7 : [0, ∞)×R→ R be monotonically increasing in u for each fixed t and
it satisfy f7(ζ,−u) = −f7(ζ, u) and uf7(ζ, u) < 0 if u 6= 0. Let

lim
ζ→∞

∫ ζ

ρ
f7(s, L)ds = ∞, for some ζ ≥ ρ > 0, L > 0. (127)
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If u(ζ) are oscillatory solutions of (123) such that limζ→∞ u(ζ) exists, then

lim
ζ→∞

u(ζ) = 0.

Theorem 45 ([6]). Let u1 = 0, f7 : [0, ∞)×R → [0, ∞) be monotonically decreasing in u for
each fixed ζ and it satisfy f7(ζ,−u) = −f7(ζ, u). Let

lim
ζ→∞

∫ ζ

0
f7(s, L)ds = ∞, for some L > 0, (128)

then all bounded solutions of (123) are eventually negative.

Theorem 46 ([6]). Let u1 = 0, f7 : [0, ∞) × R → R that satisfy f7(ζ,−u) = −f7(ζ, u) and
uf7(ζ, u) < 0 if u 6= 0. Moreover, u2 ≤ u3 implies f7(ζ, u2) ≤ f7(ζ, u3) for each fixed t. Let

lim
ζ→∞

∫ ζ

ρ
f7(s, L)ds = ∞, for some ζ ≥ ρ > 0, L > 0, (129)

then no non-oscillatory solution of (123) is bounded away from zero as ζ → ∞.

Theorem 47 ([6]). Let u1 = 0, f7 : [0, ∞)×R → [0, ∞) that satisfying f7(ζ,−u) = −f7(ζ, u)
and, u2 ≤ u3 implies f7(ζ, u2) ≥ f7(ζ, u3) for each fixed ζ. Let

lim
ζ→∞

∫ ζ

ρ
f7(s, L)ds = ∞, for some ζ ≥ ρ > 0, L > 0, (130)

then no non-oscillatory solution of (123) goes to zero as ζ → ∞.

Theorem 48 ([6]). Let u1 = 0, f7 : [0, ∞) × R → R that satisfy f7(ζ,−u) = −f7(ζ, u) and
uf7(ζ, u) < 0 if u 6= 0. Moreover, u2 ≤ u3 implies f7(ζ, u2) ≤ f7(ζ, u3) for each fixed ζ. Let

lim
ζ→∞

∫ ζ

ρ
f7(s, L)ds = ∞, for some ζ ≥ ρ > 0, L > 0. (131)

If u(ζ) is a non-oscillatory solution of (123) such that limζ→∞ u(ζ) exists, then
limζ→∞ u(ζ) = 0.

Graef et al. [9] dealt with the boundedness of non-oscillatory solutions of the forced
fractional differential equation with positive and negative terms

CDκ
a v + f6(ζ, u) = e1(ζ) + k1(ζ)uη + h2(ζ, u), κ ∈ (0, 1), ζ ≥ a ≥ 1, (132)

with the particular cases

v(ζ) =
(

r2(ζ)
(
u′
)η
)′

, (133)

v(ζ) = r2(ζ)
(
u′
)η . (134)

Here, η ≥ 1 is the ratio of positive odd integers. The following conditions are always
assumed to hold:

1. r2, k1 : [a, ∞)→ (0, ∞) and e1 : [a, ∞)→ R are continuous functions;
2. f6, h2 : [a, ∞)×R→ R are continuous functions and there exist continuous functions

m6, m7 : [a, ∞)→ (0, ∞) and positive real numbers λ1 and γ1 with λ1 > γ1 such that
for u 6= 0 and t ≥ a,

uf6(ζ, u) ≥ m6(ζ)|u|λ1+1, 0 ≤ uh2(ζ, u) ≤ m7(ζ)|u|γ1+1.
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Theorem 49 ([9]). Assume there exist real number p > 1 such that p(κ − 1) + 1 > 0. If∫ ∞

a
kq

1(s)s
qRηq

2 (s)ds < ∞, q =
p

p− 1
, (135)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e1(s)|ds < ∞, (136)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1g6(s)ds < ∞, (137)

where

g6(ζ) =

(
λ1 − γ1

γ1

)[
γ1

λ1
m7(ζ)

] λ1
λ1−γ1

[m6(ζ)]
γ1

γ1−λ1 , (138)

and

R2(ζ) =
∫ ζ

a
r−1/η

2 (s)→ ∞ as ζ → ∞. (139)

then every non-oscillatory solution u of (132), (133) satisfies

lim sup
ζ→∞

|u(ζ)|
ζ1/ηeζ/η R2(ζ)

< ∞. (140)

Theorem 50 ([9]). Assume there exist real number p > 1 such that p(κ − 1) + 1 > 0. If∫ ∞

a
kq

1(s)Rηq
2 (s)ds < ∞, q =

p
p− 1

, (141)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1|e1(s)|ds < ∞, (142)

lim
ζ→∞

∫ ζ

a
(ζ − s)κ−1g6(s)ds < ∞, (143)

where

g6(ζ) =

(
λ1 − γ1

γ1

)[
γ1

λ1
m7(ζ)

] λ1
λ1−γ1

[m6(ζ)]
γ1

γ1−λ1 , (144)

and

R2(ζ) =
∫ ζ

a
r−1/η

2 (s)→ ∞ as ζ → ∞. (145)

then every non-oscillatory solution u of (132), (133) satisfies

lim sup
ζ→∞

|u(ζ)|
eζ/η R2(ζ)

< ∞. (146)

In this line, Grace dealt with the asymptotic behavior of positive solutions of certain
forced fractional differential equations of the form (96) with the particular cases

v(ζ) =
(
r1(ζ)u′(ζ)

)′, a0 = v(a), a0 ∈ R, (147)

v(ζ) = u′(ζ), a0 = v(a), a0 ∈ R, (148)

a0 = u(a), a0 ∈ R, (149)

where r1 : [a, ∞)→ (0, ∞) is a continuous function, f4 : [a, ∞)×R→ R is continuous and
assume that there exists a continuous function h : [a, ∞) → (0, ∞) and a real number λ
with 0 < λ ≤ 1 such that (54) holds. Denote by

g7(ζ) = (1− λ)λ
λ

1−λ
1

Γ(κ)

∫ ζ

ζ1

(ζ − s)κ−1sγ2−1m
λ

λ−1
5 (s)h

1
1−λ (s)ds. (150)
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Here, 0 < λ < 1, ζ ≥ ζ1 for some t1 ≥ a, and m5 : [a, ∞) → (0, ∞) is a given
continuous function. We find the following results in Reference 11 of [11].

Theorem 51. Consider (96) and (147). Let 0 < λ < 1. Suppose that p > 1, p(κ − 1) + 1 > 0,
q = p

p−1 , γ2 = 2− κ − 1
p , p(γ2 − 1) + 1 > 0, and ζ

r1(ζ)
is bounded on [a, ∞),

∫ ∞

ζ1

s
r1(s)

ds < ∞, (151)

∫ ∞

ζ1

(
s2m5(s)

)q
ds < ∞ (152)

lim sup
ζ→∞

1
ζ2

∫ ζ

a

1
r1(x)

∫ x

ζ1

∫ y

a
(y− s)κ−1e(s)dsdydx < ∞, (153)

lim inf
ζ→∞

1
ζ2

∫ ζ

a

1
r1(x)

∫ x

ζ1

∫ y

a
(y− s)κ−1e(s)dsdydx > −∞, (154)

and

lim
ζ→∞

1
ζ2

∫ ζ

ζ1

1
r1(x)

∫ x

ζ1

g7(s)dsdx < ∞. (155)

If u is a positive solution of (96), then

lim sup
ζ→∞

u(ζ)
ζ2 < ∞. (156)

Remark 1. Conditions (153) and (154) can be replaced by

lim
ζ→∞

1
ζ2

∫ ζ

a

1
r1(x)

∫ x

ζ1

∫ y

a
(y− s)κ−1|e(s)|dsdydx < ∞,

and the result remains valid.

Theorem 52. Consider (96) and (148). Let 0 < λ < 1. Suppose that p > 1, p(κ − 1) + 1 > 0,
q = p

p−1 , γ2 = 2− κ − 1
p , p(γ2 − 1) + 1 > 0,

∫ ∞

ζ1

(sm5(s))
qds < ∞ (157)

lim sup
ζ→∞

1
ζ

∫ ζ

ζ1

∫ x

a
(x− s)κ−1e(s)dsdx < ∞, (158)

lim inf
ζ→∞

1
ζ

∫ ζ

ζ1

∫ x

a
(x− s)κ−1e(s)dsdx > −∞, (159)

and

lim
ζ→∞

1
ζ

∫ ζ

ζ1

g7(s)ds < ∞. (160)

If u is a positive solution of (96), then

lim sup
ζ→∞

u(ζ)
ζ

< ∞. (161)

Theorem 53. Consider (96) and (147). Let 0 < λ < 1. Suppose that p > 1, p(κ − 1) + 1 > 0,
q = p

p−1 , γ2 = 2− κ − 1
p , p(γ2 − 1) + 1 > 0,∫ ∞

ζ1

(m5(s))
qds < ∞ (162)
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lim sup
ζ→∞

∫ ζ

ζ1

(ζ − s)κ−1e(s)ds < ∞, (163)

lim inf
ζ→∞

∫ ζ

ζ1

(ζ − s)κ−1e(s)ds > −∞, (164)

and
lim

ζ→∞
g7(ζ) < ∞. (165)

If u is a positive solution of (96), then u(ζ) is bounded.

Theorem 54. Let λ = 1 and the hypotheses of Theorems 51–53 hold with m5(ζ) = h(ζ). Then
the conclusions of Theorems 51–53 hold.

In [12], Grace concerned with the asymptotic behavior of non-oscillatory solutions of
forced fractional differential equations of the form (96) with the particular case

v(ζ) = u′′′(ζ), (166)

where r1 : [a, ∞)→ (0, ∞) is a continuous function, f4 : [a, ∞)×R→ R is continuous and
assume that there exists a continuous function h : [a, ∞)→ (0, ∞) and a real number λ with
0 < λ ≤ 1 such that (54) holds. Let m5 : [a, ∞)→ (0, ∞) is a given continuous function.

Theorem 55 ([12]). Consider (96) and (166). Let 0 < λ < 1. Suppose that p > 1, p(κ− 1)+ 1 >
0, q = p

p−1 , γ2 = 2− κ − 1
p , p(γ2 − 1) + 1 > 0,

∫ ∞

a

(
s3m5(s)

)q
ds < ∞ (167)

lim sup
ζ→∞

1
ζ3

∫ ζ

a
(ζ − s)3+(κ−1)e(s)ds < ∞, (168)

lim inf
ζ→∞

1
ζ3

∫ ζ

a
(ζ − s)3+(κ−1)e(s)ds > −∞, (169)

and

lim
ζ→∞

1
ζ3

∫ ζ

a
(ζ − s)3+(κ−1)

(
sγ2−1m

λ
λ−1
5 (s)h

1
1−λ (s)

)
ds < ∞. (170)

If u is a non-oscillatory solution of (96), then

lim sup
ζ→∞

|u(ζ)|
ζ3 < ∞. (171)

Remark 2 ([12]). Conditions (168) and (169) can be replaced by

lim
ζ→∞

1
ζ3

∫ ζ

a
(ζ − s)3+(κ−1)|e(s)|ds < ∞,

and the result remains valid.

Theorem 56. Let λ = 1 and the hypotheses of Theorem 55 holds with m5(ζ) = h(ζ). Then the
conclusion of Theorem 55 holds.

Theorem 57 ([12]). Consider (96) and (166). Let 0 < λ < 1. Suppose that p > 1, p(κ− 1)+ 1 >
0, q = p

p−1 , γ2 = 2− κ − 1
p , p(γ2 − 1) + 1 > 0,

∫ ∞

a
(snm5(s))

qds < ∞ (172)
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lim sup
ζ→∞

1
ζn

∫ ζ

a
(ζ − s)n+(κ−1)e(s)ds < ∞, (173)

lim inf
ζ→∞

1
ζn

∫ ζ

a
(ζ − s)n+(κ−1)e(s)ds > −∞, (174)

and

lim
ζ→∞

1
ζn

∫ ζ

a
(ζ − s)n+(κ−1)

(
sγ2−1m

λ
λ−1
5 (s)h

1
1−λ (s)

)
ds < ∞. (175)

If u is a non-oscillatory solution of (96) with v(ζ) = u(n)(ζ), then

lim sup
ζ→∞

|u(ζ)|
ζn < ∞. (176)

3. Oscillation Results via Liouville Operators

Definition 3 ([1,2]). The (right-sided) Liouville fractional integral is defined by

Iκ
−f(ζ) =

1
Γ(κ)

∫ ∞

ζ
(s− ζ)κ−1f(s)ds, ζ > 0, <(κ) > 0.

The (right-sided) Liouville fractional derivative is defined by

Dκ
−f(ζ) =

(
− d

dζ

)n
In−κ
− f(ζ), n = [<(κ)] + 1, <(κ) ≥ 0, ζ > 0.

Chen [13] obtained several oscillation theorems for the fractional differential equation

[
r(ζ)(Dκ

−u(ζ))η]′ − q(ζ) f
(∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ > 0, (177)

where 0 < κ < 1, η > 0 is a quotient of odd positive integers, r and q are positive continuous
functions on [ζ0, ∞) for a certain ζ0 > 0 and f : R→ R is a continuous function such that
f(u)/(uη) ≥ K for a certain constant K > 0 and for all u 6= 0.

Theorem 58 ([13]). Suppose that ∫ ∞

ζ0

r−
1
η (ζ)dζ = ∞, (178)

holds. Furthermore, assume that there exists a positive function b ∈ C1[t0, ∞) such that

lim sup
ζ→∞

∫ ζ

ζ0

[
Kb(s)q(s)−

r(s)[b′+(s)]
η+1

(η + 1)η+1[Γ(1− κ)b(s)]η

]
ds = ∞, (179)

where b′+(s) = max{b′(s), 0}. Then (177) is oscillatory.

Theorem 59 ([13]). Suppose that (178) holds. Furthermore, assume that there exists a positive
function b ∈ C1[t0, ∞) and a function H ∈ C(D,R), where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0}
such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ t0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ−1

ζ0

[
b(s)q(s)H(ζ, s)−

b(s)r(s)hη
+(ζ, s)

K(η + 1)η+1[Γ(1− κ)H(ζ, s)]η

]
ds = ∞, (180)
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where

h+(ζ, s) = max
{

0,
b′+(s)
b(s)

H(ζ, s) + H′s(ζ, s)
}

, (ζ, s) ∈ D0, (181)

and b′+(s) = max{b′(s), 0}. Then (177) is oscillatory.

Theorem 60 ([13]). Suppose that ∫ ∞

ζ0

r−
1
η (ζ)dζ < ∞, (182)

holds. Assume that there exists a positive function b ∈ C1[t0, ∞) such that (179) holds. Furthermore,
assume that for every constant C ≥ t0,

∫ ∞

C

[
1

r(ζ)

∫ ζ

C
q(s)ds

] 1
η

dζ = ∞. (183)

Then every solution u of (177) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (184)

Theorem 61 ([13]). Suppose that (182) holds. Let b(ζ) and H(ζ, s) be defined as in Theorem 59
such that (180) holds. Furthermore, assume that for every constant C ≥ ζ0, (183) holds. Then every
solution u of (177) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (185)

Remark 3. From Theorems 58–61, we can derive many different sufficient conditions for the
oscillation of (177) with different choices of the functions b and H.

In [14], Chen discussed the oscillatory behavior of the fractional differential equation
with damping

D1+κ
− u(ζ)− p(ζ)Dκ

−u(ζ) + q(ζ)f
(∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ > 0, (186)

where 0 < κ < 1, p ≥ 0 and q > 0 are continuous functions on [ζ0, ∞) for a certain ζ0 > 0
and f : R→ R is a continuous function such that f(u)/(u) ≥ K for a certain constant K > 0
and for all u 6= 0, and ∫ ∞

ζ0

exp
(
−
∫ ζ

ζ0

p(s)ds
)

dζ = ∞.

Theorem 62 ([14]). Suppose that there exists a positive function b ∈ C1[ζ0, ∞) such that

lim sup
ζ→∞

∫ ζ

ζ0

[
Kb(s)q(s)V(s)− υb′+(s)

]
ds = ∞, (187)

for any constant υ > 0, where b′+(s) = max{b′(s), 0}, and

V(s) = exp
(∫ s

ζ0

p(s)ds
)

, s ≥ ζ0. (188)

Then (186) is oscillatory.

Theorem 63 ([14]). Suppose that there exists a positive function b ∈ C1[ζ0, ∞) such that
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lim sup
ζ→∞

∫ ζ

ζ0

[
Kb(s)q(s)− [M+(s)]

2

4Γ(1− κ)b(s)

]
ds = ∞, (189)

where M+(s) = max{b′+(s) − b(s)p(s), 0}, and b′+ is defined as in Theorem 62. Then (186)
is oscillatory.

Theorem 64 ([14]). Assume that there exists a positive function b ∈ C1[ζ0, ∞) and a function
H ∈ C(D,R), where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and that there exists a function
h ∈ C(D,R) such that

H′s(ζ, s) +
M′+(s)

b(s)
H(ζ, s) =

h(ζ, s)
b(s)

√
H(ζ, s), (ζ, s) ∈ D, (190)

and

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

[
b(s)q(s)q(s)H(ζ, s)−

h2
+(ζ, s)

4KΓ(1− κ)b(s)

]
ds = ∞, (191)

where M+ is defined as in Theorem 63 and h+(ζ, s) = max{h(ζ, s), 0}. Then (177) is oscillatory.

Remark 4. From Theorems 62–64, we can derive many different sufficient conditions for the
oscillation of (186) with different choices of the functions b and H.

Take b(s) = 1. Then from Theorem 63 we obtain the following result.

Corollary 9. Assume that the following condition hold:∫ ∞

ζ0

q(s)ds = ∞. (192)

Then (186) is oscillatory.

Take b(s) = 1. Then from Theorem 62 we obtain the following result.

Corollary 10. Assume that the following condition hold:∫ ∞

ζ0

[
q(s) exp

(∫ τ

ζ0

p(τ)dτ

)]
ds = ∞. (193)

Then (186) is oscillatory.

Note that, since

q(s) ≤ q(s) exp
(∫ s

ζ0

p(τ)dτ

)
, s ≥ ζ0,

Corollary 9 can also be derived from Corollary 10. Obviously, Corollary 10 is better
than Corollary 9.

Take b(s) = s. Then from Theorem 63 we obtain the following result.

Corollary 11. Assume that the following condition hold:

lim sup
ζ→∞

∫ ζ

ζ0

[
sq(s)− [M+(s)]

2

4KΓ(1− κ)s

]
ds = ∞, (194)
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where M+(s) = max{1− sp(s), 0}. Then (186) is oscillatory.

Take b(s) = 1 and H(ζ, s) = (ζ − s)m, where m ≥ 2 is a constant. Then Theorem 64
implies the following result.

Corollary 12. Suppose that there exists a constant m ≥ 2 such that

lim sup
ζ→∞

1
ζm

∫ ζ

ζ0

q(s)(ζ − s)mds = ∞. (195)

Then (186) is oscillatory.

By the generalized Riccati transformation technique, Han et al. [15] obtained oscillation
criteria for a class of nonlinear fractional differential equations of the form

[r(ζ)g(Dκ
−u(ζ))]′ − q(ζ)f

(∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ > 0, (196)

where 0 < κ < 1, r and q are positive continuous functions on [ζ0, ∞) for a certain ζ0 > 0; f,
g : R→ R are continuous functions such that

uf(u) > 0, ug(u) > 0, u 6= 0,

and there exist positive constants k1, k2 such that

f(u)
u
≥ k1,

g(u)
u
≥ k2, u 6= 0.

Moreover, g−1 : R→ R is a continuous function such that

ug−1(u) > 0, u 6= 0,

and there exists some positive constant γ1 such that

g−1(uv) ≥ γ1g−1(u)g−1(v), uv 6= 0.

Theorem 65 ([15]). Suppose that ∫ ∞

ζ0

g−1
(

1
r(ζ)

)
dζ = ∞, (197)

holds. Furthermore, assume that there exists a positive function b ∈ C1[ζ0, ∞) such that

lim sup
ζ→∞

∫ ζ

ζ0

[
k1b(s)q(s)− r(s)[b′(s)]2

4k2Γ(1− κ)b(s)

]
ds = ∞. (198)

Then (196) is oscillatory.

Theorem 66 ([15]). Assume that there exists a positive function b ∈ C1[ζ0, ∞) and a function
H ∈ C(D,R), where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : t > s ≥ t0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies
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lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ−1

ζ0

H(ζ, s)

[
k1b(s)q(s)− r(s)[b′(s)]2

4k2Γ(1− κ)b(s)

]
ds = ∞. (199)

Then (196) is oscillatory.

Theorem 67 ([15]). Suppose that ∫ ∞

ζ0

g−1
(

1
r(ζ)

)
dζ < ∞, (200)

holds and g is an increasing function. Assume that there exists a positive function b ∈ C1[ζ0, ∞)
such that (198) holds. Furthermore, assume that for every constant C ≥ ζ0,∫ ∞

C
g−1

[
1

r(ζ)

∫ ζ

C
q(s)ds

]
dt = ∞. (201)

Then every solution u of (196) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (202)

Theorem 68 ([15]). Suppose that (200) holds and g is an increasing function. Let b(ζ) and H(ζ, s)
be defined as in Theorem 66 such that (199) holds. Furthermore, assume that for every constant
C ≥ ζ0, (201) holds. Then every solution u of (196) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (203)

Qi et al. [16] established some new interval oscillation criteria based on the certain Ric-
cati transformation and inequality technique for a class of fractional differential equations
with damping term of the form

(
p1(ζ)[r1(ζ)Dκ

−u(ζ)]′
)′

+ p(ζ)[r1(ζ)Dκ
−u(ζ)]′

− q(ζ)
∫ ∞

ζ
(s− ζ)−κu(s)ds = 0, ζ > 0, (204)

where 0 < κ < 1, p1 ∈ C1([t0, ∞),R+), r1 ∈ C2([t0, ∞),R+), p and q are positive continu-
ous functions on [ζ0, ∞) for a certain ζ0 > 0. Denote by

A(ζ) =
∫ ζ

ζ0

p(s)
p1(s)

ds, (205)

δ1(ζ, a) =
∫ ζ

a

1
eA(s)p1(s)

ds, (206)

δ2(ζ, a) =
∫ ζ

a

δ1(s, a)
r1(s)

ds. (207)

Theorem 69 ([16]). Assume∫ ∞

ζ0

1
eA(s)p1(s)

ds = ∞, (208)∫ ∞

ζ0

1
r1(s)

ds = ∞, (209)∫ ∞

ζ0

1
r1(ξ)

∫ ∞

ξ

1
eA(τ)p1(τ)

∫ ∞

τ
eA(s)q(s)dsdτdξ = ∞, (210)
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hold, and there exist two functions φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) such that

∫ ∞

ζ

(
φ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)δ1(s, T)ψ2(s)
r1(s)

−
[

2φ(s)ψ(s)Γ(1− κ)δ1(s, T) + r1(s)φ′(s)

]2

×
(

4Γ(1− κ)φ(s)δ1(s, T)r1(s)

)−1)
ds = ∞, (211)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (212)

Theorem 70 ([16]). Assume (208)–(210) hold. Furthermore, assume that there exist two func-
tions φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) and a function H ∈ C1(D,R), where
D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

H(ζ, s) (
φ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)δ1(s, T)ψ2(s)
r1(s)

−
[

2φ(s)ψ(s)Γ(1− κ)δ1(s, T) + r1(s)φ′(s)

]2

×
(

4Γ(1− κ)φ(s)δ1(s, T)r1(s)

)−1)
ds = ∞, (213)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (214)

In Theorem 70, if we take H(ζ, s) for some special functions such as (ζ − s)m or ln ζ
s ,

then we can obtain some corollaries as follows.

Corollary 13 ([16]). Assume (208)–(210) hold, and

lim sup
ζ→∞

1
(ζ − ζ0)m

∫ ζ

ζ0

(ζ − s)m

(
φ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)δ1(s, T)ψ2(s)
r1(s)

−
[

2φ(s)ψ(s)Γ(1− κ)δ1(s, T) + r1(s)φ′(s)

]2

×
(

4Γ(1− κ)φ(s)δ1(s, T)r1(s)

)−1)
ds = ∞, (215)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (216)
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Corollary 14 ([16]). Assume (208)–(210) hold, and

lim sup
ζ→∞

1
(ln ζ − ln ζ0)

∫ ζ

ζ0

(ln ζ − ln s)(
φ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)δ1(s, T)ψ2(s)
r1(s)

−
[

2φ(s)ψ(s)Γ(1− κ)δ1(s, T) + r1(s)φ′(s)

]2

×
(

4Γ(1− κ)φ(s)δ1(s, T)r1(s)

)−1)
ds = ∞, (217)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (218)

Xu [17] established several oscillation criteria for nonlinear fractional differential
equations of the form(

p1(ζ)
[
(r1(ζ)Dκ

−u(ζ))′
]η)′

− F
(

ζ,
∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, t ≥ t0 > 0, (219)

where 0 < κ < 1, η is a quotient of odd positive integers, p1 ∈ C1([ζ0, ∞),R+),
r1 ∈ C2([ζ0, ∞),R+), ∫ ∞

ζ0

ds

p
1
η

1 (s)
= ∞,

∫ ∞

ζ0

ds
r1(s)

= ∞,

F(ζ, G) ∈ C([ζ0, ∞)×R,R), there exists a function q1 ∈ C([ζ0, ∞),R+) such that

F(ζ, G)

Gη ≥ q1(ζ), G 6= 0, u 6= 0, ζ ≥ ζ0.

Denote by

B(ζ1, ζ) =
∫ ζ

ζ1

p
− 1

η

1 (s)ds. (220)

Theorem 71 ([17]). Assume

∫ ∞

ζ0

1
r1(ξ)

∫ ∞

ξ

[
1

p1(τ)

∫ ∞

τ
q(s)ds

] 1
η

dτdξ = ∞, (221)

holds, and there exist a function b ∈ C1([ζ0, ∞),R+) such that

∫ ∞

ζ

[
b(s)q(s)− 1

(η + 1)η+1

(
b′+(s)
b(s)

)η+1

×
b(s)rη

1 (s)
[Γ(1− κ)B(ζ2, s)]η

]
ds = ∞, (222)

for all sufficiently large constants t2 and T, where b′+(s) = max{b′(s), 0}, B(ζ2, t) is defined for
t ≥ T ≥ ζ2 ≥ ζ0 > 0. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (223)
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Corollary 15 ([17]). Assume (221) holds, and there exist a function b ∈ C1([ζ0, ∞),R+) such that∫ ∞

ζ
b(s)q(s)ds = ∞, (224)

and ∫ ∞

ζ

(
b′+(s)
b(s)

)η+1 b(s)rη
1 (s)

Bη(ζ2, s)
ds < ∞, (225)

for all sufficiently large constants ζ2 and T, where b′+(s) = max{b′(s), 0}, B(ζ2, ζ) is defined for
ζ ≥ T ≥ ζ2 ≥ ζ0 > 0. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (226)

Theorem 72 ([17]). Assume (221) holds. Furthermore, assume that there exist two functions
b ∈ C1([ζ0, ∞),R+) and a function H ∈ C1(D,R), where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0}
such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ2

b(s)

×
(

H(ζ, s)q(s)−
rη

1 (s)h
η+1
+ (ζ, s)

(η + 1)η+1[Γ(1− κ)B(ζ2, s)H(ζ, s)]η

)
ds = ∞, (227)

where t2 is sufficiently large, ζ ≥ ζ2 ≥ ζ0,

H′s(ζ, s) +
b′+(s)
b(s)

H(ζ, s) = h(ζ, s), (228)

and h+(ζ, s) = max{h(ζ, s), 0}. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (229)

Corollary 16 ([17]). Assume (221) holds. Furthermore, assume that there exist two functions
b ∈ C1([ζ0, ∞),R+) and a function H ∈ C1(D,R), where D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0}
such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ2

b(s)H(ζ, s)q(s)ds = ∞, (230)

and

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ2

b(s)rη
1 (s)h

η+1
+ (ζ, s)

[B(ζ2, s)H(ζ, s)]η
ds < ∞, (231)

where t2 is sufficiently large, ζ ≥ ζ2 ≥ ζ0. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (232)
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With an appropriate choice of the functions H and b, one can derive from Theorem 72
a number of oscillation criteria for (219). Let H(ζ, s) = ln(ζ/s), (ζ, s) ∈ D, and b(ζ) = ζυ.
Then, we obtain the following corollary.

Corollary 17 ([17]). Assume (221) holds. If

lim sup
ζ→∞

1
ln t

∫ ζ

ζ2

sυ

×
(

ln(ζ/s)q(s)−
rη

1 (s)h
η+1
+ (ζ, s)

(η + 1)η+1[Γ(1− κ)B(ζ2, s) ln(ζ/s)]η

)
ds = ∞, (233)

where ζ2 is sufficiently large, ζ ≥ ζ2 ≥ ζ0. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (234)

Corollary 18 ([17]). Assume (221) holds. If

lim sup
ζ→∞

1
ln ζ

∫ ζ

ζ2

sυq(s) ln(ζ/s)ds = ∞, (235)

and

lim sup
ζ→∞

1
ln ζ

∫ ζ

ζ2

sυrη
1 (s)[(1/s)(υ ln(ζ/s)− 1)]η+1

[B(ζ2, s) ln(ζ/s)]η
ds < ∞, (236)

where ζ2 is sufficiently large, ζ ≥ ζ2 ≥ ζ0. Then every solution of (219) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (237)

By the generalized Riccati transformation technique, Zheng et al. [18] obtained oscilla-
tion criteria for a class of nonlinear fractional differential equations of the form(

p1(ζ)
[
(r1(ζ)Dκ

−u(ζ))′
]η)′

+ p(ζ)
[
(r1(ζ)Dκ

−u(ζ))′
]η

− q(ζ)f
(∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ ≥ ζ0, (238)

where 0 < κ < 1, η is a quotient of odd positive integers, p1 ∈ C1([ζ0, ∞),R+),
r1 ∈ C2([ζ0, ∞),R+), p, q ∈ C([ζ0, ∞),R+), and f : R → R is a continuous function
such that u f (u) > 0 and f(u)/(uη) ≥ K for a certain constant K > 0 and for all u 6= 0.
Denote by

A(ζ) =
∫ ζ

ζ0

p(s)
p1(s)

ds, (239)

θ1(ζ, a) =
∫ ζ

a

1[
eA(s)p1(s)

] 1
η

ds, (240)

θ2(ζ, a) =
∫ ζ

a

θ1(s, a)
r1(s)

ds. (241)

Theorem 73 ([18]). Assume
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∫ ∞

ζ0

1[
eA(s)p1(s)

] 1
η

ds = ∞, (242)

∫ ∞

ζ0

1
r1(s)

ds = ∞, (243)

∫ ∞

ζ0

1
r1(ξ)

∫ ∞

ξ

[
1

eA(τ)p1(τ)

∫ ∞

τ
eA(s)q(s)ds

] 1
η

dτdξ = ∞, (244)

hold, and there exist two functions φ ∈ C1([t0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) such that

∫ ∞

ζ

(
Kφ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)θ1(s, T)ψ1+ 1
η (s)

r1(s)

−
[
(η + 1)ψ

1
η (s)φ(s)Γ(1− κ)θ1(s, T) + r1(s)φ′(s)

]η+1

×
(
(η + 1)η+1[Γ(1− κ)φ(s)θ1(s, T)]ηr1(s)

)−1)
ds = ∞, (245)

for all sufficiently large T. Then every solution of (238) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (246)

Theorem 74 ([18]). Assume (242)–(244) hold. Furthermore, assume there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) such that

∫ ∞

ζ

(
Kφ(s)q(s)eA(s) − φ(s)ψ′(s) +

ηφ(s)(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T)ψ2(s)

r1(s)

−
[

2ηψ(s)φ(s)(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T) + r1(s)φ′(s)

]2

×
(

4(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T)r1(s)φ(s)

)−1)
ds = ∞, (247)

for all sufficiently large T. Then every solution of (238) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (248)

Theorem 75 ([18]). Assume (242)–(244) hold. Furthermore, assume that there exist two func-
tions φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) and a function H ∈ C1(D,R), where
D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,
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where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

H(ζ, s)

(
Kφ(s)q(s)eA(s) − φ(s)ψ′(s) +

φ(s)Γ(1− κ)θ1(s, T)ψ1+ 1
η (s)

r1(s)

−
[
(η + 1)ψ

1
η (s)φ(s)Γ(1− κ)θ1(s, T) + r1(s)φ′(s)

]η+1

×
(
(η + 1)η+1[Γ(1− κ)φ(s)θ1(s, T)]ηr1(s)

)−1)
ds = ∞, (249)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (250)

Theorem 76 ([18]). Assume (242)–(244) hold. Furthermore, assume that there exist two func-
tions φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) and a function H ∈ C1(D,R), where
D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

H(ζ, s)(
Kφ(s)q(s)eA(s) − φ(s)ψ′(s) +

ηφ(s)(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T)ψ2(s)

r1(s)

−
[

2ηψ(s)φ(s)(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T) + r1(s)φ′(s)

]2

×
(

4(Γ(1− κ))ηθ1(s, T)θη−1
2 (s, T)r1(s)φ(s)

)−1)
ds = ∞, (251)

for all sufficiently large T. Then every solution of (204) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (252)

In Theorems 75 and 76, if we take H(ζ, s) for some special functions such as (ζ − s)m

or ln ζ
s , then we can obtain some corollaries.

By the generalized Riccati transformation technique, Xiang et al. [19] obtained oscilla-
tion criteria for a class of nonlinear fractional differential equations of the form

(
p1(ζ)[r2(ζ) + r1(ζ)Dκ

−u(ζ)]η
)′ − q(ζ)f

(∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ ≥ ζ0 > 0, (253)
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where 0 < κ < 1, η is a quotient of odd positive integers, p1 ∈ C([ζ0, ∞),R+), r1 ∈
C([ζ0, ∞),R+), q ∈ C([ζ0, ∞),R+), r2 is a nonnegative continuous function on [ζ0, ∞), and
f : R → R is a continuous function such that f(u)/(uη) ≥ K for a certain constant K > 0
and for all u 6= 0. There exists N > 0, q(ζ) ≤ N, for ζ ∈ [ζ0, ∞).

Theorem 77 ([19]). Assume that ∫ ∞

ζ0

r2(ζ)

r1(ζ)
dt < ∞,

∫ ∞

ζ0

ds

p
1
η

1 (s)
= ∞,

hold and there exist a function b ∈ C1([ζ0, ∞),R+) such that

lim sup
ζ→∞

∫ ζ

ζ0

[
Kb(s)q(s)−

(
b′+(s)
b(s)

)η+1

× Nηb(s)p1(s)
(η + 1)η+1[Γ(1− κ)]η

]
ds = ∞, (254)

where b′+(s) = max{b′(s), 0}. Then (253) is oscillatory.

Theorem 78 ([19]). Assume that ∫ ∞

ζ0

r2(ζ)

r1(ζ)
dt < ∞,

∫ ∞

ζ0

ds

p
1
η

1 (s)
= ∞,

hold and there exist two functions b ∈ C1([ζ0, ∞),R+) and a function H ∈ C1(D,R), where
D = {(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ−1

ζ0

×
(

KH(ζ, s)b(s)q(s)−
Nηb(s)p1(s)h

η+1
+ (ζ, s)

(η + 1)η+1[Γ(1− κ)H(ζ, s)]η

)
ds = ∞, (255)

where

H′s(ζ, s) +
b′+(s)
b(s)

H(ζ, s) = h(ζ, s), (256)

and h+(ζ, s) = max{h(ζ, s), 0}. Then (253) is oscillatory.

Corollary 19. Assume that ∫ ∞

ζ0

r2(ζ)

r1(ζ)
dt < ∞,

∫ ∞

ζ0

ds

p
1
η

1 (s)
< ∞, (257)

and (
r2(ζ)

r1(ζ)

)′
6= 0, ζ ∈ [ζ0, ∞). (258)
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hold, and there exist a function b ∈ C1([ζ0, ∞),R+) such that (254) holds. Furthermore, assume
that, for every constant T ≥ ζ0,

∫ ∞

ζ

[
1

p1(ζ)

∫ ζ

ζ
q(s)ds

] 1
η

dζ = ∞. (259)

Then every solution u of (253) is oscillatory or satisfies

lim
ζ→∞

d
dζ

[∫ ∞

ζ
(s− ζ)−κu(s)ds

]
= 0, (260)

or
lim

ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (261)

Corollary 20. Assume that ∫ ∞

ζ0

r2(ζ)

r1(ζ)
dζ < ∞,

(257) and (258) hold. Let b(ζ) and H(ζ, s) be defined as in Theorem 78 such that (255) holds.
Further, assume that, for every constant T ≥ ζ0, (259) holds. Then every solution u of (253) is
oscillatory or satisfies

lim
ζ→∞

d
dζ

[∫ ∞

ζ
(s− ζ)−κu(s)ds

]
= 0, (262)

or
lim

ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (263)

With an appropriate choice of the functions H and b, one can derive from Theorem 77,
Theorem 78, Corollary 19 and Corollary 20 a number of oscillation criteria for (253).

By the generalized Riccati transformation technique, Pan et al. [20] obtained oscillation
criteria for a class of nonlinear fractional differential equations of the form(

p1(ζ)
[
[r1(ζ)g(Dκ

−u(ζ))]′
]η)′

− F
(

ζ,
∫ ∞

ζ
(s− ζ)−κu(s)ds

)
= 0, ζ > 0, (264)

where 0 < κ < 1, η is a quotient of odd positive integers, p1 ∈ C1([ζ0, ∞),R+), r1 ∈
C2([ζ0, ∞),R+); ∫ ∞

ζ0

ds

p
1
η

1 (s)
= ∞;

g ∈ C2(R,R); g is an increasing function and there exists positive k such that

u
g(u)

≥ k > 0, ug(u) 6= 0.

Moreover, g−1 : R→ R is a continuous function such that

ug−1(u) > 0, u 6= 0,

and there exists some positive constant γ1 such that

g−1(uv) ≥ γ1g−1(u)g−1(v), uv 6= 0;

F(ζ, G) ∈ C([t0, ∞)×R,R), there exists a function q1 ∈ C([ζ0, ∞),R+) such that

F(ζ, G)

Gη ≥ q1(ζ), G 6= 0, u 6= 0, ζ ≥ ζ0.
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Denote by

A1(ζ1, ζ) =
∫ ζ

ζ1

1

[p1(s)]
1
η

ds, (265)

A2(ζ1, ζ) =
∫ ζ

ζ1

A1(ζ1, s)
r1(s)

ds. (266)

Theorem 79 ([20]). Assume∫ ∞

ζ0

g−1
(

1
r1(s)

)
ds = ∞, (267)

∫ ∞

ζ0

g−1

(
1

r1(ξ)

∫ ∞

ξ

[
1

p1(τ)

∫ ∞

τ
q(s)ds

] 1
η

dτ

)
dξ = ∞, (268)

hold, and there exist two functions φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) such that

∫ ∞

ζ

(
φ(s)q(s)− φ(s)ψ′(s) +

kφ(s)Γ(1− κ)A1(ζ, s)ψ1+ 1
η (s)

r1(s)

−
[
(η + 1)kψ

1
η (s)φ(s)Γ(1− κ)A1(ζ, s) + r1(s)φ′(s)

]η+1

×
(
(η + 1)η+1[kΓ(1− κ)φ(s)A1(ζ, s)]ηr1(s)

)−1)
ds = ∞, (269)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (270)

Theorem 80 ([20]). Assume (267)–(268) hold. Furthermore, assume there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) such that

∫ ∞

ζ

(
φ(s)q(s)− φ(s)ψ′(s) +

ηφ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)ψ2(s)

r1(s)

−
[

2ηψ(s)φ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s) + r1(s)φ′(s)

]2

×
(

4η(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)r1(s)φ(s)

)−1)
ds = ∞, (271)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (272)

Theorem 81 ([20]). Assume (267)–(268) hold. Furthermore, assume that there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) and a function H ∈ C1(D,R), where D =
{(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,
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where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

H(ζ, s)

(
φ(s)q(s)− φ(s)ψ′(s) +

kφ(s)Γ(1− κ)A1(ζ, s)ψ1+ 1
η (s)

r1(s)

−
[
(η + 1)kψ

1
η (s)φ(s)Γ(1− κ)A1(ζ, s) + r1(s)φ′(s)

]η+1

×
(
(η + 1)η+1[kΓ(1− κ)φ(s)A1(ζ, s)]ηr1(s)

)−1)
ds = ∞, (273)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (274)

Theorem 82 ([20]). Assume (267)–(268) hold. Furthermore, assume that there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)) and a function H ∈ C1(D,R), where D =
{(ζ, s) ∈ R2 : ζ ≥ s ≥ ζ0} such that

H(ζ, ζ) = 0 for ζ ≥ ζ0, H(ζ, s) > 0 for (ζ, s) ∈ D0,

where D0 = {(ζ, s) ∈ R2 : ζ > s ≥ ζ0} and H has a nonpositive continuous partial derivative
H′s(ζ, s) = ∂H(ζ,s)

∂s on D0 with respect to the second variable and satisfies

lim sup
ζ→∞

1
H(ζ, ζ0)

∫ ζ

ζ0

H(ζ, s)(
φ(s)q(s)− φ(s)ψ′(s) +

ηφ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)ψ2(s)

r1(s)

−
[

2ηψ(s)φ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s) + r1(s)φ′(s)

]2

×
(

4η(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)r1(s)φ(s)

)−1)
ds = ∞, (275)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (276)

In Theorems 81 and 82, if we take H(ζ, s) for some special functions such as ln ζ
s , then

we can obtain the following two corollaries.
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Corollary 21 ([20]). Assume (267)–(268) hold. Furthermore, assume that there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)). If

lim sup
ζ→∞

1
ln ζ − ln ζ0

∫ ζ

ζ0

ln(ζ/s)

(
φ(s)q(s)− φ(s)ψ′(s) +

kφ(s)Γ(1− κ)A1(ζ, s)ψ1+ 1
η (s)

r1(s)

−
[
(η + 1)kψ

1
η (s)φ(s)Γ(1− κ)A1(ζ, s) + r1(s)φ′(s)

]η+1

×
(
(η + 1)η+1[kΓ(1− κ)φ(s)A1(ζ, s)]ηr1(s)

)−1)
ds = ∞, (277)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (278)

Corollary 22 ([20]). Assume (267)–(268) hold. Furthermore, assume that there exist two functions
φ ∈ C1([ζ0, ∞),R+) and ψ ∈ C1([ζ0, ∞), [0, ∞)). If

lim sup
ζ→∞

1
ln ζ − ln ζ0

∫ ζ

ζ0

ln(ζ/s)(
φ(s)q(s)− φ(s)ψ′(s) +

ηφ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)ψ2(s)

r1(s)

−
[

2ηψ(s)φ(s)(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s) + r1(s)φ′(s)

]2

×
(

4η(kΓ(1− κ))η A1(ζ, s)Aη−1
2 (ζ, s)r1(s)φ(s)

)−1)
ds = ∞, (279)

for all sufficiently large T. Then every solution of (264) is oscillatory or satisfies

lim
ζ→∞

∫ ∞

ζ
(s− ζ)−κu(s)ds = 0. (280)

4. Oscillation Results via Hadamard Operators

Definition 4 ([1,2]). Let (a, b), (0 ≤ a < b ≤ ∞), be a finite or infinite interval of the half-axis
R+, and let <(κ) > 0 and υ ∈ C. The (left-sided) Hadamard fractional integral Iκ

a of order κ ∈ C,
<(κ) > 0, is defined by

Iκ
a f(ζ) =

1
Γ(κ)

∫ ζ

a

[
ln
(

ζ

s

)]κ−1 f(s)
s

ds, a < ζ < b.

The (left-sided) Hadamard fractional derivative Dκ
a of order κ ∈ C, <(κ) ≥ 0, is defined by

Dκ
a f(ζ) =

(
ζ

d
dt

)n
In−κ

a f(ζ), n = [<(κ)] + 1, a < ζ < b.
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The (left-sided) Caputo type Hadamard fractional derivative CDκ
a of order κ ∈ C, <(κ) ≥ 0,

is defined by

CDκ
a f(ζ) = In−κ

a

(
ζ

d
dt

)n
f(ζ), n = [<(κ)] + 1, a < ζ < b.

Abdalla et al. [21] established sufficient conditions for the oscillation of solutions of
the following fractional differential equations in the frame of left Hadamard fractional
derivatives in the Riemann–Liouville and the Caputo settings.{

Dκ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a,

limζ→a+ D
κ−j
a u(ζ) = bj, j = 1, 2, · · · , n,

(281)

and 
CDκ

a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a,(
ζ d

dt

)k
u(a) = bk, k = 0, 1, 2, · · · , n− 1,

(282)

where n = dκe, <(κ) ≥ 0, b0, b1, · · · , bn ∈ R; f1, f2 ∈ C([a, ∞)×R,R), and v ∈ C([a, ∞),R).

Theorem 83 ([21]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 v(s)
s

ds = −∞, (283)

and

lim sup
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 v(s)
s

ds = ∞, (284)

for every sufficiently large T, then (281) is oscillatory.

Theorem 84 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s) + Hβ,γ(s)
]

s
ds = −∞, (285)

and

lim sup
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s)− Hβ,γ(s)
]

s
ds = ∞, (286)

for every sufficiently large T, where

Hβ,γ(s) =
β− γ

γ
[p1(s)]

γ
γ−β

[
γp2(s)

β

] β
β−γ

, (287)

then (281) is oscillatory.

Theorem 85 ([21]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with β < γ.
If

lim inf
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s)− Hβ,γ(s)
]

s
ds = −∞, (288)

and

lim sup
ζ→∞

(ln ζ)1−κ
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s) + Hβ,γ(s)
]

s
ds = ∞, (289)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (281) is oscillatory.
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Theorem 86 ([21]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 v(s)
s

ds = −∞, (290)

and

lim sup
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 v(s)
s

ds = ∞, (291)

for every sufficiently large T, then (282) is oscillatory.

Theorem 87 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s) + Hβ,γ(s)
]

s
ds = −∞, (292)

and

lim sup
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s)− Hβ,γ(s)
]

s
ds = ∞, (293)

for every sufficiently large T, where Hβ,γ is defined by (287), then (282) is oscillatory.

Theorem 88 ([21]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with β < γ.
If

lim inf
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s)− Hβ,γ(s)
]

s
ds = −∞, (294)

and

lim sup
ζ→∞

(ln ζ)1−n
∫ ζ

T

(
ln

ζ

s

)κ−1 [v(s) + Hβ,γ(s)
]

s
ds = ∞, (295)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (282) is oscillatory.

5. Oscillation Results via Conformable Operators

Definition 5 ([23–25]). The left conformable derivative starting from a of a function f : [a, ∞)→
R of order 0 < ρ ≤ 1 is defined by

Dρ
a f(ζ) = lim

ε→0

f(ζ + ε(ζ − a)1−ρ)− f(ζ)

ε
. (296)

If Dρ
a f(ζ) exists on (a, b), then

Dρ
a f(a) = lim

ζ→a+
Dρ

a f(ζ).

If f is differentiable, then

Dρ
a f(ζ) = (ζ − a)1−ρf′(ζ).

The corresponding left conformable integral is defined as

Iρ
a f(ζ) =

∫ ζ

a
f(s)(s− a)ρ−1ds, 0 < ρ ≤ 1. (297)

Definition 6 ([23–25]). The left conformable integral operator is defined by

Iκ,ρ
a f(ζ) =

1
Γ(κ)

∫ ζ

a

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1

f(s)(s− a)ρ−1ds, (298)



Fractal Fract. 2022, 6, 466 39 of 49

where κ ∈ C, <(κ) ≥ 0.

Definition 7 ([23–25]). The left fractional conformable derivative of order κ ∈ C, <(κ) ≥ 0, in
the Riemann–Liouville setting is defined by

Dκ,ρ
a f(ζ) = Dn,ρ

a I
n−κ,ρ
a f(ζ), (299)

where n = d<(κ)e, Dn,ρ
a = Dρ

aD
ρ
a · · · D

ρ
a (n times), Dρ

a is the left conformable differential operator
presented in Definition 5.

Definition 8 ([23–25]). The left fractional conformable derivative of order κ ∈ C, <(κ) ≥ 0, in
the Caputo setting is defined by

Dκ,ρ
a f(ζ) = In−κ,ρ

a Dn,ρ
a f(ζ), (300)

where n = d<(κ)e, Dn,ρ
a = Dρ

aD
ρ
a · · · D

ρ
a (n times), Dρ

a is the left conformable differential operator
presented in Definition 5.

Abdalla et al. [26] established sufficient conditions for the oscillation of solutions of
the following fractional differential equations in the frame of left Hadamard fractional
derivatives in the Riemann–Liouville and the Caputo settings.{

Dκ,ρ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,

limζ→a+ I
j−κ,ρ
a u(ζ) = bj, j = 1, 2, · · · , n,

(301)

and {
CDκ,ρ

a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,
Dρ,ku(a) = bk, k = 0, 1, 2, · · · , n− 1,

(302)

where n = dκe, <(κ) ≥ 0, 0 < ρ ≤ 1; b0, b1, · · · , bn ∈ R; f1, f2 ∈ C([a, ∞)× R,R), and
v ∈ C([a, ∞),R).

Theorem 89 ([26]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 v(s)
(s− a)1−ρ

ds = −∞, (303)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 v(s)
(s− a)1−ρ

ds = ∞, (304)

for every sufficiently large T, then (301) is oscillatory.

Theorem 90 ([26]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s) + Hβ,γ(s)
]

(s− a)1−ρ
ds = −∞, (305)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s)− Hβ,γ(s)
]

(s− a)1−ρ
ds = ∞, (306)

for every sufficiently large T, where Hβ,γ is defined by (287), then (301) is oscillatory.
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Theorem 91 ([26]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with β < γ.
If

lim inf
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s)− Hβ,γ(s)
]

(s− a)1−ρ
ds = −∞, (307)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s) + Hβ,γ(s)
]

(s− a)1−ρ
ds = ∞, (308)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (301) is oscillatory.

Theorem 92 ([26]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 v(s)
(s− a)1−ρ

ds = −∞, (309)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 v(s)
(s− a)1−ρ

ds = ∞, (310)

for every sufficiently large T, then (302) is oscillatory.

Theorem 93 ([26]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s) + Hβ,γ(s)
]

(s− a)1−ρ
ds = −∞, (311)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s)− Hβ,γ(s)
]

(s− a)1−ρ
ds = ∞, (312)

for every sufficiently large T, where Hβ,γ is defined by (287), then (302) is oscillatory.

Theorem 94 ([26]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with β < γ.
If

lim inf
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s)− Hβ,γ(s)
]

(s− a)1−ρ
ds = −∞, (313)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1 [v(s) + Hβ,γ(s)
]

(s− a)1−ρ
ds = ∞, (314)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (302) is oscillatory.

Motivated by the works in Reference 20 of [3,7,26], Aphithana et al. [27] studied forced
oscillatory properties of solutions to the conformable initial value problem with damping
in the Riemann–Liouville and the Caputo settings as follows:{

D1+κ,ρ
a u + p(ζ)Dκ,ρ

a u + q(ζ)f(u) = g(ζ), ζ > a ≥ 0,

limζ→a+ I
j−κ,ρ
a u(ζ) = bj, j = 1, 2, · · · , n,

(315)
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and {
CD1+κ,ρ

a u + p(ζ)CDκ,ρ
a u + q(ζ)f(u) = g(ζ), ζ > a ≥ 0,

Dρ,ku(a) = bk, k = 0, 1, 2, · · · , n− 1,
(316)

where n = dκe, <(κ) ≥ 0, 0 < ρ ≤ 1; b0, b1, · · · , bn ∈ R; p, g ∈ C(R+,R), q ∈ C(R+,R+),
and f ∈ C(R,R) such that

f(u)
u

> 0, u 6= 0.

Theorem 95 ([27]). If

lim inf
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1

×

M + I1,ρ
ζ1

(g(s)V(s))

V(s)

 ds
(s− a)1−ρ

= −∞, (317)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−κ ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1

×

M + I1,ρ
ζ1

(g(s)V(s))

V(s)

 ds
(s− a)1−ρ

= ∞, (318)

for every sufficiently large T, where

V(ζ) = exp
[∫ ζ

ζ1

(s− a)ρ−1ds
]

, ζ1 > a, (319)

and
M = Dκ,ρ

a u(ζ1)V(ζ1) (320)

then (315) is oscillatory.

Theorem 96 ([27]). If

lim inf
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1

×

M∗ + I1,ρ
ζ1

(g(s)V(s))

V(s)

 ds
(s− a)1−ρ

= −∞, (321)

and

lim sup
ζ→∞

(
ζρ

ρ

)1−n ∫ ζ

T

(
(ζ − a)ρ − (s− a)ρ

ρ

)κ−1

×

M∗ + I1,ρ
ζ1

(g(s)V(s))

V(s)

 ds
(s− a)1−ρ

= ∞, (322)

for every sufficiently large T, where V is defined as in (319) and

M∗ =C Dκ,ρ
a u(ζ1)V(ζ1) (323)

then (316) is oscillatory.
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6. Oscillation Results via Generalized Proportional Operators

Definition 9 ([28]). For ρ ∈ (0, 1], κ ∈ C, <(κ) ≥ 0, the generalized proportional fractional
integral of f of order κ is

Iκ,ρ
a f(ζ) =

1
ρκΓ(κ)

∫ ζ

a
e

ρ−1
ρ (ζ−s)

f(s)(ζ − s)κ−1 f (s)ds. (324)

Definition 10 ([28]). For ρ ∈ (0, 1], κ ∈ C, <(κ) ≥ 0, n = [<(κ)] + 1, the generalized
proportional fractional derivative of Riemann–Liouville type of f of order κ is

Dκ,ρ
a f(ζ) = Dn,ρIn−κ,ρ

a f(ζ), (325)

where Dn,ρ = DρDρ · · · Dρ(n times), Dρ is the proportional derivative defined in [29].

Definition 11 ([28]). For ρ ∈ (0, 1], κ ∈ C, <(κ) ≥ 0, n = [<(κ)] + 1, the generalized
proportional fractional derivative of Caputo type of f of order κ is

Dκ,ρ
a f(ζ) = Dn,ρIn−κ,ρ

a f(ζ), (326)

where Dn,ρ = DρDρ · · · Dρ(n times), Dρ is the proportional derivative defined in [29].

Sudsutad et al. [22] established several oscillation criteria of solutions for the general-
ized proportional fractional differential equation with initial conditions of the form{

Dκ,ρ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,

limζ→a+ I
j−κ,ρ
a u(ζ) = bj, j = 1, 2, · · · , n,

(327)

and {
CDκ,ρ

a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,
Dk,ρu(a) = bk, k = 0, 1, 2, · · · , n− 1,

(328)

where n = dκe, <(κ) ≥ 0, 0 < ρ ≤ 1; b0, b1, · · · , bn ∈ R; f1, f2 ∈ C([a, ∞)× R,R), and
v ∈ C([a, ∞),R).

Theorem 97 ([22]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1v(s)ds = −∞, (329)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1v(s)ds = ∞, (330)

for every sufficiently large T, then (327) is oscillatory.

Theorem 98 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s) + Hβ,γ(s)
]
ds = −∞, (331)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s)− Hβ,γ(s)
]
ds = ∞, (332)

for every sufficiently large T, where Hβ,γ is defined by (287), then (327) is oscillatory.
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Theorem 99 ([22]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with β < γ.
If

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s) + Hβ,γ(s)
]
ds = −∞, (333)

and

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s)− Hβ,γ(s)
]
ds = ∞, (334)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (327) is oscillatory.

Theorem 100 ([22]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1v(s)ds = −∞, (335)

and

lim sup
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1v(s)ds = ∞, (336)

for every sufficiently large T, then (328) is oscillatory.

Theorem 101 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s) + Hβ,γ(s)
]
ds = −∞, (337)

and

lim sup
ζ→∞

t1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s)− Hβ,γ(s)
]
ds = ∞, (338)

for every sufficiently large T, where where Hβ,γ is defined by (287), then (328) is oscillatory.

Theorem 102 ([22]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with
β < γ. If

lim sup
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s) + Hβ,γ(s)
]
ds = −∞, (339)

and

lim inf
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1[v(s)− Hβ,γ(s)
]
ds = ∞, (340)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (328) is oscillatory.

In continuation to the above work, Alzabut et al. [30] established some sufficient
conditions for forced oscillation criteria of all solutions of the generalized proportional
fractional initial value problem with damping term of the form:{

D1+κ,ρ
a u + p(ζ)Dκ,ρ

a u + q(ζ)f(u) = g(ζ), ζ > a ≥ 0,

limζ→a+ I
j−κ,ρ
a u(ζ) = bj, j = 1, 2, · · · , n,

(341)

and {
CD1+κ,ρ

a u + p(ζ)CDκ,ρ
a u + q(ζ)f(u) = g(ζ), ζ > a ≥ 0,

Dk,ρu(a) = bk, k = 0, 1, 2, · · · , n− 1,
(342)
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where n = dκe, <(κ) ≥ 0, 0 < ρ ≤ 1; b0, b1, · · · , bn ∈ R; p, g ∈ C(R+,R), q ∈ C(R+,R+),
and f ∈ C(R,R) such that

f(u)
u

> 0, u 6= 0.

The following results improve and generalize the oscillation results in [27].

Theorem 103 ([30]). If

lim inf
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1

 e
ρ−1

ρ (s−t1)M + I1,ρ
ζ1

(ρg(s)V(s))

V(s)

ds = −∞, (343)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1

 e
ρ−1

ρ (s−ζ1)M + I1,ρ
ζ1

(ρg(s)V(s))

V(s)

ds = ∞, (344)

for every sufficiently large T, where

V(ζ) = exp
[∫ ζ

ζ1

ρp(s)− (1− ρ)

ρ
ds
]

, (345)

and
M = Dκ,ρ

ζ1
u(ζ1)V(ζ1) (346)

then (341) is oscillatory.

Theorem 104 ([30]). If

lim inf
ζ→∞

ζ1−n
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1

 e
ρ−1

ρ (s−ζ1)M∗ + I1,ρ
ζ1

(ρg(s)V(s))

V(s)

ds = −∞, (347)

and

lim sup
ζ→∞

ζ1−κ
∫ ζ

T
e

ρ−1
ρ (ζ−s)

(ζ − s)κ−1

 e
ρ−1

ρ (s−ζ1)M ∗+I1,ρ
ζ1

(ρg(s)V(s))

V(s)

ds = ∞, (348)

for every sufficiently large T, where V is defined as in (345) and

M∗ =C Dκ,ρ
a u(a)V(a) (349)

then (342) is oscillatory.

Remark 5. If we put ρ = 1 in Theorem 103 and Theorem 104, then they reduce to Theorem 95 and
Theorem 96, respectively.

7. Oscillation Results via Fractional Operators Involving Mittag–Leffler Kernel

Definition 12 ([31]). Let f ∈ H1(a, b), a < b, and 0 < κ < 1, then the left fractional integral
with Mittag–Leffler nonsingular kernel is defined by

ABIκ
a f(ζ) =

1− κ

B(κ)
f (ζ) +

κ

B(κ)
Iκ

a f(ζ), (350)
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where B(κ) > 0 is a normalization function satisfying B(0) = B(1) = 1 and Iκ
a is the κ-th order

left-sided Riemann–Liouville fractional integral.

Definition 13 ([31]). The left Caputo fractional derivative with Mittag–Leffler nonsingular kernel
is defined by

ABCDκ
a f(ζ) =

B(κ)
1− κ

∫ ζ

a
f′(s)Eκ

[
−κ

(ζ − s)κ

1− κ

]
ds, (351)

where Eκ(w) is the Mittag–Leffler function with one parameter defined by

Eκ(w) =
∞

∑
n=0

wn

Γ(κn + 1)
, w ∈ C, <(κ) > 0.

Abdalla et al. [31] derived sufficient conditions to prove the oscillation for solutions of
Caputo fractional differential equations with Mittag–Leffler nonsingular kernel of the form{

ABCDκ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a,

u(k)(a) = bk, k = 0, 1, 2, · · · , n− 1,
(352)

where n < κ ≤ n + 1, b0, b1, · · · , bn−1 ∈ R; f1, f2 ∈ C([a, ∞)×R,R), and v ∈ C([a, ∞),R).

Theorem 105 ([31]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

ζ−n
[

Γ(κ)
1− κ + n
B(κ − n)

In
a v(ζ) +

κ − n
B(κ − n)

∫ ζ

T
(ζ − s)κ−1v(s)ds

]
= −∞, (353)

and

lim sup
ζ→∞

ζ−n
[

Γ(κ)
1− κ + n
B(κ − n)

In
a v(ζ) +

κ − n
B(κ − n)

∫ ζ

T
(ζ − s)κ−1v(s)ds

]
= ∞, (354)

for every sufficiently large T, then (352) is oscillatory.

Theorem 106 ([31]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

ζ−n

[
Γ(κ)

1− κ + n
B(κ − n)

In
a [v(ζ) + Hβ,γ(ζ)]

+
κ − n

B(κ − n)

∫ ζ

T
(ζ − s)κ−1[v(s) + Hβ,γ(s)

]
ds = −∞, (355)

and

lim sup
ζ→∞

ζ−n

[
Γ(κ)

1− κ + n
B(κ − n)

In
a [v(ζ) + Hβ,γ(ζ)]

+
κ − n

B(κ − n)

∫ ζ

T
(ζ − s)κ−1[v(s)− Hβ,γ(s)

]
ds = ∞, (356)

for every sufficiently large T, where Hβ,γ is defined by (287), then (352) is oscillatory.
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Theorem 107 ([22]). Let κ ≥ and suppose that the assumptions (A1) and (A3) hold with β < γ.
If

lim inf
ζ→∞

ζ−n

[
Γ(κ)

1− κ + n
B(κ − n)

In
a [v(ζ) + Hβ,γ(ζ)]

+
κ − n

B(κ − n)

∫ ζ

T
(ζ − s)κ−1[v(s)− Hβ,γ(s)

]
ds = −∞, (357)

and

lim sup
ζ→∞

ζ−n

[
Γ(κ)

1− κ + n
B(κ − n)

In
a [v(ζ) + Hβ,γ(ζ)]

+
κ − n

B(κ − n)

∫ ζ

T
(ζ − s)κ−1[v(s) + Hβ,γ(s)

]
ds = ∞, (358)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (352) is oscillatory.

8. Oscillation Results via General Riemann–Liouville and Caputo Operators

Definition 14 ([32]). Let κ > 0, I = [a, b] be a finite or infinite interval, f an integrable function
defined on I and ψ ∈ C1(I) an increasing function such that ψ′(s) 6= 0 for all s ∈ I. Fractional
integrals and fractional derivatives of a function f with respect to another function ψ are defined

Iκ,ψ
a f(ζ) =

1
Γ(κ)

∫ ζ

a
ψ′(s)(ψ(ζ)− ψ(s))κ−1f(s)ds, ζ > a,

and

Dκ,ψ
a f(ζ) =

(
1

ψ′(ζ)

d
dt

)n
In−κ,ψ

a f(ζ), n = dκe, ζ > a.

Definition 15 ([32]). Let κ > 0, n ∈ N, I is the interval −∞ ≤ a < b ≤ ∞, f , ψ ∈ Cn(I) such
that ψ is an increasing function such that ψ′(s) 6= 0 for all s ∈ I. The left ψ-Caputo fractional
derivative of f of order κ is defined by

CDκ,ψ
a f(ζ) = In−κ,ψ

a

(
1

ψ′(ζ)

d
dt

)n
f(ζ).

Abdalla et al. [32] studied the oscillation of general fractional differential equations of
the form {

Dκ,ψ
a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,

limζ→a+ D
κ−j,ψ
a u(ζ) = bj, j = 1, 2, · · · , n,

(359)

and {
CDκ,ψ

a u + f1(ζ, u) = v(ζ) + f2(ζ, u), ζ > a ≥ 0,
Dk,ψu(a) = bk, k = 0, 1, 2, · · · , n− 1,

(360)

where n = dκe, <(κ) ≥ 0, b0, b1, · · · , bn ∈ R; f1, f2 ∈ C([a, ∞)×R,R), and v ∈ C([a, ∞),R).

Theorem 108 ([32]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1v(s)ds = −∞, (361)
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and

lim sup
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1v(s)ds = ∞, (362)

for every sufficiently large T, then (359) is oscillatory.

Theorem 109 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s) + Hβ,γ(s)

]
ds = −∞, (363)

and

lim sup
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s)− Hβ,γ(s)

]
ds = ∞, (364)

for every sufficiently large T, where Hβ,γ is defined by (287), then (359) is oscillatory.

Theorem 110 ([22]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with
β < γ. If

lim sup
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s) + Hβ,γ(s)

]
ds = ∞, (365)

and

lim inf
ζ→∞

(ψ(ζ))1−κ
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s)− Hβ,γ(s)

]
ds = −∞, (366)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (359) is oscillatory.

Remark 6. If we let ψ(ζ) = ζ, ψ(ζ) = ln ζ and ψ(ζ) = (ζ−a)ρ

ρ then we recover the Riemann–
Liouville and Hadamard fractional oscillation results in Reference 20 of [3,21,26], respectively.

Theorem 111 ([32]). Let f2 = 0 and condition (H 1) holds. If

lim inf
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1v(s)ds = −∞, (367)

and

lim sup
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1v(s)ds = ∞, (368)

for every sufficiently large T, then (360) is oscillatory.

Theorem 112 ([22]). Let the assumptions (H 1) and (H 2) hold with β > γ. If

lim inf
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s) + Hβ,γ(s)

]
ds = −∞, (369)

and

lim sup
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s)− Hβ,γ(s)

]
ds = ∞, (370)

for every sufficiently large T, where Hβ,γ is defined by (287), then (360) is oscillatory.
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Theorem 113 ([22]). Let κ ≥ 1 and suppose that the assumptions (H 1) and (H 3) hold with
β < γ. If

lim sup
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s) + Hβ,γ(s)

]
ds = ∞, (371)

and

lim inf
ζ→∞

(ψ(ζ))1−n
∫ ζ

ζ
ψ′(s)(ψ(ζ)− ψ(s))κ−1[v(s)− Hβ,γ(s)

]
ds = −∞, (372)

for every sufficiently large T, where Hβ,γ is defined by (287), then every bounded solution of the
problem (360) is oscillatory.

Remark 7. If we let ψ(ζ) = ζ, ψ(ζ) = ln ζ and ψ(ζ) = (ζ−a)ρ

ρ then we recover the Riemann–
Liouville and Hadamard fractional oscillation results in the frame of Caputo in Reference 20
of [3,21,26], respectively.
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