A New L2-Gradient Flow-Based Fractional-in-Space Modified Phase-Field Crystal Equation and Its Mass Conservative and Energy Stable Method
Abstract
:1. Introduction
2. -Gradient Flow-Based Fractional-In-Space Modified Phase-Field Crystal Equation
3. Mass Conservative and Energy Stable Method
Numerical Implementation
4. Numerical Experiments
4.1. Accuracy Test
4.2. Energy Stability Test
4.3. Phase Diagram in 2D
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stefanovic, P.; Haataja, M.; Provatas, N. Phase-field crystals with elastic interactions. Phys. Rev. Lett. 2006, 96, 225504. [Google Scholar] [CrossRef]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef]
- Wang, C.; Wise, S.M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 2011, 49, 945–969. [Google Scholar] [CrossRef]
- Akagi, G.; Schimperna, G.; Segatti, A. Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations. J. Differ. Equ. 2016, 261, 2935–2985. [Google Scholar] [CrossRef]
- Ainsworth, M.; Mao, Z. Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J. Numer. Anal. 2017, 55, 1689–1718. [Google Scholar] [CrossRef]
- Weng, Z.; Zhai, S.; Feng, X. A Fourier spectral method for fractional-in-space Cahn–Hilliard equation. Appl. Math. Model. 2017, 42, 462–477. [Google Scholar] [CrossRef]
- Bu, L.; Mei, L.; Hou, Y. Stable second-order schemes for the space-fractional Cahn–Hilliard and Allen–Cahn equations. Comput. Math. Appl. 2019, 78, 3485–3500. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Wang, H. Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation. J. Comput. Appl. Math. 2019, 356, 248–266. [Google Scholar] [CrossRef]
- Baskaran, A.; Hu, Z.; Lowengrub, J.S.; Wang, C.; Wise, S.M.; Zhou, P. Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 2013, 250, 270–292. [Google Scholar] [CrossRef]
- Galenko, P.K.; Gomez, H.; Kropotin, N.V.; Elder, K.R. Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. Phys. Rev. E 2013, 88, 013310. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Mohammadi, V. The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods. Comput. Methods Appl. Mech. Engrg. 2016, 298, 453–484. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. First- and second-order energy stable methods for the modified phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 2017, 321, 1–17. [Google Scholar] [CrossRef]
- Li, Q.; Mei, L.; Yang, X.; Li, Y. Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math. 2019, 45, 1551–1580. [Google Scholar] [CrossRef]
- Li, X.; Shen, J. Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. Sci. China Math. 2021, 1–18. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G.; Lee, J.-Y. Energy quadratization Runge–Kutta method for the modified phase field crystal equation. Model. Simul. Mater. Sci. Eng. 2022, 30, 024004. [Google Scholar] [CrossRef]
- Wise, S.M.; Wang, C.; Lowengrub, J.S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 2009, 47, 2269–2288. [Google Scholar] [CrossRef]
- Hu, Z.; Wise, S.M.; Wang, C.; Lowengrub, J.S. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 2009, 228, 5323–5339. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.G. Unconditionally energy stable second-order numerical scheme for the Allen–Cahn equation with a high-order polynomial free energy. Adv. Differ. Equ. 2021, 2021, 416. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G. A linear, high-order, and unconditionally energy stable scheme for the epitaxial thin film growth model without slope selection. Appl. Numer. Math. 2021, 163, 30–42. [Google Scholar] [CrossRef]
- Lee, H.G. A non-iterative and unconditionally energy stable method the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Appl. Math. Lett. 2022, 123, 107579. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. A high-order and unconditionally energy stable scheme for the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier. J. Sci. Comput. 2022, 90, 51. [Google Scholar] [CrossRef]
- Li, X.; Han, C.; Wang, Y. Novel patterns in fractional-in-space nonlinear coupled FitzHugh–Nagumo models with Riesz fractional derivative. Fractal Fract. 2022, 6, 136. [Google Scholar] [CrossRef]
- Elder, K.R.; Grant, M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 2004, 70, 051605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.G. A New L2-Gradient Flow-Based Fractional-in-Space Modified Phase-Field Crystal Equation and Its Mass Conservative and Energy Stable Method. Fractal Fract. 2022, 6, 472. https://doi.org/10.3390/fractalfract6090472
Lee HG. A New L2-Gradient Flow-Based Fractional-in-Space Modified Phase-Field Crystal Equation and Its Mass Conservative and Energy Stable Method. Fractal and Fractional. 2022; 6(9):472. https://doi.org/10.3390/fractalfract6090472
Chicago/Turabian StyleLee, Hyun Geun. 2022. "A New L2-Gradient Flow-Based Fractional-in-Space Modified Phase-Field Crystal Equation and Its Mass Conservative and Energy Stable Method" Fractal and Fractional 6, no. 9: 472. https://doi.org/10.3390/fractalfract6090472
APA StyleLee, H. G. (2022). A New L2-Gradient Flow-Based Fractional-in-Space Modified Phase-Field Crystal Equation and Its Mass Conservative and Energy Stable Method. Fractal and Fractional, 6(9), 472. https://doi.org/10.3390/fractalfract6090472