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Abstract: Vortex rope is a common phenomenon in the draft tube of hydraulic turbines. It may
cause strong pressure pulsation, noise, and strong vibration of the unit especially when it is helical.
Therefore, the study of vortex rope is of great significance. In order to study the helical vortex rope,
the embedded large eddy simulation (ELES) method in the hybrid methods is used based on the
vortex rope generator case. The Liutex method can show the three-dimensional shape of the vortex
rope well. In order to quantitatively describe the helical vortex rope, the three-dimensional structure
is divided into multiple two-dimensional sections, and then the shape of vortex rope on each section
is processed to extract the perimeter and area of the vortex. Combined with the change trend of
vortex number and section area, the helical vortex rope is divided into four zones. Then, the fractal
dimension on each zone and section can be obtained, and it can be used to quantitatively analyze the
change trend of the vortex rope in time and space. The fractal analysis method can be applied to the
analysis of the vortex rope in the draft tube to help judge the flow pattern shape and the stability of
the unit operating conditions.

Keywords: vortex rope; embedded large eddy simulation; vortex identification; fractal dimension;
draft tube

1. Introduction

Vortex rope often occurs in the draft tube of hydro-turbines far away from the best
operating efficiency, leading to various kinds of instabilities (e.g., large pressure fluctua-
tion [1,2], significant noise, prominent vibrations [3], cavitation erosion [4], and material
fatigue). The eccentric helical vortex rope frequency is generally about 1/4 to 1/3 of the
rotating frequency of the runner [5]. To prevent structural vibration and increase the opera-
tion hours under off-design conditions, it is very important to understand the helical vortex
rope structure in the draft tube fully. However, the accurate visualization with quantitative
description of the detailed characteristics of vortex structure is a challenging task.

Several attempts were made to capture the vortices’ structures in the hydro-turbines.
In order to study the effect of the flow rate on the vortex in the draft tube, Minakov et al. [6]
used pressure iso-surface and Q criterion to visualize the vortices in the draft tube. Their
results indicated that the guide vane opening has a significant effect on the distribution of
vortices. Liu et al. [7] proposed the new Omega method (new Ω method), which is not sen-
sitive to the threshold selection and can successfully capture both strong and weak vortices
simultaneously. However, the Ω method has some limitations, such as the introduction
of the uncertain parameter epsilon ε [8]. The Liutex method provides the systematic and
mathematical definition of local rigid body rotation of fluid, and the related method is
defined as the third-generation vortex identification method [9]. Tran et al. [10] applied
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Liutex method to identify the vortex rope of turbine-99’s off conditions and validated the
reliability of identification for vortex rope.

The quantitative description of the vortex rope by its edge line requires the image
processing of its two-dimensional section. The image segmentation can be divided into
some non-overlapping sub-regions with their own characteristics, and each region is a
continuous set of pixels, where the characteristics can be the color, shape, gray scale, and
texture of the image. Image segmentation represents the image as a set of physically
meaningful connected regions according to the prior knowledge of target and background.
That is, the target and background in the image are marked and positioned, and then the
target is separated from the background [11]. By using this method, the characteristics
of vortices on a two-dimensional section can be extracted and the spatial distribution of
vortices can be described quantitatively.

The fractal dimension of the vortex can be calculated by using the characteristics of
the vortex extracted from image processing. The fractal dimension, D, has been used to
study different properties of clouds. More than three decades ago, Lovejoy [12] reported
D = 1.35 ± 0.05 for cloud and rain areas. Motivated by the seminal work of Lovejoy [12],
Batista [13], Sánchez et al. [14], Luo and Liu [15], Von Savigny et al. [16], and Brinkhoff et al. [17]
used the fractal analysis for clouds. The vortex rope in the two-dimensional section is very
similar to the satellite captured clouds, where we can apply the fractal analysis to vortex
rope. The above studies are all for cyclone motion in meteorology, the fractal dimension can
predict the motion of cyclones, rarely in the application of vortex ropes in turbine draft tube.
In this study, we analyze the relationship between the change of morphology and fractal
dimension during the development of vortex rope, which can be used to analyze and predict
the development of vortex rope.

In this study, the vortex rope generator is taken as an example. The turbulence model
used in this paper is the embedded large eddy simulation (ELES) in the hybrid methods.
All domains are first defined as the SST k-ω model, and then the draft tube domain is
designated as wall-modeled LES (WMLES). The CFD results are compared with prior
scholars’ experiment [18,19], and the three-dimensional structure of the helical vortex
rope is identified and visualized by Liutex method. The Liutex method shows the three-
dimensional structure of the vortex rope, and then the geometric parameters required
to obtain the fractal corresponding to the Liutex contour-line of the vortex rope in two-
dimensional sections. The characteristics of the vortex rope in two-dimensional sections
are extracted by image segmentation technology, then the fractal dimension of the vortex
rope is calculated, and the distribution and variation of the helical vortex rope in time and
space are quantitatively described. According to the fractal analysis method proposed in
this study, it can be applied to the analysis of the vortex rope in the hydraulic turbine draft
tube to help determine the shape of the flow pattern and operational stability.

2. Research Subject

The size of the vortex rope generator is the same as the experimental model of Bosioc
and Susan Resiga [18,19]. As shown in Figure 1, it consists of an inlet pipe, 13 fixed guide
vanes, a runner with 10 blades, and a draft tube. The device is specially used to reproduce
the vortex rope in the draft tube of a Francis turbine under part load, and its parameters
are listed in Table 1. The flow rate is kept at 30 L s−1, the rotating speed of the runner is
920 r min−1. The inlet and outlet diameters are 0.15 m. The throat of draft tube is located
below the runner nozzle with a radius of 0.05 m. The cross-section area of the draft tube
increases gradually from the throat and remains constant until the exit. The distance from
the runner nozzle to the draft tube outlet is 0.324 m. W2 on the right of Figure 1 is the
measurement line of experiment applying laser Doppler velocimetry (LDV).
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Figure 1. Schematic of the swirl generator and position of velocity measured using laser Doppler 

velocimetry (LDV). 
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Figure 1. Schematic of the swirl generator and position of velocity measured using laser Doppler
velocimetry (LDV).

Table 1. Parameters of the swirl generator.

Parameter Value

Inlet and outlet diameter DInlet, Doutlet 0.15 m
Throat radius RThroat 0.05 m
vthroat =

Q
πR2

Throat
3.81 m s−1

Rotational speed n 920 r min−1

Flow rate Q 30 L s−1

Water density ρ 998 kg m−3

3. Mathematical Methods
3.1. Turbulence Model

The CFD Vision 2030 Study [20] published by NASA indicates that the RANS-LES
hybrid method will be widely used in the future. The Global RANS/LES hybrid method,
represented by the detached eddy simulation (DES_ [21] has made great progress since
it was proposed in 1997. By modifying the traditional turbulence model, the detached
eddy simulation can automatically divide the RANS zone and LES zone according to the
turbulence length scale and different spacing rate of the grid. The wall is modeled by
RANS to reduce the amount of calculation. The main flow region is transformed from
RANS model equation to the sub-lattices model, which significantly reduces the turbulence
viscosity and plays a similar effect to LES implicit filtering. An inherent defect of the
RANS/LES hybrid method is that the interface between RANS and LES is not controllable.
Moreover, the interface does not modify the interaction information between the two zones.
In particular, the large turbulence viscosity in the RANS zone directly enters the LES zone,
severely inhibiting the analytical ability of the LES zone to turbulence and delaying the
development of turbulence, namely the gray region problem [22]. An intuitive solution is to
add appropriate turbulence pulsation at the interface, so that the flow from the RANS zone
into the LES zone is transformed from a modular quantity to an analytical quantity, and
the length of gray region is greatly shortened. In view of this, the embedded LES (ELES)
method [23] came into being. Different from the global hybrid method, the embedded
hybrid method needs to embed the LES zone into the RANS zone of the whole field in
advance, and the interface between the RANS and LES zone is as perpendicular to the flow
direction as possible to ensure the consistency of the flow direction and the information
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transfer direction from RANS to LES. In this way, additional turbulence information can
be introduced at the interface more reasonably and conveniently to promote the further
downstream development of turbulence in LES zone. This method is especially suitable for
some local fine flow simulations with relatively simple geometry. The research object of
this study is the helical vortex rope in the draft tube. It takes time and effort to apply LES
to the overall domain, and the daft tube is a component downstream of the device, so it is
suitable to apply the embedded hybrid method. Compared with LES, the ELES method can
greatly shorten the computation period and alleviate the gray region problem in the Global
RANS/LES hybrid method while ensuring the accuracy. Therefore, the ELES method is
used to conduct the numerical simulation of the vortex rope generator in this study. The
draft tube is set as the LES zone, and the other upstream domains set as the RANS zone.
SST k-ω model suitable for fluid machinery is selected in the whole field, and wall-modeled
LES (WMLES) is used in the LES zone. The WMLES model avoids the requirement of wall
grid y+ = 1 in LES, which can further save the calculation time.

3.2. Fractal Dimension

For a geometric figure, dimension is an important characteristic quantity. Objects
in Euclidean geometry are described in integer dimension, also known as topological
dimension, and are represented by Dt. The Koch curve is either infinite or zero if measured
on traditional integer dimensions (such as one and two dimension). This indicates that the
Koch curve is not a regular geometric object and may have dimension between one and
two. Only by measuring it with the scale of non-integer dimension can it accurately reflect
its irregularity and complexity. The dimension of such non-integer value is called fractal
dimension. Generally, the fractal dimension of a fractal curve is between one and two, and
the larger the fractal dimension is, the more complex the curve is and the more it tends to
fill the whole plane [24].

There are a multitude of methods to calculate fractal dimension in fractal geometry,
some of which are classical, such as self-similarity dimension and box-counting dimension.
To meet the needs of research, many other algorithms have evolved from the classical
algorithm, such as area-perimeter method, root mean square method, and structural
function method. In the study of a vortex, a single or group of irregular island patterns are
often encountered, which are called fractal islands. The vortex rope has its edge line close
to the regular shape of a circle or ellipse. These features are suitable for the area-perimeter
method to calculate the fractal dimension of the vortex, so this study uses the area-perimeter
method to calculate the fractal dimension of the vortex. There are two ways to determine
fractal dimension according to the area-perimeter relationship of fractal island:

1. Based on the perimeter, the filling degree of the perimeter of the fractal island in the
plane is measured to determine the fractal dimension of the perimeter;

2. Based on the area, the filling degree of the fractal island itself in the plane is used to
measure the integral dimension of the surface.

These two methods can be used to determine the average fractal dimension (Da) of
islands. However, the perimeter fractal dimension of slender island measured by this
method will be high, and so will the area fractal dimension be calculated for nearly circular
islands. The research object of this study is the two-dimensional graph of the vortex rope in
the draft tube, whose shape is almost circular or elliptical. The boundary fractal dimension
is used to describe the evolution process of vortex rope in time and space quantitatively.

The determination of perimeter fractal dimension is based on the relationship between
the perimeter and the area of the fractal island, and its mathematical expression is as follows:

P = kA
D
2 (1)

where P is the perimeter length of the outer edge line of a circle or ellipse, A is the area,
D is the fractal dimension of the outer edge line, and k is the scale constant. Measure the
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perimeter and area of each island separately, and for a single island, its perimeter fractal
dimension is:

D = 2
log P
log A

(2)

For the vortices images, the average of vortex fractal dimensions (Da) can be deter-
mined by the slope obtained from the logarithmic plot of area and perimeter. Dm represents
the main vortex fractal dimension, the main vortex is the biggest vortex on the 2D sections.

Compared with integer dimensions, fractal dimensions can more accurately reflect
the occupation of space by objects. The fractal dimension describes the dynamic change of
geometric figures, while it describes the correlation of the whole system behavior formed
by small and fragmentary local features in natural phenomena. The fractal dimension
can be used to describe the correlations between small vortices and large vortices, and to
discuss the relationship between the structures of various scale vortices.

4. Computational Fluid Dynamics Simulation
4.1. Boundary Conditions and Modeling Setups

Commercial solver ANSYS Fluent is used for present studies. Velocity inlet and
pressure outlet are set in the simulation. No slip velocity conditions are used at the walls.
The speed of runner n is set as 920 r min−1. The temperature field is considered with
the initial value of 300 K. The ELES model is used to account for turbulence effects. The
process of setting ELES in ANSYS Fluent is as follows: first, set the all domain as SST k-ω
turbulence model, then specify the turbulence model in the draft tube domain as WMLES
which belongs to LES method, and then set the interface between RANS domain and LES
domain. In the simulation, the time step is 1/360 revolution (i.e., 1 degree rotation at a single
time step). A total of 10,800 time steps is calculated. The steady state solution is obtained
after 1800 time-steps, and we start data sampling for time statistics after 3600 time-steps.

Basic Equations

Filtering the continuity and momentum equations, one obtains

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (3)

∂

∂t
(ρũi) +

∂

∂xj

(
ρũiũj

)
=

∂

∂xj

(
σij
)
− ∂ p̃

∂xi
−

∂τij

∂xj
(4)

where σij is the stress tensor, and τij is the subgrid-scale stress.
The subgrid-scale (SGS) stresses resulting from the filtering operation are unknown

and require modeling. The subgrid-scale turbulence models in Ansys Fluent employ the
Boussinesq hypothesis [25] as in the RANS models, computing subgrid-scale turbulent
stresses from

τij −
1
3

τkkδij = −2µtS̃ij (5)

where µt is the subgrid-scale turbulent viscosity. As for incompressible flows, the term in-
volving τkk can simply be neglected [26]. S̃ij is the rate-of-strain tensor for the resolved scale.

The Algebraic WMLES formulation was proposed in the works of Shur et al. [27]. It
combines a mixing length model with a modified Smagorinsky model [28] and with the
wall-damping function of Piomelli [29].

In the Shur et al. model [27], the eddy viscosity is calculated with the use of a hybrid
length scale:

µt = min
[
(κdw)

2,
(
CSmag∆

)2
]
· S ·

{
1 − exp

[
−
(
y+/25

)3
]}

(6)

where dw is the wall distance, S is the strain rate, κ = 0.4187 and CSmag = 0.2 are constants,
and y+ is the normal to the wall inner scaling.
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The LES model is based on a modified grid scale to account for the grid anisotropies
in wall-modeled flows:

∆ = min(max(Cw · dw; Cw · hmax, hwn); hmax) (7)

Here, hmax is the maximum edge length for a rectilinear hexahedral cell. hwn is the
wall-normal grid spacing, and Cw = 0.15 is a constant.

Temperature transport equation:

∂(ρT)
∂t

+
∂

∂xi
(ρTui) =

∂

∂xi

(
Γ

∂

∂xi
T
)
+ ST (8)

Equation (8) is, from left to right, the transient term representing the net increase rate
of controlling body temperature, the convective term representing temperature with fluid
flow rate, the diffusion term representing the net diffusion rate of controlling body due to
diffusion, and the source term representing other effects, which is zero herein.

4.2. Verification of Mesh Resolution and Mesh Convergence

In the CFD simulation, the flow domains need to be discretized. Grid size is of great
importance for the accuracy of numerical results. The coarse grid cannot get enough
turbulent information while a much too refined grid requires unaffordable computational
cost. It is necessary to make a good compromise between accuracy and computational cost.

In order to obtain the enough detailed information of vortex rope, it is necessary to
evaluate the LES region’s grid quality. Celick [30] developed a method to extrapolate and
analyze the LES region’s grid quality by turbulent kinetic energy k. The LES Index of
Quality (LES_IQ), indicating the percentage of directly resolved turbulent kinetic energy
kres in LES, can be employed to evaluate the quality of grid. Pope [31] suggests that the 80%
of the energy should be resolved everywhere for LES. If the LES_IQ is greater than 80%, we
consider it a good LES. This study uses this method to estimate the sensitivity of the grid
resolution quality. The grid detail is show in Table 2. Figure 2 shows a detailed view of the
section mesh on the X-Z section in the swirl generator. Each domain adopts hexahedral
structure grids.

Table 2. Grid details.

Regions Component Grid Element
Number Grid Node Number

RANS region Inlet conduit 284,307 301,780
Guide vanes 636,025 683,436

Runner 546,250 595,660
LES region Draft tube (coarse) 2,088,879 2,125,760

Draft tube (fine) 5,056,300 5,125,336
Total (coarse) 3,555,461 3,706,636

Total (fine) 6,522,882 6,706,212

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 21 
 

 

where μt is the subgrid-scale turbulent viscosity. As for incompressible flows, the term 

involving τkk can simply be neglected [26]. �̃�𝑖𝑗 is the rate-of-strain tensor for the resolved 

scale. 

The Algebraic WMLES formulation was proposed in the works of Shur et al. [27]. It 

combines a mixing length model with a modified Smagorinsky model [28] and with the 

wall-damping function of Piomelli [29]. 

In the Shur et al. model [27], the eddy viscosity is calculated with the use of a hybrid 

length scale: 

𝜇𝑡 = 𝑚𝑖𝑛 [(𝜅𝑑𝑤)
2, (𝐶𝑆𝑚𝑎𝑔Δ)

2
] ⋅ 𝑆 ⋅ {1 − 𝑒𝑥𝑝[−(𝑦+/25)3]} (6) 

where dw is the wall distance, S is the strain rate, κ = 0.4187 and CSmag = 0.2 are constants, 

and y+ is the normal to the wall inner scaling.  

The LES model is based on a modified grid scale to account for the grid anisotropies 

in wall-modeled flows: 

Δ = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝐶𝑤 ⋅ 𝑑𝑤; 𝐶𝑤 ⋅ ℎ𝑚𝑎𝑥, ℎ𝑤𝑛); ℎ𝑚𝑎𝑥) (7) 

Here, hmax is the maximum edge length for a rectilinear hexahedral cell. hwn is the wall-

normal grid spacing, and Cw = 0.15 is a constant. 

Temperature transport equation: 

𝜕(𝜌𝑇)

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑇𝑢𝑖) =

𝜕

𝜕𝑥𝑖
(𝛤

𝜕

𝜕𝑥𝑖
𝑇) + 𝑆𝑇 (8) 

Equation (8) is, from left to right, the transient term representing the net increase rate of 

controlling body temperature, the convective term representing temperature with fluid 

flow rate, the diffusion term representing the net diffusion rate of controlling body due to 

diffusion, and the source term representing other effects, which is zero herein. 

4.2. Verification of Mesh Resolution and Mesh Convergence 

In the CFD simulation, the flow domains need to be discretized. Grid size is of great 

importance for the accuracy of numerical results. The coarse grid cannot get enough tur-

bulent information while a much too refined grid requires unaffordable computational 

cost. It is necessary to make a good compromise between accuracy and computational 

cost. 

In order to obtain the enough detailed information of vortex rope, it is necessary to 

evaluate the LES region’s grid quality. Celick [30] developed a method to extrapolate and 

analyze the LES region’s grid quality by turbulent kinetic energy k. The LES Index of Qual-

ity (LES_IQ), indicating the percentage of directly resolved turbulent kinetic energy kres in 

LES, can be employed to evaluate the quality of grid. Pope [31] suggests that the 80% of 

the energy should be resolved everywhere for LES. If the LES_IQ is greater than 80%, we 

consider it a good LES. This study uses this method to estimate the sensitivity of the grid 

resolution quality. The grid detail is show in Table 2. Figure 2 shows a detailed view of 

the section mesh on the X-Z section in the swirl generator. Each domain adopts hexahedral 

structure grids. 

 

Figure 2. Mesh details on X-Z section. 

Inlet 

Pipe 

Guide

Vane 
Runner 

Draft 

tube 

Figure 2. Mesh details on X-Z section.

The LES_IQ can be calculated with Equation (9) for the fine grid and Equation (10) for
the coarse grid.
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Fine grid index:

LES− IQ f
k =

1

1+

(
1− kres

c
kres

f

)
(αp−1)−1

(9)

Coarse grid index:

LES−IQc
k =

1

1+

(
kres

f

kres
c

−1

)
αp(αp−1)−1

(10)

kres = 1/2(urmse
2 + vrmse

2 + wrmse
2) (11)

where kres
f and kres

c represents the resolved turbulent kinetic energy of fine grid and coarse
grid, urmse, vrmse, and wrmse are velocity components’ Root Mean Squared Error. The order
of accuracy of the numerical scheme p is 2 and α = (∆x∆y∆z)c/(∆x∆y∆z)f

1/3 = 1.35 is
grid refinement parameter, in which ∆x, ∆y, and ∆z are the grid cell lengths in the three
directions.

Figure 3 shows the turbulent kinetic energy and LES_IQ resolved by two sets of grids
on line W2 and the turbulent kinetic energy of fine mesh is significantly higher than coarse
mesh. The LES_IQ of the fine mesh is greater than 90%, while the coarse mesh is low to
65%. It is obvious that the solution accuracy of the fine mesh is much higher than the coarse
mesh. The fine mesh is more abundant for the flow field details. Therefore, all subsequent
analyses use the CFD results of the fine mesh.
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4.3. Comparison between Experiment and Numerical Simulation

Figure 4 shows the comparison between ELES method simulation and LDV experiment.
The axial velocity of ELES in the middle region is greater than that of the experiment result
in LDV. The reason is that there is a reverse flow near the center due to the gas phase in
the vortex rope. However, pure water medium is used in the simulation, and the axial
velocity direction of the fluid always points to the outlet. The tangential velocity of ELES is
basically consistent with the experimental results. The results of comparison show that the
simulation results can be used for further analysis.
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Figure 4. The velocity comparison between simulation and experiment. (v* = v/vthroat, where v is
axial velocity or tangential velocity).

4.4. Comparison of Vortex Rope Morphology in Different Vortex Recognition Method

The Q criterion [32] and new Ω method [7] in the second-generation method, and
Liutex method in the third-generation method are selected to compare the shape of vortex
rope in the draft tube. Figure 5 shows that the vortex structures displayed by the three
vortex identification methods are roughly the same. There are some wall-attached vortices
identified by Q criterion in the throat, and it is difficult to remove through threshold selec-
tion. When the Ω method is under construction, different ε is selected in the denominator,
and the vortex structure shows different results when Ω = 0.52. It relies on experience to
debug the value of ε, and belongs to the second-generation vortex identification method,
so the shear term cannot be removed [9,10]. From Figure 4, the vortex structure displayed
by the Liutex method is clearer than that of the Ω method because the shear term in the
vorticity is removed by the Liutex method, which makes the displayed vortex cleaner and
less polluted by shear. l* is Liutex magnitude. Therefore, in this study, the Liutex method is
used to display vortex rope morphology in the draft tube and further analysis.
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5. Analysis of Time-Space Fractal Dimension of Vortex Rope
5.1. Analysis Method of Coarse Granulation

The graph in Figure 6a is the output graph of one section of the draft tube, and such
multi-contour-lines graph can be regarded as the description of ‘fine-grained’. Considering
that the focus of this study is the fractal structure of vortex or vortex block contour line,
the analysis method of coarse-grained is used instead of fine-grained. That is, when the
graph is output, the details of contour distribution inside the vortex are ignored, and
only the contour line of the vortex (described by MLTX = 50) is given. Considering that
the focus of the analysis in the paper is the fractal structure of vortex contour lines, the
analysis method of coarse-grained is used instead of fine-grained. In other words, when
outputting the graphs, only the vortex contour lines are given without considering the
details of the vortex internal contour distribution. This coarse-grained description can
make the focus prominent and the graphical display clear and intuitive. The dimensionless
relative Liutex magnitude MLTX given by MLTX= l∗/ω, ω is angular velocity of runner.
The coarse-grained variation corresponding to Figure 6a is shown in Figure 6b. Here,
we trace how the shape of the contour lines shown in Figure 6b evolve over time and
space, without considering other various issues that are not directly related to fractals,
such as the central strength of the vortex rope or how the asymmetric structure changes
over time. The contour line of MLTX = 50 represents the edge line of the vortex rope. This
coarse-grained description can highlight the key points and make the graphic displayed
clearer and more intuitive.
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Figure 6. Relative Liutex magnitude MLTX on one section of the draft tube. (a) Fine-grained descrip-
tion; (b) Coarse-grained description. (The numbers represent relative Liutex magnitude).

5.2. Contour Line Evolution
5.2.1. Spatial Evolution of Vortex Tube Contour Lines

The distance from the runner nozzle to the outlet is 0.324 m. In order to observe the
morphological changes of the vortex rope in the process of spiraling downstream, the
runner nozzle to the outlet of the draft tube is divided into 33 sections with an interval of
10 mm, as shown in Figure 7. MLTX = 50 is used to show the three-dimensional structure
of the vortex rope. The vortex rope is more concentrated when it is close to the draft tube
and presents different forms as the vortex rope spins downstream. In order to facilitate
observation, the vortex rope on the two-dimensional section was coarsely grained. After
the processing, the vortex rope on the two-dimensional section was generally in the shape
of a single island. As the vortex rope extended downstream, it began to break and became
an archipelago in section. After the cross-sectional area of the draft tube stopped increasing,
the vortex rope began to gather again and the number of islands decreased significantly.
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Figure 7. Schematic diagram of different sections of vortex rope in draft tube.

Figure 8 is a schematic diagram of the image processing process on a 2D section of one
draft tube section resulting from numerical simulation at a certain moment. The specific
operation is as follows: the output section vortex graph is binarized (the gray value of
the points on the image is 0 or 255), that is, the whole image presents an obvious black
and white effect. Brinkhoff et al. [19] extensively analyzed the influence of holes in images
for the first time, and concluded that in most cases, clouds containing holes meant an
increase in fractal dimension. Remove holes by morphological image processing (open
operation and close operation: open operation can remove isolated small points, and the
overall position and shape is unaltered; the close operation can fill in small lakes (i.e., small
holes) and close small cracks), while the position and shape remain unchanged. Finally,
each vortex on the section is marked, and then the parameters such as circumference and
area of each vortex are calculated to prepare for the calculation of fractal dimension in the
next step.

The number of vortices on each section can also be obtained by marking. Figure 9
shows the number of vortices on each section for an instance. At the section near the runner
nozzle, the vortex rope is a complete spiral vortex rope. From S10, the number of vortices
begins to increase until it reaches a peak at S15. The vortex rope oscillates more violently
than its gathering ability, making it unable to maintain its shape and breaking up on a large
scale between S15 and S24. After S24, as the section area does not increase any more, the
vortex rope begins to gather again. However, the energy of the vortex rope at this time has
been greatly dissipated, so the straight vortex rope re-formed near the outlet is small and
accompanied by a slice of secondary vortices.

Figure 10 shows the distribution of vortex ropes in each section after treatment. The
section close to the runner nozzle shows that there are several secondary vortices stretched
by the wall around the main vortex. Before the S3 section of the throat, the vortex rope
is always in the center position. After passing through the throat, the secondary vortices
near the vortex rope decrease and begin to rotate eccentrically downstream. From S4 to
S10, it is a spiral vortex rope. After S10, the vortex rope begins to break, and the degree of
breakage reaches the peak at S15. In the section of S15–S24, the breakage is always at a high
level. There is no obvious main vortex on the sections between S10 and S27, but a vortex
cluster composed of broken vortices rotates around the central axis. At the beginning of S24
section, the number of vortices begins to decrease as the cross-section area of the draft tube
no longer increases. The main vortex rope reappeared in the center of S29 cross section, and
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the broken vortices gradually decrease. As the section here is far from the energy source
of the vortex rope (vortex at the impeller outlet), the energy transferred to the straight
pipe section can only form the thin straight vortex rope downstream as shown in Figure 7.
According to the shape and number of vortices, the draft tube is divided into four regions:
strong straight vortex rope zone (S1–S3), spiral vortex rope zone (S4–S10), broken vortex
rope zone (S10–S29), and weak straight vortex rope zone (S29–S33).
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Figure 8. Schematic diagram of image processing process on a 2D section of draft tube. (a) Original
image; (b) binarization processing; (c) morphological operation (open operation and closed operation);
(d) mark vortex.
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Figure 10. Vortex distribution on each section after morphological operation. Figure 10. Vortex distribution on each section after morphological operation.

The vortex rope has obvious eccentricity and precession in the process of downstream
development, and with the increase of the cross-section area, the eccentricity becomes
stronger and stronger until the cross-section area stops increasing and converges again
into a straight vortex rope. The strength of the straight vortex rope is obviously weakened
compared with that of the spiral vortex rope initially located at the runner nozzle. The flow
loses energy when flowing through the expanding section. When the vortex rope is in the
expanding tube, there also exists an obvious energy loss. The helical action on the plane
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will tear the vortex rope, and with the downward spiral, this trend becomes more obvious.
The vortex rope is torn from a nearly circular shape into a crescent shape and further into
fragments. Figure 10 shows that the large-scale vortex in the fracture zone is stretched into
a crescent shape. The small vortex is easily affected by shear force, and its shape becomes
more and more round. The shear action of fluid causes the large-scale vortex to break and
the small-scale vortex to get round.

Table 3 shows the perimeter fractal dimension of vortex rope on each section calculated
according to Equation (2). The main vortex refers to vortices whose area is significantly
larger than other vortices on the same section. Combined with Figure 11, the Da of all
sections except S1 is less than or equal to main vortex fractal dimension (Dm). The Dm of
each section in the strong straight vortex rope zone ranges from 1.38 to 1.5, and Dm ranges
from 1.25 to 1.56. The Da of each section in the spiral vortex rope zone ranges from 1.31
to 1.39, and Da ranges from 1.10 to 1.24. The Dm of each section in the broken vortex rope
zone is between 1.33 and 1.46, and the Da is between 1.13 and 1.27. The Dm of each section
in the weak straight vortex rope zone ranged from 1.35 to 1.47, and the Da ranged from
1.09 to 1.35.

Table 3. Main vortex fractal dimension (Dm) or average fractal dimension (Da) of vortex rope on
each section.

Section S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Vortices number 3 4 7 5 5 1 3 6 8 6 16
Dm 1.5 1.38 1.47 1.33 1.39 1.35 1.31 1.35 1.33 1.38 1.37
Da 1.56 1.25 1.46 1.10 1.24 1.10 1.19 1.17 1.23 1.17

Section S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

Vortices number 15 22 25 33 30 32 30 31 25 30 22
Dm 1.39 1.35 1.41 1.42 1.45 1.46 1.35 1.35 1.33 1.39 1.39
Da 1.26 1.21 1.18 1.24 1.20 1.27 1.20 1.19 1.22 1.25 1.18

Section S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33

Vortices number 29 30 24 25 18 15 9 11 9 10 8
Dm 1.36 1.42 1.43 1.39 1.40 1.33 1.40 1.36 1.35 1.42 1.47
Da 1.13 1.25 1.23 1.22 1.26 1.18 1.12 1.12 1.09 1.15 1.35
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Figure 11. Fractal dimensions of vortex rope on each section.

As the vortex rope rotates downstream, its degree of eccentricity increases obviously,
the number of secondary vortices also gradually increases, and the overall Da decreases
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gradually. According to the statistical results, on the same section, the dimension of the
main vortex is the smallest, and Da is smaller than Dm. To some extent, fractal dimension
can be used to represent the size and shape of vortex.

Figure 12 shows the fractal dimension relation of all vortices’ circumferences and areas
on the sections of the draft tube, expressed in logarithmic coordinates. The logarithmic
relation of all samples is fitted by the following linear relation:

log P = C1 log A + C0 (12)

where C0 is 0.2836 and C1 is 0.6099. The Da of the vortex rope is 1.2066. Figure 12 shows
Da of the four zones. Linear fitting of logarithmic relationship is performed in the form
of Equation (6), and the values of C1 and C0 are obtained as shown in Table 4. Figure 13
shows Da of each zone. According to the calculation, the Da of the strong straight vortex
rope zone is 1.4454, that of the spiral vortex rope zone is 1.1698, that of the broken vortex
rope zone is 1.2180, and that of the weak straight vortex rope zone is 1.1916.
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Figure 12. Fractal dimension relation of all vortices’ circumferences and areas on the sections of the
draft tube.

Table 4. Dimensions of peripherals of vortices in different zones.

Zone C0 C1 Da

Strong straight vortex rope zone 0.0121 0.7227 1.4454
Spiral vortex rope zone 0.3496 0.5849 1.1698
Broken vortex rope zone 0.2853 0.6090 1.2180
Weak straight vortex rope zone 0.3220 0.5958 1.1916

5.2.2. Temporal Evolution of Vortex Tube Contour Lines

In the previous section, the spatial evolution process of the vortex rope at a certain
moment was discussed and the vortex rope was quantified by fractal dimensions. However,
there is a large randomness in a single moment, so it is necessary to observe the shape of
the vortex rope at different moments and record the dimension changes of the cross-section
and partition.

The impeller rotation of 1/8 revolution was taken as the time interval to observe the
changes of vortex rope morphology in the draft tube and compare the changes of vortex
rope at eight continuous moments.

Figure 14 shows the shape changes of vortex rope. The vortex rope still maintains
four zones at different moments. Special sections of the strong straight vortex rope zone
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near the runner nozzle, the spiral vortex rope zone where the vortex rope starts to spiral,
the broken vortex rope zone and the weak straight vortex rope zone, namely sections S3,
S9, S19, and S29, were taken to observe the dimensional changes of the four sections at
different moments. Figure 15 shows the changes of shape at different moments on the
four special sections. At most of the moments, the shape of the vortex rope is similar. The
vortex rope rotates about the central axis on S3. The vortex rope is crescentic on S9, and it
is seriously eccentric with several secondary vortices. In the section of S19, the vortices still
rotate around the central axis after being completely broken. In the section of S29, there is
always a vortex at the center and some secondary vortices revolve around it. This shows
that the morphology of vortex rope basically does not change over time.
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Figure 13. Fractal dimension relation of vortex circumferences and areas in four zones of draft tube.
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Figure 15. Vortex shape on four special sections at eight moments. (a) Vortex shape on S3 at eight
moments; (b) Vortex shape on S9 at eight moments; (c) Vortex shape on S19 at eight moments;
(d) Vortex shape on S29 at eight moments.

Figure 16 is the comparison of Da at eight moments on four special sections. The
results show that Da in different zones has a certain size law, but it also changes with time.
Figure 16a shows the Da of vortex on four special sections at eight continuous moments.
The Da of S3 is the largest and the Da of S29 is the smallest. From the Figure 16b listed,
it can be seen that the Da of S9 representing the spiral vortex rope zone changes greatly
over time compared with the other three zones. The spiral vortex rope zone is vulnerable
to the impact of axial flow, resulting in the instability of the spiral vortex rope zone, the
boundary between the spiral vortex rope zone and the broken vortex rope zone is not
obvious, resulting in a large change in Da. Figure 16c shows that the Da of four zones
decreases gradually as the vortex rope spiral downstream. The vortex rope upstream of
S9 maintains its own morphology and the vortex rope downstream of S9 breaks up. The
vortex rope at the S9 section is at the position of the strongest oscillation and may maintain
its own morphology at different moments or may have broken up, resulting in a large range
of variation in the fractal dimension of the S9 section at different moments. By judging
the pulsation amplitude of the fractal dimension, we can determine where the vortex rope
starts to break up. The fractal dimensions are relatively stable in other sections and do not
fluctuate much.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 18 of 21 
 

 

 

 

(d) 

Figure 15. Vortex shape on four special sections at eight moments. (a) Vortex shape on S3 at eight 

moments; (b) Vortex shape on S9 at eight moments; (c) Vortex shape on S19 at eight moments; (d) 

Vortex shape on S29 at eight moments. 

Figure 16 is the comparison of Da at eight moments on four special sections. The results 

show that Da in different zones has a certain size law, but it also changes with time. Figure 

16a shows the Da of vortex on four special sections at eight continuous moments. The Da of 

S3 is the largest and the Da of S29 is the smallest. From the Figure 16b listed, it can be seen 

that the Da of S9 representing the spiral vortex rope zone changes greatly over time com-

pared with the other three zones. The spiral vortex rope zone is vulnerable to the impact of 

axial flow, resulting in the instability of the spiral vortex rope zone, the boundary between 

the spiral vortex rope zone and the broken vortex rope zone is not obvious, resulting in a 

large change in Da. Figure 16c shows that the Da of four zones decreases gradually as the 

vortex rope spiral downstream. The vortex rope upstream of S9 maintains its own morphol-

ogy and the vortex rope downstream of S9 breaks up. The vortex rope at the S9 section is at 

the position of the strongest oscillation and may maintain its own morphology at different 

moments or may have broken up, resulting in a large range of variation in the fractal di-

mension of the S9 section at different moments. By judging the pulsation amplitude of the 

fractal dimension, we can determine where the vortex rope starts to break up. The fractal 

dimensions are relatively stable in other sections and do not fluctuate much.  

 

(a) 

T1 T2 T3 T4 T5 T6 T7 T8
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

A
v

er
a

g
e 

fr
a

ct
a

l 
d

em
en

si
o

n

Time 

 S3

 S9

 S19

 S29

Figure 16. Cont.



Fractal Fract. 2022, 6, 477 18 of 20
Fractal Fract. 2022, 6, x FOR PEER REVIEW 19 of 21 
 

 

 

(b)  (c)  

Figure 16. Comparison of Da at eight moments on four special sections. (a) Da at eight continuous 

different moments on four special sections; (b) Maximum-minimum difference of Da; (c) Average 

value of Da. 

6. Conclusions 

Based on computational fluid dynamics and ELES method, this study accurately sim-

ulates the helical vortex rope and studies its fractal characteristics. The conclusions are as 

follows: 

• For the helical vortex rope, which is a typical vortex dominated flow, different vortex 

identification methods have different effects. In this study, the Liutex method was 

selected to identify the vortex structure of the helical vortex rope and display the 

three-dimensional shape of vortex rope. The helical vortex rope was divided into dif-

ferent sections. Through binarization and morphological operation, the vortices at 

different positions can be quantified. This method can be extended to the vortex flow 

of hydraulic machinery to deeply analyze the characteristics and evolution of vorti-

ces. 

• Based on the analysis of different sections, the number and fractal dimension of vor-

tices were obtained. Combined with the change trend of vortex number and section 

area, the distribution area of the helical vortex rope was divided into four zones, 

namely strong straight vortex zone, spiral vortex zone, broken vortex rope zone, and 

weak straight vortex zone. The Da of each section and zone is counted by the least 

square method, and the fractal characteristics of vortex rope in space are quantita-

tively analyzed, which has a good effect on the analysis of the formation, fragmenta-

tion, and reunion of vortex rope. It was found that in the process of spiraling down-

stream, the shape of the vortex rope develops from a strong straight vortex rope near 

the runner nozzle to a weak straight vortex rope at the outlet, the Da decreases grad-

ually, and the vortex rope in the middle is always spiraling downward whether it is 

broken or not. 

• Because the results at a single time are random, the variation trend of fractal dimen-

sion of each section and zone with time was analyzed. The results show that Da in 

different zones has a certain size law, but it also changes with time. According to the 

difference between the average value and the maximum minimum difference of Da 

at eight times of the runner rotation, it can be found that the average of Da in the 

strong straight vortex rope zone is the largest and the maximum minimum difference 

of Da is the smallest. The maximum minimum difference in the spiral vortex rope 

Figure 16. Comparison of Da at eight moments on four special sections. (a) Da at eight continuous
different moments on four special sections; (b) Maximum-minimum difference of Da; (c) Average
value of Da.

6. Conclusions

Based on computational fluid dynamics and ELES method, this study accurately
simulates the helical vortex rope and studies its fractal characteristics. The conclusions are
as follows:

• For the helical vortex rope, which is a typical vortex dominated flow, different vortex
identification methods have different effects. In this study, the Liutex method was
selected to identify the vortex structure of the helical vortex rope and display the
three-dimensional shape of vortex rope. The helical vortex rope was divided into
different sections. Through binarization and morphological operation, the vortices at
different positions can be quantified. This method can be extended to the vortex flow
of hydraulic machinery to deeply analyze the characteristics and evolution of vortices.

• Based on the analysis of different sections, the number and fractal dimension of
vortices were obtained. Combined with the change trend of vortex number and
section area, the distribution area of the helical vortex rope was divided into four
zones, namely strong straight vortex zone, spiral vortex zone, broken vortex rope zone,
and weak straight vortex zone. The Da of each section and zone is counted by the least
square method, and the fractal characteristics of vortex rope in space are quantitatively
analyzed, which has a good effect on the analysis of the formation, fragmentation, and
reunion of vortex rope. It was found that in the process of spiraling downstream, the
shape of the vortex rope develops from a strong straight vortex rope near the runner
nozzle to a weak straight vortex rope at the outlet, the Da decreases gradually, and the
vortex rope in the middle is always spiraling downward whether it is broken or not.

• Because the results at a single time are random, the variation trend of fractal dimension
of each section and zone with time was analyzed. The results show that Da in different
zones has a certain size law, but it also changes with time. According to the difference
between the average value and the maximum minimum difference of Da at eight times
of the runner rotation, it can be found that the average of Da in the strong straight
vortex rope zone is the largest and the maximum minimum difference of Da is the
smallest. The maximum minimum difference in the spiral vortex rope zone is the
largest. The average and maximum minimum difference of Da at the broken vortex
rope zone are relatively small. The average value of Da at weak straight vortex zone is
the smallest, and the maximum minimum difference of Da is relatively large.

The forms of vortex ropes that often appear in the operation of hydro turbine or marine
turbine are mainly divided into two categories: straight vortex rope and helical vortex rope.
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According to the fractal analysis method proposed in this study, it can be applied to the
analysis of the vortex rope flow in the draft tube of hydraulic turbines to help judge the
flow pattern shape and the operation stability.
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