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Abstract: In the present paper, PT-symmetric extension of the fifth-order Korteweg-de Vries-like
equation are investigated. Several special equations with PT symmetry are obtained by choosing
different values, for which their symmetries are obtained simultaneously. In particular, for the
particular equation, its conservation laws are obtained, including conservation of momentum and
conservation of energy. Reciprocal Bäcklund transformations of conservation laws of momentum and
energy are presented for the first time. The important thing is that for the special case of ε = 3, the
corresponding time fractional case are studied by Lie group method. And what is interesting is that
the symmetry of the time fractional equation is obtained, and based on the symmetry, this equation is
reduced to a fractional ordinary differential equation. Finally, for the general case, the symmetry of
this equation is obtained, and based on the symmetry, the reduced equation is presented. Through
the results obtained in this paper, it can be found that the Lie group method is a very effective method,
which can be used to deal with many models in natural phenomena.

Keywords: PT-symmetric; fifth-order Korteweg-de vries-like equation; symmetry analysis; conservation
laws

1. Introduction

The authors [1] considered the complex PT-symmetric extension of the classical
Korteweg-de Vries (KdV) equation

ut − iu(iux)
ε + uxxx = 0, (1)

where i is the imaginary unit, they discussed the features of these equations for ε = 0, 1, 3,
2n + 1. Indeed, the classical KdV equation is PT symmetric, however is not symmetric under
P or T. PT symmetric quantum mechanics is related to many integrable models [1–3]. If ε = 1,
this situation is the classical KdV equation, which has been studied in a large amount of
papers. For more description on the classical KdV equation, see [1] and references therein.

Based on the results of [1], the following fifth-order KdV-like equation will be consid-
ered in the present paper

ut − iu(iux)
ε + αuxxx + βuxxxxx = 0, (2)

it is clear that this equation is also PT symmetric. This equation includes fifth order non-
linear dispersion term. If β = 0, it reduced to Equation (3) [1]. While α = 0, this equation
becomes the fifth-order KdV equation. In general, objectively speaking, higher order equa-
tions are more difficult to handle than lower order equations. This is because we know that
the higher the order of the equation, the more difficult it will be to calculate and the longer
it will take to process. Indeed, there are many nonlinear natural phenomena that might be
more reasonably described using higher order nonlinear evolution equations (NLEEs).
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Because of the importance of NLEEs, there are many approaches there to deal with
them, some of which include but are not limited to, for example, the Hirota bilinear
method [4], the inverse scattering transformation method [5], Darboux transformations [6],
the structure-preserving method [7–9], the Lie symmetry method [10–18], and so on.

If ε = 1 for Equation (2), it is the general Kawahara equation. There have been many
papers have investigated Kawahara type equations, including exact solutions, symmetry,
etc. Kawahara [19] derived this equation. The author [20] studied solitary wave solution
for the generalized Kawahara equation. New solitons solutions and periodic solutions
are derived in [21]. Nonlinear self-adjointness of a generalized fifth-order KdV equation
are studied in [22]. The author [23] considered symmetry analysis and exact solutions
to the fifth-order KdV types of equations. Homotopy analysis method is used to study
the Kawahara equation [24]. New analytical cnoidal and solitary wave solutions of the
Extended Kawahara equation are presented in [25].

From the known literature, for the PT-symmetric extension of the higher-order fifth-
order KdV equation, so far, there is no corresponding references to study this equation. In
view of this, this paper uses the symmetry method to systematically study this equation.
For different parameters of ε, the symmetry of these equations are investigated separately,
and especially for ε = 1, the conservation law of this equation are derived. The interesting
thing is that the reciprocal Bäcklund transformations of the conservation of momentum
and energy are presented for this equation.

In Section 2, symmetry analysis and conservation laws of this Equation (2) for ε = 1
are presented. In Section 3, symmetry analysis and travelling wave solutions for ε = 0
are displayed. Symmetry analysis for ε = 3 are derived, and the time fractional form of
this equation is studied in Section 4. Symmetry analysis and reductions for ε = 2n + 1 are
given in Section 5. In the last Section 6, the conclusion of this paper is obtained.

2. Symmetry Analysis and Conservation Laws for ε = 1
2.1. Symmetry Analysis

If ε = 1, one can get

ut + u(ux) + αuxxx + βuxxxxx = 0, (3)

this is the general Kawahara equation [22,23,26–29], the Lie algebra is spanned by the
following vector fields

V1 = t
∂

∂x
+

∂

∂u
, V2 =

∂

∂t
, V3 =

∂

∂x
. (4)

Additionally, one can get the high order Lie-Bäcklund symmetries as follows

ηu = c2tux + c3uux + c1ux + c3uxxx + c3uxxxxx − c2. (5)

2.2. Conservation Laws

For the one-dimensional case, the conservation law can be written in the follow-
ing form

Tt + Tx = 0, (6)

using the method proposed in [11], the following multiplier can be obtained

Λ = c1ut − c1x + c2uxxxx + c2
α

β
uxx + c2

u2

2β
+ c3u + c4, (7)

for this multiplier, one can get the following conservation laws:
Conservation of momentum P:

∂t(u) + ∂x

(
1
2

u2 + αuxx + βuxxxx

)
= 0, (8)
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thus,
d
dt

P = 0, P =
∫ ∞

−∞
udx. (9)

Conservation of Energy E:

∂t

(
1
2

u2
)
+ ∂x

(
1
3

u3 + αuuxx + βuuxxxx −
1
2

αu2
x +

1
2

βu2
xx − βuxuxxx

)
= 0, (10)

thus,
d
dt

E = 0, E =
∫ ∞

−∞
u2dx. (11)

In addition, the other two conservation laws are

Tt =
1
2

u2t− ux,

Tx =
1
3

u3t− 1
2

u2x + αutuxx + βutuxxxx −
1
2

αtu2
x − βtuxuxxx

+
1
2

βtu2
xx + αux − αxuxx + βuxxx − xβuxxxx,

(12)

and

Tt =
1

6β
u
(

3αuxx + 3βuxxxx + u2
)

,

Tx =
1

8β

(
4α2u2

xx + 8αβuxxuxxxx + 4αu2uxx + 4β2u2
xxxx + 4βu2uxxxx + u4 − 4αuutx

+ 4αutux − 4βuutxxx + 4βutuxxx − 4βutxuxx + 4βutxxux).

(13)

2.3. Reciprocal Bäcklund Transformations to Conservation of Momentum and Energy

In order to get reciprocal Bäcklund transformations to conservation of Momentum
and Energy, we consider the following results [30]

(Tt)′t′ + (Tx)′x′ = 0,
∂

∂t′
=

F
T

∂

∂x
+

∂

∂t
,

∂

∂x′
=

1
T

∂

∂x
.

(14)

From this transformation, it should be possible to obtain the following statement:

Corollary 1. Reciprocal Bäcklund transformations to conservation of Momentum{
(Tt)′ = 1

u ,

(Tx)′ = − ( 1
2 u2+αuxx+βuxxxx)

u .
(15)

Proof. First, one has

(Tt)′t′ =

(
1
2 u2 + αuxx + βuxxxx

)
u

−ux

u2 +
−ut

u2

=
−
(

1
2 u2 + αuxx + βuxxxx

)
ux − uut

u3 ,

(Tx)′x′ =
1
u

−
(

1
2 u2 + αuxx + βuxxxx

)
u


x

=

−
(

1
2 u2 + αuxx + βuxxxx

)
x
u + ux

(
1
2 u2 + αuxx + βuxxxx

)
u3 .

(16)
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Thus,

(Tt)′t′ + (Tx)′x′ =
−
(

1
2 u2 + αuxx + βuxxxx

)
ux − uut

u3

+
−
(

1
2 u2 + αuxx + βuxxxx

)
x
u + ux

(
1
2 u2 + αuxx + βuxxxx

)
u3

=
−uut −

(
1
2 u2 + αuxx + βuxxxx

)
x
u

u3 = 0.

(17)

In the same proof process, one can get

Corollary 2. Reciprocal Bäcklund transformations to conservation of energy:{
(Tt)′ = 2

u2 ,

(Tx)′ = − 2( 1
3 u3+αuuxx+βuuxxxx− 1

2 αu2
x+

1
2 βu2

xx−βuxuxxx)
u2 .

(18)

3. Symmetry Analysis and Travelling Wave Solutions for ε = 0
3.1. Symmetry Analysis

While ε = 0, one has

ut − iu + αuxxx + βuxxxxx = 0, (19)

using the transformation
u(x, t) = eitv(x, t), (20)

one obtains the following linear partial differential equation (PDE):

vt + αvxxx + βvxxxxx = 0, (21)

as it is a linear equation, it contains an infinite number of conservation laws.
The corresponding vector field can be obtained as follows

V1 = v
∂

∂v
, V2 =

∂

∂t
, V3 =

∂

∂x
, V4 = F

∂

∂v
, (22)

where F satisfy the following PDE:

Ft + αFxxx + βFxxxxx = 0. (23)

3.2. Travelling Wave Solutions

For the travelling wave transformation V2 + λV3, the invariant and invariant func-
tions are

ξ = x− λt, v = v(ξ), (24)

substituting Equation (24) into Equation (21), one has

−λv′ + αv′′′ + βv(5) = 0, (25)

solving this equation, one can get

v(ξ) =c1e−
1
2

√
−2 β

(
α+
√

α2+4 β λ

)
ξ

β + c2e
1
2

√
−2 β

(
α+
√

α2+4 β λ

)
ξ

β

+ c3e−
1
2

√
2

√
β

(
−α+
√

α2+4 β λ

)
ξ

β + c4e
1
2

√
2

√
β

(
−α+
√

α2+4 β λ

)
ξ

β ,

(26)
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where c1, c2, c3, c4 are constants. Putting (26) into (20), one can get

u(x, t) = eit

c1e−
1
2

√
−2 β

(
α+
√

α2+4 β λ

)
(x−λt)

β + c2e
1
2

√
−2 β

(
α+
√

α2+4 β λ

)
(x−λt)

β

+ c3e−
1
2

√
2

√
β

(
−α+
√

α2+4 β λ

)
(x−λt)

β + c4e
1
2

√
2

√
β

(
−α+
√

α2+4 β λ

)
(x−λt)

β

.

(27)

4. Symmetry Analysis for ε = 3

When ε = 3, from Equation (2), one should obtain the following PDE

ut − u(ux)
3 + αuxxx + βuxxxxx = 0, (28)

unfortunately, we cannot write this equation in the form of a conservation law. However, it
is still possible to study this equation using the symmetry method.

If α 6= 0, β = 0, this equation reduces approximately to Equation (10) in [1]

ut − u(ux)
3 + αuxxx = 0. (29)

After tedious calculations, one can obtain

V1 = x
∂

∂x
+ 3t

∂

∂t
, V2 =

∂

∂t
, V3 =

∂

∂x
. (30)

When α = 0, β 6= 0, the following vector fields are derived

V1 = 3x
∂

∂x
+ 15t

∂

∂t
− 2u

∂

∂u
, V2 =

∂

∂t
, V3 =

∂

∂x
. (31)

While α 6= 0, β 6= 0, one gets the vector fields are as follows:

V1 =
∂

∂t
, V2 =

∂

∂x
. (32)

Symmetry Analysis for Time Fractional form of Equation (28)

For this case, one can have

uγ
t − u(ux)

3 + αuxxx + βuxxxxx = 0, (33)

where 0 < γ ≤ 1, it is clear that this equation is a new PDE. If γ = 1, in the discussion above,
this equation has PT symmetry. To study the more general case, we again use Lie symmetry
to study this equation. Generally speaking, because this is a fractional differential equation,
due to the nature of fractional differential equations, if the Lie symmetry method is used to
study it, it is slightly different from the ordinary Lie symmetry method.

Firstly, considering the following one parameter Lie group of point transformations [31,32]

t∗ = t + ετ(x, t, u) + O(ε2),

x∗ = x + εξ(x, t, u) + O(ε2),

u∗ = u + εη(x, t, u) + O(ε2),
∂γū
∂t̄γ

=
∂γu
∂tγ

+ εη0
γ(x, t, u) + O(ε2),

∂3ū
∂x̄3 =

∂3u
∂x3 + εηxxx(x, t, u) + O(ε2),

∂5ū
∂x̄5 =

∂5u
∂x5 + εηxxxxx(x, t, u) + O(ε2),

(34)
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where

ηx = Dx(η)− uxDx(ξ)− utDx(τ),

ηxx = Dx(η
x)− uxtDx(τ)− uxxDx(ξ),

ηxxx = Dx(η
xx)− uxxtDx(τ)− uxxxDx(ξ),

ηxxxx = Dx(η
xxx)− uxxxtDx(τ)− uxxxxDx(ξ),

ηxxxxx = Dx(η
xxxx)− uxxxxtDx(τ)− uxxxxxDx(ξ),

(35)

where Dx is given by the following results

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxxx

∂

∂uxx
+ uxxxx

∂

∂uxxx
+ uxxxxx

∂

∂uxxxx
+ · · · , (36)

the infinitesimal generator is given by

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
. (37)

From [31,32], one has

η0
γ = Dγ

t (η)− γDt(τ)
∂γu
∂tγ
−

∞

∑
n=1

(
γ

n

)
Dn

t (ξ)Dγ−n
t (ux)−

∞

∑
n=1

(
γ

n + 1

)
Dn+1

t (τ)Dγ−n
t (u), (38)

and

Dγ
t (η) =

∂γη

∂tγ
+ ηu

∂γu
∂tγ
− u

∂γηu

∂tγ
+

∞

∑
n=1

(
γ

n

)
∂nηu

∂tn Dγ−n
t (u) + µ, (39)

where

µ =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
γ

n

)(
n

m

)(
k

r

)
1
k!

tn−γ

Γ(n + 1− γ)
[−u]r

∂m

∂tm [uk−r]
∂n−m+kη

∂tn−m∂uk , (40)

and

η0
γ =

∂γη

∂tγ
+ (ηu − γDt(τ))

∂γu
∂tγ
− u

∂γηu

∂tγ
+ µ

+
∞

∑
n=1

[(
γ
n

)
∂γηu

∂tγ
−
(

γ
n + 1

)
Dn+1

t (τ)

]
Dγ−n

t (u)

−
∞

∑
n=1

(
γ
n

)
Dn

t (ξ)Dγ−n
t (ux).

(41)

From the above analysis, it can be seen that, if α 6= 0, β 6= 0, for this general case, the
vector fields are shown by:

V1 =
∂

∂x
. (42)

When α 6= 0, β = 0, one can obtain the following equation

uγ
t − u(ux)

3 + αuxxx = 0, (43)

if γ = 1, it is can be found in paper [1]. Based on the above analysis, one can get

V1 = x
∂

∂x
+ 3t

∂

∂t
, V2 =

∂

∂x
. (44)

While α = 0, β 6= 0, one has

uγ
t − u(ux)

3 + βuxxxxx = 0, (45)
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vector fields are presented as follows

V1 = 3xγ
∂

∂x
+ 15t

∂

∂t
− 2γu

∂

∂u
, V2 =

∂

∂x
. (46)

Now for the operator V1, one has the corresponding characteristic equations as follows

dx
3x

=
γdt
15t

=
−du
2u

, (47)

solving this equation generates the following similarity variable and functions

ξ = xt
−γ
5 , u = t

−2γ
15 f (ξ), (48)

using the Erdelyi-Kober fractional differential operator Pτ,α
β of order [31,32]

(Pτ,α
β g) :=

n−1

∏
j=0

(
τ + j− 1

β
ξ

d
dξ

)
(Kτ+α,n−α

β g)(ξ), (49)

n =

{
[α] + 1, α /∈ N,
α, α ∈ N,

(50)

and the Erdélyi-Kober fractional integral operator [31,32]

(Kτ,α
β g)(ξ) :=

{
1

Γ(α)

∫ ∞
1 (u− 1)α−1u−(τ+α)g(ξu

1
β )du, α > 0,

g(ξ), α = 0
(51)

one can reduce Equation (2) into an ordinary differential equation of fractional order
as follows (

P
1− 2γ

15−γ,γ
5
γ

f
)
(ξ) = uu3

ξ − β fξξξξξ . (52)

5. Symmetry Analysis and Reductions for ε = 2n + 1
5.1. Symmetry Analysis

When ε = 2n + 1 is an odd integer, for this case, one has

ut + (−1)nu(ux)
2n+1 + αuxxx + βuxxxxx = 0, (53)

for the general case, one can derive the following vector fields

V1 =
∂

∂t
, V2 =

∂

∂x
. (54)

5.2. Reductions

Case 1: V2
For this case, invariant and invariant functions are

ξ = x, u = u(ξ), (55)

substituting Equation (55) into Equation (53), one can get

(−1)nu
(
uξ

)2n+1
+ αuξξξ + βuξξξξξ = 0. (56)

Case 2: V1
In this case, one has invariant and invariant functions

τ = t, u = u(τ), (57)
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putting Equation (57) into Equation (53), one obtains

uτ = 0, (58)

from Equation (58) only a trivial solution can be obtained.
Case 3: V2 + λV3
It is clear that this is travelling wave transformation, one can get the invariant and

invariant functions are

ξ = x− λt, u = u(ξ), (59)

substituting Equation (59) into Equation (53), one has

−λuξ + (−1)nu
(
uξ

)2n+1
+ αuξξξ + βuξξξξξ = 0. (60)

6. Conclusions

In this paper, symmetries and PT-symmetric extension of the fifth-order KdV-like
equation are considered. Taking different values for ε, several different equations with PT
symmetry properties are obtained. And using the symmetry method, the symmetries of
these equations are obtained. In particular, for ε equal to 1, this equation was systematically
studied and its symmetry as well as conservation laws are obtained. It should be empha-
sized that the reciprocal Bäcklund transformations of conservation laws of momentum
and energy are derived. For the special case of ε = 3, the corresponding integer order
and fractional order symmetry are discussed, and for the time fractional order form, the
equation is simplified into a fractional order ordinary differential equation on the basis of
symmetry. Finally, the general case is considered, for which two symmetries are obtained.

In conclusion, this paper has shown the following two results, the first one is to
preserve the PT symmetry, and the second one is how to extend symmetry analysis to
fifth-order KdV-like equations. However for other cases such as variable coefficients, they
will be investigated in future work.
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