The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete
Abstract
:1. Introduction
2. Materials and Analytical Methods
2.1. Raw Materials
2.2. Mix Proportions
2.3. Test Method
2.3.1. Compressive Strengths of the Face Slab Concretes
2.3.2. Impermeability
2.3.3. Pore Structure Analysis Using a Mercury Intrusion Porosimeter (MIP)
2.3.4. Calculation Method of the Fractal Dimension
3. Results and Discussion
3.1. Compressive Strength of the Face Slab Concrete
3.2. Water Permeability of the Face Slab Concrete
3.3. Pore Structures of the Face Slab Concrete
3.4. Pore Surface Fractal Dimensions (Ds) of the Face Slab Concretes
3.5. Pore Structural and Fractal Analysis of the Fly Ash’s Influence on the Permeability
3.5.1. Pore Structural Analysis of the Permeability
3.5.2. Fractal Analysis of the Permeability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Shan, K.; Xu, Y. Numerical simulation of mechanical characteristics of concrete face rockfill dam under complicated geological conditions. Arab. J. Geosci. 2019, 12, 674. [Google Scholar] [CrossRef]
- Cen, W.J.; Wen, L.S.; Zhang, Z.Q.; Xiong, K. Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams. Water Sci. Eng. 2016, 9, 205–211. [Google Scholar] [CrossRef]
- Salajegheh, P.; Habibagahi, G.; Sahraeian, S.M.S. Utilizing fiber reinforced concrete as the concrete face of rockfill dams. Ksec. J. Civ. Eng. 2019, 23, 1077–1086. [Google Scholar] [CrossRef]
- Qu, Y.Q.; Zou, D.G.; Kong, X.J.; Liu, J.M.; Zhang, Y.; Yu, X. Seismic damage performance of the steel fiber reinforced face slab in the concrete-faced rockfill dam. Soil Dyn. Earthq. Eng. 2019, 119, 320–330. [Google Scholar] [CrossRef]
- Ma, H.Q.; Chi, F.D. Technical progress on researches for the safety of high concrete-faced rockfill dams. Engineering 2016, 2, 332–339. [Google Scholar] [CrossRef]
- Qin, Z.P.; Lai, Y.M.; Tian, Y.; Yu, F. Frost-heaving mechanical model for concrete face slabs of earthen dams in cold regions. Cold Reg. Sci. Technol. 2019, 161, 91–98. [Google Scholar] [CrossRef]
- Huang, W.F.; Li, Z.J.; Han, H.W.; Jia, Q. Limit resistive forces from ice frozen to concrete-revetment interface of an inclined dam wall. Cold Reg. Sci. Technol. 2017, 141, 181–187. [Google Scholar] [CrossRef]
- Bouchenafa, O.; Hamzaoui, R.; Bennabi, A.; Colin, J. PCA effect on structure of fly ashes and slag obtained by mechanosynthesis. Applications: Mechanical performance of substituted paste CEMI + 50% slag/or fly ashes. Constr. Build. Mater. 2019, 203, 120–133. [Google Scholar] [CrossRef]
- Yang, B.B.; Liu, J.W.; Zhao, X.M.; Zheng, S. Evaporation and cracked soda soil improved by fly ash from recycled materials. Land Degrad. Dev. 2021, 32, 2823–2832. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, D.D.; Yuan, S.C.; Jin, L.C. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. Catena 2021, 204, 105457. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2 /Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Akid, A.S.M.; Hossain, S.; Munshi, M.I.U.; Elahi, M.M.A.; Sobuz, M.H.R.; Tam, V.W.Y.; Islam, M.S. Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. J. King Saud Univ.-Eng. Sci. 2021, accepted, in press. [Google Scholar] [CrossRef]
- Bogă, A.R.; Topçu, I.B. Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Constr. Build. Mater. 2012, 31, 258–264. [Google Scholar] [CrossRef]
- Liu, J.; Ou, G.; Qiu, Q.; Chen, X.; Hong, J.; Xing, F. Chloride transport and microstructure of concrete with/without fly ash under atmospheric chloride condition. Constr. Build. Mater. 2017, 146, 493–501. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Oktay, D.; Kabay, N.; Tufekci, M.M. Comparative experimental study of mortars incorporating pumice powder or fly ash. J. Mater. Civ. Eng. 2016, 28, 04015119. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.; Ge, Y. Water and chloride permeability research on ordinary cement mortar and concrete with compound admixture and fly ash. Constr. Build. Mater. 2016, 127, 556–564. [Google Scholar] [CrossRef]
- Yu, Z.; Ni, C.; Tang, M.; She, X. Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Constr. Build. Mater. 2018, 175, 458–466. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wang, T.; Zheng, Y.; Qiu, L.; Sun, S. Compressive strength and anti-chloride ion penetration assessment of geopolymer mortar merging PVA fiber and nano-SiO2 using RBF–BP composite neural network. Nanotechnol. Rev. 2022, 11, 1181–1192. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Yuan, Q.; Zhang, P.; Fang, H. Effects of ages on the ITZ microstructure of crumb rubber concrete. Constr. Build. Mater. 2020, 254, 119329. [Google Scholar] [CrossRef]
- Zheng, J.J.; Wong, H.S.; Buenfeld, N.R. Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model. Cem. Concr. Res. 2009, 39, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Metha, P.K.; Monterio, P.J.M. Concrete: Structure, Properties, and Materials, 4th ed.; McGraw-Hill: New York City, NY, USA, 2013. [Google Scholar]
- Wu, K.; Shi, H.S.; Xu, L.L.; Ye, G.; De Schutter, G. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cem. Concr. Res. 2016, 79, 243–256. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, M.Y.; Pang, X.Y.; Li, L.; Li, K.F. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 2013, 282, 302–307. [Google Scholar] [CrossRef]
- Yu, P.; Duan, Y.H.; Chen, E.; Tang, S.W.; Wang, X.R. Microstructure-based fractal models for heat and mass transport properties of cement paste. Int. J. Heat Mass Transf. 2018, 126, 432–447. [Google Scholar] [CrossRef]
- Zarnaghi, V.N.; Fouroghi-Asl, A.; Nourani, V.; Ma, H.Y. On the pore structures of lightweight self-compacting concrete containing silica fume. Constr. Build. Mater. 2018, 193, 557–564. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y. Application of fractals to evaluate fractures of rock due to mining. Fractal Fract. 2022, 6, 96. [Google Scholar] [CrossRef]
- Luan, C.; Wang, J.; Gao, J.; Wang, J.; Du, P.; Zhou, Z.; Huang, Y.; Du, S. Changes in fractal dimension and durability of ultra-high performance concrete (UHPC) with silica fume content. Arch. Civ. Mech. Eng. 2022, 22, 123. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, H.; Zhao, M.; Peng, W.; Hou, J. Prediction of permeability for fully weathered granite amended with fly ash by fractal dimensions. J. Sustain. Cem. Mater. 2022, 2, 2042750. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement, China. China Standard Press: Beijing, China, 2007.
- DL/T 5016-2011; Design Code for Concrete Faced Rockfill Dams, China. China Electric Power Press: Beijing, China, 2011.
- DL/T 5150-2017; Test Code for Hydraulic Concrete, China. China Electric Power Press: Beijing, China, 2017.
- Yuan, B.; Li, Z.; Zhao, Z.; Ni, H.; Su, Z.; Li, Z. Experimental study of displacement field of layered soils surrounding laterally loaded pile based on transparent soil. J. Soils Sediments 2021, 21, 3072–3083. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Cai, X.; Gao, L.; Li, Q.; Kong, X. A further understanding on the strength development of cement pastes in the presence of triisopropanolamine used in CRTS III slab track. Constr. Build. Mater. 2022, 315, 125743. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Chen, Y.; Hong, N.; Zhao, Z.; Chen, W.; Zhao, J. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer. Chemosphere 2021, 268, 131652. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, M.; Wang, Y.; Zhai, L.; Luo, Q.; Zhang, X. Full 3D displacement measuring system for 3D displacement field of soil around a laterally loaded pile in transparent soil. ASCE Int. J. Geomech. 2019, 19, 04019028. [Google Scholar] [CrossRef]
- Jin, S.S.; Zhang, J.X.; Huang, B.S. Fractal analysis of effect of air void on freeze–thaw resistance of concrete. Constr. Build. Mater. 2013, 47, 126–130. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Li, S.F. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res. 1995, 34, 1383–1386. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Yin, B.; Kang, T.; Kang, J.; Chen, Y.; Wu, L.; Du, M. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics. Appl. Clay Sci. 2018, 166, 146–158. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Kurumisawa, K. Effect of water curing conditions on the hydration degree and compressive strengths of fly ash–cement paste. Cem. Concr. Compos. 2006, 28, 781–789. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Z.G.; Shi, C.J.; Wu, Z.M.; Tong, B.H.; Ou, Z.H.; de Schutter, G. Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Constr. Build. Mater. 2017, 149, 406–415. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Won, J.P.; Woo, S.K. Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application. Cem. Concr. Res. 2002, 32, 23–30. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Wang, T. Influencing factors analysis and optimized prediction model for rheology and flowability of nano-SiO2 and PVA fiber reinforced alkali-activated composites. J. Clean. Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Nakai, M.; Saito, T. Effect of fly ash on autogenous shrinkage. Cem. Concr. Res. 2005, 35, 473–482. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S.; Yildiz, R. An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem. Concr. Res. 2005, 35, 1165–1171. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Wong, Y.L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000, 30, 447–455. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.Q.; Zhou, S.H.; Chen, E.; Tang, S.W. Mechanical properties, long-term hydration heat, shinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash. Constr. Build. Mater. 2018, 187, 1073–1091. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zhang, P.; Yuan, Q.; Guan, Q. Fracture properties of rubberized concrete under different temperature and humidity conditions based on digital image correlation technique. J. Clean. Prod. 2020, 276, 124106. [Google Scholar] [CrossRef]
- Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.H.; Daimon, M. Hydration of fly ash cement. Cem. Concr. Res. 2005, 35, 1135–1140. [Google Scholar] [CrossRef]
- Moghaddam, F.; Sirivivatnanon, V.; Vessalas, K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud. Constr. Mater. 2019, 10, e00218. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice-Hall: Murray Hill: NJ, USA, 2003. [Google Scholar]
- Zeng, Q.; Li, K.F.; Teddy, F.C.; Patrick, D.L. Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 2010, 257, 762–768. [Google Scholar] [CrossRef]
- Lü, Q.; Qiu, Q.L.; Zheng, J.; Wang, J.Y.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986. [Google Scholar] [CrossRef]
Oxides | Oxides (wt. %) | |
---|---|---|
CEM I PC | Fly Ash | |
CaO | 62.72 | 3.02 |
SiO2 | 20.32 | 53.69 |
Fe2O3 | 4.46 | 10.87 |
Al2O3 | 4.42 | 24.96 |
MgO | 3.92 | 2.85 |
SO3 | 2.37 | 0.35 |
R2O * | 0.41 | 1.07 |
Ignition loss (%) | 1.04 | 2.32 |
Physical features | ||
Specific gravity | 3.22 | 2.33 |
Specific surface area by Blaine (m2/kg) | 332 | 395 |
Fineness (residue on a 45 µm sieve %) | 8.4 | 6.5 |
Strength activity index | - | 81 |
Notations | W/B Ratio | Fly Ash Dosage (%) | Mix Proportion (kg/m3) | Air Content (mm) | Slump (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water | Cement | Fly Ash | Sand | Coarse Aggregate | Water Reducer | AEA | |||||
C0 | 0.38 | 0 | 124 | 326 | 0 | 617 | 1316 | 2.28 | 0.07 | 4.8 | 52 |
CFA10 | 0.38 | 10 | 124 | 294 | 33 | 613 | 1309 | 2.28 | 0.07 | 4.8 | 54 |
CFA20 | 0.38 | 20 | 124 | 261 | 65 | 610 | 1301 | 1.96 | 0.07 | 4.9 | 57 |
CFA30 | 0.38 | 30 | 124 | 228 | 98 | 607 | 1294 | 1.96 | 0.08 | 4.8 | 58 |
CFA40 | 0.38 | 40 | 124 | 196 | 131 | 603 | 1287 | 1.96 | 0.08 | 4.7 | 60 |
CFA50 | 0.38 | 50 | 124 | 163 | 163 | 600 | 1280 | 1.96 | 0.10 | 4.8 | 64 |
Designations | Hydration Time (Days) | Average Water-Seepage Height Dm (cm) | Relative Permeability Coefficient Kr (×10−7 cm/h) |
---|---|---|---|
C0 | 28 | 3.6 ± 0.19 | 6.62 ± 0.70 |
180 | 2.8± 0.12 | 4.00 ± 0.34 | |
CFA10 | 28 | 4.1 ± 0.15 | 8.58 ± 0.63 |
180 | 2.5 ± 0.14 | 3.19 ± 0.36 | |
CFA20 | 28 | 4.6 ± 0.14 | 10.8± 0.66 |
180 | 2.3 ± 0.11 | 2.70 ± 0.26 | |
CFA30 | 28 | 5.2 ± 0.15 | 13.8 ± 0.79 |
180 | 1.9 ± 0.13 | 1.84 ± 0.25 | |
CFA40 | 28 | 5.6 ± 0.16 | 16.0 ± 0.92 |
180 | 2.1 ± 0.12 | 2.25 ± 0.26 | |
CFA50 | 28 | 6.5 ± 0.17 | 21.6 ± 1.13 |
180 | 3.7 ± 0.13 | 6.99 ± 0.49 |
Notation | Hydration Age (Day) | The Most Probable Pore Size (nm) | Porosity (%) | Pore Size Proportions | ||
---|---|---|---|---|---|---|
<10 nm (%) | 10–50 nm (%) | 50 nm–10 μm (%) | ||||
C0 | 3 | 169 | 27.6 | 8.1 | 31.2 | 60.3 |
28 | 65 | 20.5 | 14.5 | 46.9 | 37.8 | |
180 | 42 | 18.4 | 18.5 | 50.2 | 30.9 | |
CFA10 | 3 | 181 | 29.2 | 7.5 | 28.3 | 63.7 |
28 | 72 | 22.4 | 13.6 | 44.8 | 41.5 | |
180 | 37 | 17.1 | 20.6 | 50.7 | 28.6 | |
CFA20 | 3 | 191 | 31.4 | 6.9 | 26.1 | 66.3 |
28 | 78 | 23.5 | 13.2 | 42.9 | 43.8 | |
180 | 32 | 16.2 | 23.1 | 53.1 | 23.5 | |
CFA30 | 3 | 206 | 33.1 | 5.8 | 24.2 | 69.3 |
28 | 91 | 25.9 | 12.5 | 40.3 | 45.6 | |
180 | 25 | 14.8 | 24.8 | 54.6 | 20.3 | |
CFA40 | 3 | 214 | 35.3 | 4.9 | 22.3 | 72.7 |
28 | 100 | 27.2 | 10.9 | 39.1 | 49.6 | |
180 | 26 | 15.9 | 22.7 | 51.3 | 25.6 | |
CFA50 | 3 | 221 | 39.6 | 3.1 | 18.4 | 78.3 |
28 | 145 | 31.5 | 8.7 | 36.2 | 54.9 | |
180 | 60 | 21.3 | 19.3 | 48.9 | 31.3 |
Notations | Hydration Age (Day) | Ds | R2 |
---|---|---|---|
C0 | 3 | 2.836 | 0.963 |
28 | 2.887 | 0.945 | |
180 | 2.911 | 0.989 | |
CFA10 | 3 | 2.823 | 0.963 |
28 | 2.872 | 0.986 | |
180 | 2.925 | 0.975 | |
CFA20 | 3 | 2.816 | 0.963 |
28 | 2.861 | 0.979 | |
180 | 2.934 | 0.967 | |
CFA30 | 3 | 2.788 | 0.958 |
28 | 2.852 | 0.963 | |
180 | 2.947 | 0.979 | |
CFA40 | 3 | 2.763 | 0.963 |
28 | 2.839 | 0.959 | |
180 | 2.941 | 0.977 | |
CFA50 | 3 | 2.743 | 0.969 |
28 | 2.819 | 0.958 | |
180 | 2.885 | 0.981 |
Notations | Hydration Age (Days) | V2.5–50 nm (%) |
---|---|---|
C0 | 3 | 39.3 |
28 | 61.4 | |
180 | 68.7 | |
CFA10 | 3 | 35.8 |
28 | 58.4 | |
180 | 71.3 | |
CFA20 | 3 | 33.0 |
28 | 56.1 | |
180 | 76.2 | |
CFA30 | 3 | 30.0 |
28 | 52.8 | |
180 | 79.4 | |
CFA40 | 3 | 27.2 |
28 | 50.0 | |
180 | 74.0 | |
CFA50 | 3 | 21.5 |
28 | 44.9 | |
180 | 68.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhou, S.; Shi, Y.; Huang, Y.; Zhao, F.; Huo, T.; Tang, S. The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete. Fractal Fract. 2022, 6, 476. https://doi.org/10.3390/fractalfract6090476
Wang L, Zhou S, Shi Y, Huang Y, Zhao F, Huo T, Tang S. The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete. Fractal and Fractional. 2022; 6(9):476. https://doi.org/10.3390/fractalfract6090476
Chicago/Turabian StyleWang, Lei, Shihua Zhou, Yan Shi, Yajun Huang, Feng Zhao, Tingting Huo, and Shengwen Tang. 2022. "The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete" Fractal and Fractional 6, no. 9: 476. https://doi.org/10.3390/fractalfract6090476
APA StyleWang, L., Zhou, S., Shi, Y., Huang, Y., Zhao, F., Huo, T., & Tang, S. (2022). The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete. Fractal and Fractional, 6(9), 476. https://doi.org/10.3390/fractalfract6090476