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Abstract: In this study, a rigorous mathematical approach used to compute an effective diameter
based on particle size distribution (PSD) has been presented that can predict the hydraulic conduc-
tivity of granular soils with enhanced rigor. The PSD was discretized based on an abstract interval
system of fractal entropy, while the effective diameter of soil was computed using the grading entropy
theory. The comparisons between current entropy-based effective diameter (DE) and those computed
using existing procedures show that the current DE can capture the particle size information of a
given soil more accurately than others. Subsequently, the proposed DE was successfully implicated
into Kozeny–Carman’s formula to deduce the saturated hydraulic conductivity of soils with enhanced
accuracy. The proposed model was tested using current and previously published experimental data
from literature. Not surprisingly, the results of the current model and those from previous experi-
mental studies were found to be consistent, which can sufficiently verify the proposed entropy-based
effective diameter model.

Keywords: effective particle diameter; fractal entropy; abstract interval; hydraulic coefficient

1. Introduction

The particle size distribution (PSD) curve is an important soil characteristic that is
widely used for preliminary estimates of numerous physical properties of granular soils,
such as potentials of internal erosion, particle breakage, sedimentation, and saturated
hydraulic conductivity, etc. [1–5]. For instance, Seelheim [6] and Hazen [7] pioneered the
determination of saturated hydraulic conductivity based on the semi-logarithmic PSD
curve. Ever since, several researchers have attempted to propose more rigorous and
accurate correlations, such as the semi-empirical method of Kozeny–Carman (henceforth
abbreviated as K-C), which combines soil properties, including the void ratio and specific
particle sizes, to predict saturated hydraulic conductivity [8]. Nevertheless, the differences
in the proportion and fraction of a PSD significantly affect the evaluation of sedimentary
mixtures, such as loess, paleosol, river sediments, and glacial deposits [9]. For instance, the
soil modulus extracted from a soil’s PSD also influences its mechanical properties, including
the shear strength and dynamic shear modulus [10]. Similarly, PSD is an important factor in
assessing the potential of the internal erosion of soils [3,11–14]. Lately, Indraratna et al. [15]
combined the PSD with the relative density considering the condition of particle packing
and proposed the meaningful constriction size distribution (CSD)-based method. Israr
and Zhang [16] adopted Loincz’s model [17] to extract full grading information through
entropy theory and proposed a fractal (grading) entropy-based method to promptly as well
as accurately assess the internal erosion potential of granular soils.

Thus far, several end-member modeling algorithms have been proposed for decom-
posing and extracting valuable information from the PSD curves of soils [18]. For example,
parametric curve-fitting, a statistical method such as the end-member modeling algorithm,
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has been used to identify the sub-populations of geological materials by decomposing its
PSD [19]. Similarly, Chapuis and Saucer [20] proposed a modal decomposition method
(MDM) to extract the sub-populations or modes from a soil’s PSD curve to deduce its
specific surface and to subsequently assess its internal erosion potential, while the PSD of
sediments was fitted by the gradient descent (GD) method. Nonetheless, the above methods
mainly account for a finer fraction of a non-uniform soil, whereas a coarser fraction is char-
acterized through additional mathematical models with certain fitting parameters, such as
the Gates–Gaudin–Schuhmann model, the Fuller model, the Gaudin–Meloy model (GMM),
and the Fredlund unimodal (FUM) [21]. Meanwhile, a set of characteristic diameters deter-
mined from a PSD such as D10, D15, D60, and D85 and the coefficients of uniformity and
curvature have been widely used in several geotechnical engineering applications (where
the numeric value represents the percentage finer by mass). For example, D15 and D85 are
widely adopted particle sizes in both filter design and the potential of internal instability
assessment criteria [22–27].

Based on a simple and semi-automated sampling procedure, Hazen [8] proposed
using D10 as a representative size of a PSD to capture its saturated hydraulic conductivity
(k), which was later adopted for capturing the heterogeneity of a soil mixture through the
coefficient of uniformity (Cu = D60/D10). Subsequently, several empirical formulae have
been developed for estimating k based on Hazen’s specific size D10 [1,28–30], D17 [31],
D20 [32], D50 [33,34], and D75 [35]. However, in the widely accepted Kozeny–Carman
(K-C) equation for k, an effective particle size is used instead of Hazen’s D10 [8]. This
effective particle size represents the entire PSD and is used for extracting material proper-
ties [19]; however, it is computed through complex procedures involving over-simplified
assumptions [8,36–41]. A brief review of some of the most adopted methods is given in
Appendix A.

Notably, the existing methods compute effective particle sizes based on different
particle sizes and their relative weightage in terms of the percentage finer on the PSD curve.
As an approximate and over-simplified approach, the PSD curves are plotted based on
the results of sieve analysis, while only specific sieve sizes are used in delineating the
distribution of particles. The accuracy of a PSD curve significantly depends on the interval
chosen between various particle sizes and their corresponding percentage finer by either
mass, number, or surface area. It is therefore recommended not to further simplify a given
PSD curve for deducing the approximate effective particle size to indirectly represent the
soil’s pore size distributions and hence the hydraulic conductivity. Thus, the current study
purports extracting PSD information more rigorously using the theory of grading entropy
to compute the effective diameter for direct use in the K-C formula to capture saturated
hydraulic conductivity with enhanced accuracy. The current proposition has been verified
using an independent experimental dataset to demonstrate its enhanced rigor and the
practical implication of this study has been demonstrated for utility to practitioners.

2. Effective Particle Diameter Based on Fractal Entropy

The effective particle size of a soil depends on the distribution of particle sizes and their
relative proportion in a PSD curve, which is generally obtained from sieve analysis. For
instance, the soil’s particle sizes are plotted against the percentage finer by the mass of those
particle sizes in a semi logarithmic coordinate system in order to obtain a PSD curve. Given
that the group of discrete data can be analyzed through either a frequency distribution or
cumulative frequency distribution diagram, wherein both number of discrete data intervals
and their sizes are important, not surprisingly, the discrete intervals of a group of data will
have a different impact on each dataset. For instance, a group of discrete data consisting of
a single class interval (too wide) would compromise a lot of useful information, whereas
the same dataset discretized into many small class intervals would yield a large amount
of sparse data, which may not be conducive for subsequent analysis. Nevertheless, the
entropy-based discretization method is an optimal solution [16]. In this paper, the grading
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entropy is used to discretize the PSD data to deduce a reasonable effective particle diameter
that can accurately represent the grading information of soils.

2.1. Interval Class Discretization Based on Grading Entropy

Discretization based on the grading entropy principal was applied on the results of
sieve analysis, whereby soil is divided into different class intervals (i.e., sieve opening
sizes) and the size of a discretized interval class is not fixed. For instance, Lőrincz et al. [42]
pointed out that the size of the subsequent interval class is twice the size of the former
class interval. For instance, for a given series of sieve openings 0.063, 0.125, 0.25, 0.5, 1,
2, 4, 8, ... mm, the class size multiple is 2, whereas the suggested size of the elementary
class interval class, also known as minimum soil particle size, remains d0 = 2−17 mm.
This sequence of the interval class constitutes the primary statistical interval class system
(referred to as the primary interval class), which is shown in the red brackets in Figure 1b.
To accurately extract information from each interval class, a primary interval class can be
sub-divided further into hypothetical secondary classes called an abstract interval system.
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Figure 1. Discretization method of (a) Kozeny’s effective diameter; and (b) abstract interval system
based on grading entropy.

According to the abstract interval system (Figure 2), the PSD of a soil can be discretized
into N different size interval classes, and the following formula can be obtained:

di = 2i−1d0, i = 1, 2, . . . N (1)



Fractal Fract. 2022, 6, 474 4 of 16

dij = di + (j − 1)d0, j = 1, 2, . . . Ci (2)

where di is the upper diameter size of the i interval class; dij is the upper diameter size of
the j imaginary cell within the i interval class; Ci is the number of imaginary cells within
the i interval class, and

Ci =
di+1 − di

d0
= 2i−1 (3)
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Figure 2. (a) Schematic diagram of grading entropy-based discretization method; and (b) PSD curve
discretized by using entropy-based method in semi logarithmic coordinate system (where C1–C10

and p1–p10 represent abstract fractions and relevant percentages, respectively).

Figure 2a shows the abstract size fraction system of the PSD curve shown previously
in Figure 1a, whereas Figure 2b demonstrates the application of the method of abstract
size fractions in a semi logarithmic coordinate system. It can be seen from the compar-
ison between Figures 1a and 2b that the information extracted by the grading entropy
discretization method is more comprehensive.

2.2. Effective Particle Diameter Based on Grading Entropy

Given that a PSD curve can be discretized into several different size interval classes by
using a series of data sequences (µij, dij) within each interval class that can be substituted
into Equation (A3), the effective particle diameter can be given by:

DE =
1

∑N
i=1 ∑Ci

j=1
µij

dij

=
1

∑N
i=1 ∑Ci

j=1
1

dij

pi
Ci

(4)
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where DE is the grading entropy-based effective particle diameter, µij is the probability of
the j imaginary cell within the i interval class, dij is the average diameter in the j imaginary
cell within the i interval class, and

dij =
3

1
di,j−1

+ 2
di,j−1+di,j

+ 1
di,j

(5)

The above equation assumes that the soil particles are spherical, which does not take
the shape factor into consideration. In this paper, the shape coefficient of Kovács [39] is
adopted to account for the particle shape. For simplicity, the values of the shape coeffi-
cient of some regular geometries αD are shown as follows: for sphere: αD = 6; for cube:
αD = 10.4; for octahedron: αD = 10.4; for tetrahedron: αD = 18; for other complicated
shapes, the values can be interpolated using these values.

3. Effective Particle Diameters for Different Soils

Considering the large variability of the non-uniformity coefficient and characteris-
tic particle size distribution (PSD) parameters of non-uniform soils, the effective parti-
cle size of both widely graded PSDs and gap-graded PSDs have been analyzed in the
following section:

3.1. Widely Graded Soils

As Figure 3 shows, a total of ten widely graded PSDs from Israr and Zhang [16] were
selected for analysis, and consist of various proportions of clay, silt, sand, and gravel. The
conventional grading parameters, such as D10, D50, and Cu, were used for the analysis in
this paper.
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Zhang [16], 2021).

Figure 4 presents the relative deviation data for 10 soils shown previously in Figure 3,
whereby two characteristic particle sizes D10 (Hazen’s effective particle size) and D50
(mean particle size on PSD curve) were plotted against their uniformity coefficients.

Apparently, there is no obvious correlation observed between either of the characteris-
tic particle sizes and the uniformity coefficient. However, with the increase in Cu values of
soils, a larger relative deviation is apparent in D50 values than D10; thus, the latter seems
to be a relatively more reasonable option to represent uniform soils bearing low uniformity
coefficients. Nevertheless, the relative deviation increases proportionally with the width of
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the PSD curve, thus indicating that neither of these sizes would effectively represent the
statistical distribution of a large number of particles in a wider PSD curve. It is noteworthy
that the particles finer than D10 and those coarser than D50 do not significantly influence
the flow through porous media [43]. Thus, there may exist a corresponding particle size
between D10 and D50 that can effectively represent and characterize both non-uniform
PSD curves and can be chosen as an optimum effective particle diameter.
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Figure 4. Relative deviation data of two characteristic particle sizes D10 (Hazen’s effective particle
size) and D50 (mean particle size on PSD curve) versus uniformity coefficients for 10 soils shown
previously in Figure 3.

Figure 5 shows effective particle diameters computed from different existing methods,
including the currently proposed approach in Equation (4), and plotted against the unifor-
mity coefficients of soils shown previously in Figure 3. Notably, the range between D10
and D50 is marked with a blue area for the reader’s convenience. The column height is the
grading entropy-based effective particle diameter, while other effective particle diameters
are marked with different markers. As shown, the grading entropy-based effective particle
diameters are all located in the middle of the blue area between D10 and D50. A total of
three effective particle diameters computed from the method of Carrier [8] were plotted
out of the blue region, whereas the rest were plotted inside but closer to the D10 size. This
shows that Carrier’s method exhibits a large variability and cannot reasonably represent
the widely graded PSD curves. Similarly, all values calculated from Fedorenko’s model
were plotted in the lower half of the blue region but closer to D10. Notably, the difference
between Fedorenko’s effective particle diameter and D10 gradually increases with the
increase in Cu, indicating that Fedorenko’s effective particle diameter can only represent
the PSD curve within a certain grading width. Nevertheless, Kozeny’s effective particle
diameter calculation method lacks a description of the discretization scheme and the size
of the interval class. Therefore, the calculated effective particle diameters obtained through
different size intervals vary significantly, while the size interval is not specified in the
literature [39]. For brevity, Figure 5 also shows the Kozeny’s effective particle diameter
computed with different interval sizes, where interval sizes of 2 mm and 0.01 mm are
marked with Kozeny-2 and Kozeny-0.01, respectively. The value of Kozeny’s effective
particle diameter with a large interval size (e.g., 2 mm) is too small, whereas that with a
small interval size (e.g., 0.01 mm) is close to the value of the entropy-based effective particle
diameter, with an exception (see soil with Cu = 2.4).
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Figure 5. Calculated effective particle diameter of 10 PSDs using different effective particle
diameter methods.

Figure 6 presents the values of Kozeny’s effective particle diameters computed for
the same 10 PSD curves shown previously in Figure 3 using different class interval sizes.
As shown, the calculated values of the Kozeny’s effective particle diameters decrease
with the increase in the discretized interval size, thus indicating that the interval size
has a great influence on the value of Kozeny’s effective particle diameter. In general, the
value of Kozeny’s effective particle diameter has large variability when its interval size
is large, which cannot represent the grading information of a PSD curve with reasonable
confidence. Nonetheless, it can effectively represent the information of the PSD of soil when
its interval size is small enough that it would consequently increase the computational
costs by manifolds. Furthermore, there is the same problem of Carrier’s effective particle
diameter in the discretization of the interval class.
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Figure 6. Values of Kozeny’s effective particle diameter of 10 PSDs in different interval sizes.

As Figure 7 shows, both Kozeny’s and Carrier’s methods are greatly affected by the
class interval size. For instance, with the increase in interval size, the value of Kozeny’s
effective diameter decreases gradually. This indicates that some grading information could
not be extracted due to larger interval classes, thus resulting in reduced accuracy. Similarly,
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Carrier’s effective diameter initially increases and then decreases with the increase in
interval size. Likewise, Feorenko’s method obtains relatively consistent values of effective
diameter sizes; however, this method is limited to relying on soil’s Cu values, which do not
apply to gap-graded soils. However, the values of grading entropy-based effective particle
diameter are not affected by the interval size and soil’s Cu values, owing to its abstract
interval system, which can transverse all of the grading size ranges to comprehensively
extract and consider grading information. Nevertheless, the values of entropy-based
effective particle diameter are stably located in the region between D10 and D50, which is
more reasonable than other methods.
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Figure 7. Values of different effective particle diameters computed from different methods for Soil-1
using different discretized interval sizes.

3.2. Gap-Graded Soils

Gap-graded soils exhibit a markedly higher potential of internal instability due to the
absence of certain particle sizes in their PSD curves, which distinguishes them from other
soils in terms of geo-mechanical and hydraulic properties [3,16,44]. It will induce large
computational errors when some characteristic particle sizes and information, such as D10,
D50, and Cu, are used to delineate hydraulic properties of gap-graded soils. For instance,
two gap-graded PSDs (Gap30, Gap50) and one continuous PSD (Con100) were considered
for analysis in this study (Figure 8). Notably, all three PSD curves have the same D50, but
different grading shapes. It is obvious that there will be a large error when using D50 as a
single characteristic diameter to deduce hydraulic conductivity or to assess the potential
for seepage failure. In addition, continuous PSD Con100 and gap-graded PSD Gap50 have
the same value of D10; therefore, should Hazen’s approach be used to mimic the hydraulic
conductivity of these two graded soils, the same value would be returned. This would not
be the case when hydraulic conductivity is determined through a laboratory experiment.

In this study, six gap-graded soils from Andrianatrehina et al. [45] and Li [46] were
selected for determining their effective particle diameter using existing and proposed
models. Figure 9 shows that the median particle size (D50) of gap-graded soils increases
exponentially with Cu; however, no obvious correlation was observed with the gap ratio
Gr (= coarser particle size of the gap/finer particle size of the gap). In addition, the values
of other effective particle diameter methods do not have any obvious regularity with both
Cu and Gr values, which is consistent with the results of widely graded soils discussed in
the previous section. Apparently, values of effective diameter from all four methods (i.e.,
Kozeny, Carrier, Fedorenko, and grading entropy) are plotted inside the region between
D10 and D50 (see Figure 9a).
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Figure 8. Two gap-graded and a continuous PSD curves for effective particle size computations using
existing plus methods.

Fractal Fract. 2021, 5, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. (a) Variations in gap ratio (Gr) and uniformity coefficient (Cu) versus soil particle sizes, and 
(b) enlarged view of highlighted inset of Figure 9a. 

4. Implication of Proposed Model into K-C Formula 
4.1. Modified K-C Formula Based on Grading Entropy Effective Diameter 

The K-C formula is a semi empirical model for estimating the saturated hydraulic 
conductivity of granular soils, and is given by [8,47]: 𝑘 = (𝛾𝜇)( 1𝐶୏ିେ)( 1𝑆଴ଶ) 𝑒ଷ1 + 𝑒 (6)

where 𝛾  is the unit weight of liquid; 𝜇  is the dynamic viscosity of liquid;  𝐶୏ିେ  is 
Kozeny–Carman’s empirical coefficient [8]; 𝑆଴ is the specific surface area per unit volume 
of soil particles; e is the void ratio. For uniform sphere particles, 𝐶୏ିେ=4.8±0.3, whereas, 
in other conditions, 𝐶୏ିେ is equal to 5. The calculation of the specific surface area 𝑆଴ is 
very important for the K-C formula. This study adopted the method of Chapuis and Au-
bertin [48], which assumes that the specific surface area per unit volume of approximately 
spherical and cubical soil particles [8,39] is: 𝑆଴ = 6/𝐷୉ (7)

Substituting Equation (7) into (6) yields: 𝑘 = 136 (𝛾𝜇)( 1𝐶௄ି஼) 𝐷ாଶ𝑒ଷ1 + 𝑒 (8)

Notably, the above formula does not take the particle shape factor into consideration. 
Therefore, when considering the influence of the shape factor on 𝑘, Equation (7) can take 
the following form: 

0 2 4 6 8 10 12

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0 10 20 30 40

D10

D50

Entropy

Kožney

Carrier

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35 40

Cu

Cu

Gr

Gr

Pa
rti

cl
e 

si
ze

 (m
m

)
Pa

rti
cl

e 
si

ze
 (m

m
)

(a)

(b)

Figure 9. (a) Variations in gap ratio (Gr) and uniformity coefficient (Cu) versus soil particle sizes, and
(b) enlarged view of highlighted inset of Figure 9a.

However, a closer look at this plot in Figure 9b shows that the values of both the
Carrier and Fedorenko plot closer to D10, whereas that of Kozeny is higher than both D10
and D50. This may be attributed to the fact that the discretized interval sizes of Carrier
and Kozeny are 2 mm and 0.01 mm, respectively. the larger the interval size, the lesser the
grading information extracted, thus resulting in smaller values from Carrier’s method and
relatively higher values from Kozeny’s method. Similarly, Fedorenko’s method depends
on Cu, which may be significantly affected by the width of the gap in gap-graded soils,
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thereby causing undesirably larger errors in computations. Not surprisingly, the results of
the current method are closer to those from Kozeny’s method due to an enhanced accuracy
of up to a 0.01 mm interval size, which shows that the current method may also be used for
gap-graded soils with enhanced confidence.

4. Implication of Proposed Model into K-C Formula
4.1. Modified K-C Formula Based on Grading Entropy Effective Diameter

The K-C formula is a semi empirical model for estimating the saturated hydraulic
conductivity of granular soils, and is given by [8,47]:

k = (
γ

µ
)(

1
CK−C

)(
1
S2

0
)

e3

1 + e
(6)

where γ is the unit weight of liquid; µ is the dynamic viscosity of liquid; CK−C is Kozeny–
Carman’s empirical coefficient [8]; S0 is the specific surface area per unit volume of soil
particles; e is the void ratio. For uniform sphere particles, CK−C = 4.8 ± 0.3, whereas, in
other conditions, CK−C is equal to 5. The calculation of the specific surface area S0 is very im-
portant for the K-C formula. This study adopted the method of Chapuis and Aubertin [48],
which assumes that the specific surface area per unit volume of approximately spherical
and cubical soil particles [8,39] is:

S0 = 6/DE (7)

Substituting Equation (7) into (6) yields:

k =
1

36
(

γ

µ
)(

1
CK−C

)
D2

Ee3

1 + e
(8)

Notably, the above formula does not take the particle shape factor into consideration.
Therefore, when considering the influence of the shape factor on k, Equation (7) can take
the following form:

S0 = SF/DE (9)

where SF is the shape coefficient, where a different shape has a different SF value. The SF
value is suggested as: spherical, SF= 6.0; rounded, SF = 6.1; worn, SF = 6.4; sharp, SF = 7.4;
angular, SF = 7.7. Now, substituting Equation (9) into (8), the K-C formula modified based
on grading entropy and the particle shape can be given by:

k =

(
γ

µ

)(
1

SF2CK−C

)
D2

Ee3

1 + e
(10)

4.2. Determination of Saturated Hydraulic Conductivity and Comparisons

Figure 10 shows that six soil PSD curves were used in this study for determining
their saturated hydraulic conductivity using the K-C formula with effective particle di-
ameters from four different methods, including the proposed approach. Adopted from
Choo et al. [49], the test parameters, including hydraulic conductivity results, could be
used for verification. For completeness, ASTM D2434 was adopted to deduce the hydraulic
conductivity of soils at room temperature to minimize losses in soil properties. The flow
was introduced against the gravity under constant head conditions, while the head drop
was temporally monitored through a series of manometers. The hydraulic conductiv-
ity was quantified as the slopes of flow velocity versus hydraulic gradient curves (i.e.,
Darcy’s law) [49].

As Figure 11 shows, the calculated values of hydraulic conductivity using Kozeny’s
effective particle diameter have a relatively larger error for all six soils (above 50%), while
some individual errors are even closer to 100%, as shown in Figure 11a. The errors between
the measured value and predicted values using Carrier’s method are also large, and the
maximum error even exceeds 200%, although there are two errors within 20% to 50%, as



Fractal Fract. 2022, 6, 474 11 of 16

shown in Figure 11b. These results may be because both Kozeny’s and Carrier’s effective
diameter have a relatively higher error caused by their uncertain discretized interval sizes
when used for calculating the hydraulic conductivity of soils. Likewise, the errors between
predicted values from Fedorenko’s method and the measured values remain between 20%
and 50% (see Figure 11c). Fedorenko’s effective particle diameter can be used to calculate
the hydraulic conductivity for uniform soils; however, caution must be exercised when
used for widely graded and gap-graded soils. It can be seen from Figure 11d that the errors
of the K-C formula based on the effective particle diameter proposed in this study are much
smaller (i.e., under 20%), such that the maximum error is 18.4%, whereas the minimum
error is only 0.05%. This clearly establishes that the prediction accuracy of the proposed
method is markedly higher than others.
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Figure 10. PSD curves adopted with permission from Choo et al. [49] used for permeability testing.
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Figure 11. Comparison of the calculated values using four different effective particle diameter
methods: (a) Kozeny’s effective particle diameter method, (b) Carrier’s method, (c) Fedorenko’s
method, and (d) current method proposed in this study.
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For further verification, a larger experimental dataset of 30 laboratory results of hy-
draulic conductivity tests were adopted from Feng et al. [50]. The proposed entropy-based
effective diameter was incorporated into the K-C formula and the hydraulic conductiv-
ity was estimated, which was then plotted against the experimental results, as shown in
Figure 12. It is noteworthy that there are only three points plotted beyond the ±50% error
line from the line of equality. For additional comparison, predictions from other methods
that exceed a ±50% error have been summarized elsewhere by Feng et al. [50].
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Figure 12. Verification of entropy-based effective particle diameter implications into K-C model
through permeability test data from literature.

For brevity, out of 30 predictions, Hazen’s [8] model results in 12 plotted beyond the
±50% error line, 9 for Shepherd’s model, 7 for Kozeny–Carman’s [8] model, 9 for Chapuis’
model [1], and 6 for Feng et al.’s [50] model. Not surprisingly, the prediction accuracy of
the hydraulic conductivity for the current model within the ±50% error range reaches 90%,
which is higher than all five methods. Through further comparison, it was found that 17
out of the 30 calculated results of the current method are within the ± 20% error line, which
means that the prediction accuracy within a 20% error range of this method exceeds 56%,
which further shows that the current K-C formula has a higher prediction accuracy.

Given that the proposed effective particle diameter based on grading entropy could
reasonably consider the grading information and particle shape of the soil, it could be
conveniently integrated into existing K-C formula for estimating the hydraulic conductivity
of a larger dataset of natural soils, thus showing a higher prediction accuracy than several
well-accepted existing criteria tested in this study. While the authors still believe that the
standard laboratory procedures remain the most reliable approaches, the proposed model
may be conveniently adopted for only a prompt and preliminary measurement of the
hydraulic conductivity of a soil.

5. Conclusions

Based on the discretization method of an abstract interval system of grading entropy,
a novel approach for determining effective particle diameter was proposed. It was then
compared with the existing effective diameter methods, such as Kozeny’s, Carrier’s, and
Fedorenko’s methods. In addition, the grading entropy-based effective particle diameter
was integrated into Kozeny–Carman’s formula for predicting the saturated hydraulic
conductivity of soils. The specific findings from this study are as follows.

Although both Kozeny’s and Carrier’s effective particle diameters could be applied
to non-uniform soils with an acceptable accuracy, they are sensitive to the discretized
interval size, as the calculation error will become higher with the increase in interval size.
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While effective particle sizes from Hazen (D10), Fedorenko (depending on Cu), and the
median diameter (D50) are easy to compute, they cannot reasonably represent the grading
information of widely and gap-graded soils, thus resulting in large errors. In contrast, the
effective particle size proposed here is based on the grading entropy theory, which can
more accurately represent the grading information of a soil’s PSD than others.

The proposed entropy-based effective particle size was successfully implicated into
the K-C model for determining the saturated hydraulic conductivity of granular soils. This
proposed implication could be comprehensively demonstrated through the analysis of a
large dataset from published studies, thereby showing above 90% and 56% accuracies with
standard errors of up to 50% and 20%, respectively. Nevertheless, the proposed grading
entropy-based effective particle size is expected to have broader implications in other
geo-hydraulic problems, such as internal erosion, where the authors envisage extending
this work further.
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Appendix A. Review of Existing Methods of Effective Diameter Computations

A particle size distribution (PSD) curve is a group of data with continuous characteris-
tics, wherein data are discretized into different groups. However, different discretization
methods may yield different analysis results. Notably, the existing data discretization meth-
ods mainly include the equal width method [50], equal frequency method [51,52], entropy-
based discretization method [53–55], clustering-based method [56], etc. Full et al. [57]
pointed out that a more rigorous approach for analyzing a PSD curve could be through
its discretization using interval classes. Nevertheless, discretization using variable size
interval classes can make up for the defect of equal size discretization, such as sparse data.
Not surprisingly, the existing approaches adopt characteristic methods based on discrete
data with equal size intervals, which may not capture the grading information fully for the
widely and gap-graded PSD curves.

Hazen [28] pioneered the empirical determination of saturated hydraulic conductivity
based on the soil’s particle size corresponding to a 10 percent finer by mass on the PSD
curve (D10). Assuming that the flow through soil is analogous to the pipe flow, it was
proposed that the finer fraction of a soil bears a close relationship with the pore sizes
governing the flow, and hence hydraulic conductivity. Consequently, the particle size D10
was presented as being an approximate representative of soil’s finer fraction and thus the
hydraulic conductivity, while the contributing physical characteristics of soil was given by
an empirical shape factor C, which varies with the soil type. For instance, it varies between
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120 to 150 and 40 to 80 for well-graded coarse sand and very fine sand, respectively. Later,
Fedorenko proposed an effective particle size based on Hazen’s D10 and soil’s uniformity
coefficient, given by Equation (A1):

DF = 1/2(D10 + D60)
√

D10/D60 (A1)

Kozeny [40] discretized the PSD curve into several uniform-sized intervals given by
the number n, with an average diameter of the i-th interval given by Di and the mass
percentage of this interval given by ∆Si. Assuming that all particles have same surface area
and volume ratio:

NπDh
2

NπDh
3/6

=
∑ Gi

γs
6

Di

∑ Gi
γs

=
∑ ∆Si

6
Di

∑ ∆Si
(A2)

Dh =
1

∑ ∆Si
Di

(A3)

where Dh is the effective particle diameter, N is the number of spherical particles in the soil
sample, γs is the unit weight of soil solids, Gi is the specific gravity of soil, and Di is the
mean particle size for adjacent intervals:

Di =
3

1
Di1

+ 2
Di1+Di2

+ 1
Di2

(A4)

Bear [37] proposed an effective particle diameter based on the harmonic mean value
of select particle sizes from the soil’s PSD curve:

Deff = ∑ mi/ ∑(mi/Di) (A5)

Subsequently, Koltermann and Gorelick [38] observed that the harmonic mean value
only bears a good relationship with the finer fraction of a PSD rather than the coarser
fraction. For instance, it may not represent the PSD curves with less fine contents rationally.
However, the geometric mean bears a stronger correlation with the PSD curves that have
larger coarse contents. Similarly, Vienken and Dietrich [41] presented the following formula
for the effective particle size:

de =
0.1

3∆gm
2dm

+ ∑i=n
i=2

∆gi
di

(A6)

where ∆gm is the weight of the finer fraction, ∆gi is the weight of the i-th class interval, dm

is the diameter of the last fraction, 1
di
= 1

2 ×
(

1
du

+ 1
dl

)
, du is the upper fraction limit, and

dl is the lower fraction limit.
More recently, Carrier [8] proposed an effective particle diameter for non-uniform

spherical particles from soil’s PSD as follows:

Deff = 100%/ ∑( fi/Dave,i) (A7)

where fi is the mass percentage (%) of particles between adjacent interval sizes;
Dave,i = D0.5

li ·D0.5
si , Dli, and Dsi is the larger and smaller fraction size in the i-th inter-

val, and Dave,i becomes the geometric average particle size of the i-th interval. Notably,
Carrier’s calculation procedure is like that presented by Kozney, with the only difference
being in the choice of the size of calculation intervals. In essence, considering the PSD
curve as log-linear in each interval size range, Carrier [8] corrected the calculation of the
geometric average particle size of each interval as follows [46,48]:

Dave,i = D0.404
li ·D0.595

si (A8)
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