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Abstract: We continue the study of a non-self-adjoint fractional three-term Sturm–Liouville boundary
value problem (with a potential term) formed by the composition of a left Caputo and left Riemann–
Liouville fractional integral under Dirichlet type boundary conditions. We study the existence and
asymptotic behavior of the real eigenvalues and show that for certain values of the fractional differen-
tiation parameter α, 0 < α < 1, there is a finite set of real eigenvalues and that, for α near 1/2, there
may be none at all. As α → 1− we show that their number becomes infinite and that the problem
then approaches a standard Dirichlet Sturm–Liouville problem with the composition of the operators
becoming the operator of second order differentiation.
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1. Introduction

This is a continuation of [1] where the results therein are extended to three-term Frac-
tional Sturm–Liouville operators (with a potential term) formed by the composition of a left
Caputo and left-Riemann–Liouville fractional integral. Similar kinds of spectral problems
have been considered in [2–11]. Specifically, the boundary value problem considered here
is of the form,

−c Dα
0+ ◦ D

α
0+y(t) + q(t)y(t) = λy(t), 1/2 < α < 1, 0 ≤ t ≤ 1, (1)

with boundary conditions

I1−α
0+ y(t)|t=0 = c1, and I1−α

0+ y(t)|t=1 = c2, (2)

where c1, c2 are real constants and the real valued unspecified potential function, q ∈ L∞[0, 1].
We note that these are not self-adjoint problems and so there may be a non-real spectrum,
in general. A well-known property of the Riemann–Liouville integral gives that if the
solutions are continuous on [0, 1] then the boundary conditions (2) reduce to the usual
fixed-end boundary conditions, y(0) = y(1) = 0, as α→ 1.

For the analogue of the Dirichlet problem described above we study the existence and
asymptotic behaviour of the real eigenvalues and show that for each α, 0 < α < 1, there is a
finite set of real eigenvalues and that, for α near 1/2, there may be none at all. As α→ 1− we
show that their number becomes infinite and that the problem then approaches a standard
Dirichlet Sturm–Liouville problem with the composition of the operators becoming the
operator of second order differentiation acting on a suitable function space.

Our approach is different from most in this area. Specifically, we start with the
existence and uniqueness of solutions of the Equation (1) along with the initial conditions (2),
then we formulate the boundary value problem as an integral equation, after which we
show that the solution of this integral equation as a function of λ is an entire function of λ
of order of at most 1/2α. Since α is between 1/2 and 1, this entire function is of fractional
order and therefore must have an infinite number of zeros, some of which may be complex.
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These zeros are the eigenvalues of our problem and therefore we get their existence. Using
asymptotic methods and hard analysis, we proved our bounds on the real eigenvalues
of which there must be a finite number for each α. Finally, we show that as α tends to 1,
the number of real eigenvalues becomes infinite and the original problem approaches the
standard Sturm–Liouville eigenvalue problem.

2. Preliminaries

We recall some definitions from fractional calculus and refer the reader to our previous
paper [1] for further details.

Definition 1. The left and the right Riemann–Liouville fractional integrals Iα
a+ and Iα

b− of order
α ∈ R+ are defined by

Iα
a+ f (t) :=

1
Γ(α)

∫ t

a

f (s)
(t− s)1−α

ds, t ∈ (a, b], (3)

and

Iα
b− f (t) :=

1
Γ(α)

∫ b

t

f (s)
(s− t)1−α

ds, t ∈ [a, b), (4)

respectively. Here Γ(α) denotes Euler’s Gamma function. The following property is easily verified.

Property 1. For a constant C, we have Iα
a+C = (t−a)α

Γ(α+1) · C.

The proof is by direct calculation.

Definition 2. The left and the right Caputo fractional derivatives cDα
a+ and cDα

b− are defined by

cDα
a+ f (t) := In−α

a+ ◦ Dn f (t) =
1

Γ(n− α)

∫ t

a

f (n)(s)
(t− s)α−n+1 ds, t > a, (5)

and
cDα

b− f (t) := (−1)nIn−α
b− ◦ D

n f (t) =
(−1)n

Γ(n− α)

∫ b

t

f (n)(s)
(s− t)α−n+1 ds, t < b, (6)

respectively, where f is sufficiently differentiable and n− 1 ≤ α < n.

Definition 3. Similarly, the left and the right Riemann–Liouville fractional derivatives Dα
a+ and

Dα
b− are defined by

Dα
a+ f (t) := Dn ◦ In−α

a+ f (t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f (s)
(t− s)α−n+1 ds, t > a, (7)

and

Dα
b− f (t) := (−1)nDn ◦ In−α

b− f (t) =
(−1)n

Γ(n− α)

dn

dtn

∫ b

t

f (s)
(s− t)α−n+1 ds, t < b, (8)

respectively, where f is sufficiently differentiable and n− 1 ≤ α < n.

Property 2. For <(ν) > −1, 0 < α < 1, and t > 0, we have

Dα
0+(t

ν) =
Γ(1 + ν)

Γ(1 + ν− α)
tν−α
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Property 3. For <(ν) > 0, 0 < α < 1, and t > 0, we have

cDα
0+(t

ν) =
Γ(1 + ν)

Γ(1 + ν− α)
tν−α

Property 4. If y(t) ∈ L1(a, b) and I1−α
a+ y, I1−α

b− y ∈ AC[a, b], then

Iα
a+D

α
a+y(t) = y(t)− (t− a)α−1

Γ(α)
I1−α

a+ y(a),

Iα
b−D

α
b−y(t) = y(t)− (b− t)α−1

Γ(α)
I1−α

b− y(b).

Property 5. If y(t) ∈ AC[a, b] and 0 < α ≤ 1, then

Iα
a+

cDα
a+y(t) = y(t)− y(a),

Iα
b−

cDα
b−y(t) = y(t)− y(b).

Property 6. For 0 < α < 1 we have

Dα
a+ f (t) =

f (a)
Γ(1− α)

(t− a)−α +c Dα
a+ f (t).

The Mittag-Leffler Function

The function Eδ(z) defined by

Eδ(z) :=
∞

∑
k=0

zδ

Γ(δk + 1)
, (z ∈ C,<(δ) > 0), (9)

was introduced by Mittag-Leffler [12]. In particular, when δ = 1 and δ = 2, we have

E1(z) = ez, E2(z) = cosh(
√

z). (10)

The generalized Mittag-Leffler function Eδ,θ(z) is defined by

Eδ,θ(z) =
∞

∑
k=0

zk

Γ(δk + θ)
, (11)

where z, θ ∈ C and Re (δ) > 0. When θ = 1, Eδ,θ(z) coincides with the Mittag-Leffler
function (9):

Eδ,1(z) = Eδ(z). (12)

Two other particular cases of (11) are as follows:

E1,2(z) =
ez − 1

z
, E2,2(z) =

sinh(
√

z)√
z

. (13)

Property 7. For any δ with <(δ) > 0 and for any z 6= 0 we have

Eδ,δ(z) =
1
z

Eδ,0(z)

Further properties of this special function may be found in [13].
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Property 8 (See [14], p. 43). If 0 < δ < 2 and µ ∈ ( δπ
2 , min(π, δπ)), then the function Eδ,θ(z)

has the following exponential expansion as |z| → ∞

Eδ,θ(z) =


1
δ z

1−θ
δ exp(z

1
δ )−∑N

k=1
1

Γ(θ−δk)
1
zk + O( 1

zN+1 ), | arg(z)| ≤ µ,

−∑N
k=1

1
Γ(θ−δk)

1
zk + O( 1

zN+1 ), µ ≤ | arg(z)| ≤ π.
(14)

3. Existence and Uniqueness of the Solution of SLPs

In this section we convert (1) and (2) to an integral equation and prove that it has
a solution that satisfies the relevant equations and initial conditions. First, we proceed
formally. Separating terms in (1), we get

cDα
0+ ◦ D

α
0+y(t) = (q(t)− λ)y(t), 1/2 < α < 1, 0 ≤ t ≤ 1.

Taking the left Riemann–Liouville fractional integrals Iα
a+ on both sides of the above

equation and using Property 5, we have

Dα
0+y(t)−Dα

0+y(t)|t=0 = Iα
0+((q(t)− λ)y(t)).

Taking the left Riemann–Liouville fractional integrals Iα
a+ from both sides of the above

equation once again and using Property 4, we get

y(t)− tα−1

Γ(α)
I1−α

0+ y(t)|t=0 − Iα
0+(D

α
0+y(t)|t=0) = Iα

0+(I
α
0+((q(t)− λ)y(t)))

Using Property 1, we can write

y(t) = c1
tα−1

Γ(α)
+ c2

tα

Γ(α + 1)
+ Iα

0+(I
α
0+((q(t)− λ)y(t)))

in which
c1 = I1−α

0+ y(t)|t=0, c2 = Dα
0+y(t)|t=0.

We obtain, through the double fractional integral in the above equation, the following:

y(t) = c1
tα−1

Γ(α)
+ c2

tα

Γ(α + 1)
+

1
Γ2(α)

∫ t

0
(t− s)α−1

(∫ s

0

(q(r)− λ)y(r)
(s− r)1−α

dr
)

ds.

By changing the order of integrals in the above equation we get

y(t) = c1
tα−1

Γ(α)
+ c2

tα

Γ(α + 1)
+

1
Γ2(α)

∫ t

0
(q(r)− λ)y(r)

(∫ t

r
(t− s)α−1(s− r)α−1ds

)
dr

Solving the inner integral gives us

y(t, λ) = c1
tα−1

Γ(α)
+ c2

tα

Γ(α + 1)
+

1
Γ(2α)

∫ t

0
(q(s)− λ)y(s, λ)(t− s)2α−1ds. (15)

We will now show that (15) has a solution that exists in a neighbourhood of t = 0
and is unique there. Working backwards will then provide us with a unique solution to (1)
and (2). Although this result already appears in [15], we give a shorter proof part of which
will be required later.

To this end, let t > 0. Define

yn(t, λ) = y0(t, λ) +
1

Γ(2α)

∫ t

0
(t− s)2α−1(q(s)− λ)yn−1(s, λ)ds, (16)
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where

y0(t, λ) = c1
tα−1

Γ(α)
+ c2

tα

Γ(α + 1)
. (17)

Let λ ∈ C, |λ| < Λ, where Λ > 0 is arbitrary but fixed. Then,

|y1(t, λ)− y0(t, λ)| ≤ 1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ||y0(s, λ)|ds

≤ ||q||∞ + Λ
Γ(2α)

∫ t

0
(t− s)2α−1|y0(s, λ)|ds,

(18)

in which ||q||∞ = supt∈[0,1] |q(t)|. Substituting (17) in (18) and using the fact that,

∫ t

a
(t− s)α−1(s− a)β−1ds =

(t− a)α+β−1Γ(α)Γ(β)

Γ(α + β)
,

we have

|y1(t, λ)− y0(t, λ)| ≤ (||q||∞ + Λ)

(
c1

Γ(3α)
t3α−1 + c2

t3α

Γ(3α + 1)

)
,

Now, for n = 2 in (16) we get

|y2(t, λ)− y1(t, λ)| ≤ 1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ||y1(s, λ)− y0(s, λ)|ds

≤ 1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ|

(
(||q||∞ + Λ)(

c1

Γ(3α)
s3α−1 + c2

s3α

Γ(3α + 1)
)

)
ds

≤ (||q||∞ + Λ)2
(

c1

Γ(5α)
t5α−1 +

c2

Γ(5α + 1)
t5α

)
.

(19)

Continuing in this way we get that the series

y(t, λ) :=y0(t, λ) +
∞

∑
n=1

(yn(t, λ)− yn−1(t, λ)) (20)

where

∞

∑
n=1
|yn(t, λ)− yn−1(t, λ)| ≤ c1t−1

∞

∑
n=1

(||q||∞ + Λ)n

Γ(2nα + α)
t2nα+α + c2

∞

∑
n=1

(||q||∞ + Λ)n

Γ(2nα + α + 1)
t2nα+α (21)

converges uniformly on compact subsets of (0, 1]. Denote the sum of the infinite series
in (20) by y(t, λ). So, by virtue of (17) and (21), (20) gives us,

|y(t, λ)| ≤ |y0(t, λ)|+
∞

∑
n=1
|yn(t, λ)− yn−1(t, λ)|

≤ c1

Γ(α)
tα−1 +

c2

Γ(α + 1)
tα + c1t−1

∞

∑
n=1

(||q||∞ + Λ)n

Γ(2nα + α)
t2nα+α + c2

∞

∑
n=1

(||q||∞ + Λ)n

Γ(2nα + α + 1)
t2nα+α

= c1t−1
∞

∑
n=0

(||q||∞ + Λ)n

Γ(2nα + α)
t2nα+α + c2

∞

∑
n=0

(||q||∞ + Λ)n

Γ(2nα + α + 1)
t2nα+α

= c1tα−1E2α,α((||q||∞ + Λ)t2α) + c2tαE2α,α+1((||q||∞ + Λ)t2α).

Note that for a solution y(t, λ) of (15) to be C([0, 1]), it is necessary and sufficient that
c1 = 0, i.e., I1−α

0+ y(t)|t=0 = 0. This then proves the global existence of a solution of (15) on
[δ, 1], δ > 0, since q ∈ L∞[0, 1] for given c1 and c2, as defined in (2).
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From the proof comes the following a priori estimate when c1 = 0, that is,

|y(t, λ)| ≤ c2tα

(
1

Γ(α + 1)
+

∣∣∣∣E2α,α+1((||q||∞ + Λ)t2α)

∣∣∣∣)
≤ c2

(
1

Γ(α + 1)
+

∣∣∣∣E2α,α+1((||q||∞ + Λ)t2α)

∣∣∣∣)
valid for each t ∈ [0, 1] and all |λ| < Λ.

The previous bound can be made into an absolute constant by taking the sup over all t
and |λ| < Λ. Of course, the bound goes to infinity as |λ| → ∞ over non-real values, as it
must. Thus,

|y(t, λ)| ≤ c2

(
1

Γ(α + 1)
+ sup
|λ|<Λ,t∈[0,1]

∣∣∣∣E2α,α+1((||q||∞ + Λ)t2α)

∣∣∣∣
)

= c2

(
1

Γ(α + 1)
+ |E2α,α+1((||q||∞ + Λ))|

)
:= c3. (22)

for all |λ| < Λ, t ∈ [0, 1]. Uniqueness follows easily by means of Gronwall’s inequality, as
usual. Let ε > 0. Assume that (15) has two solutions y(t, λ), z(t, λ). Since q ∈ L∞[0, 1] and
|λ| < Λ we can derive that,

|y(t, λ)− z(t, λ)| ≤ εe
1

Γ(2α)
(||q||∞+Λ) t2α

2α .

and since t ∈ [0, 1], we get
|y(t, λ)− z(t, λ)| ≤ O(ε)

where the O-term can be made independent of both t, λ. Letting ε→ 0 yields uniqueness
for t ∈ [0, 1] and |λ| < Λ.

4. Another Integral Equation

In the previous section we showed that (15) has a solution that, for each λ ∈ C, exists
on [0, 1], is unique, and is continuous there if and only if c1 = 0. On the other hand, if
c1 6= 0 then the solution is merely continuous on all compact subsets of (0, 1]. In this section
we find another expression for the integral equation which is equivalent to both (15) and
the problem (1) with boundary conditions (2).

Lemma 1. For 0 < α < 1 and 0 < t < 1, we have

−cDα
0+D

α
0+

(
tα−1E2α,α(−λt2α)

)
= λtα−1E2α,α(−λt2α)

Proof. Using properties of the Mittag-Leffler function we can write

Dα
0+

(
tα−1E2α,α(−λt2α)

)
= Dα

0+

(
∞

∑
k=0

(−λ)kt2αk+α−1

Γ(2αk + α)

)

=
∞

∑
k=0

(−λ)kDα
0+

(
t2αk+α−1

)
Γ(2αk + α)

=
∞

∑
k=0

(−λ)kt2αk−1

Γ(2αk)

= t−1E2α,0(λt2α)

= −λt2α−1E2α,2α(−λt2α),

(23)
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in which the third and the last equalities come from Property 2 and Property 7, respectively.
Now, taking the left Caputo fractional derivative of both sides of (23) we get

−cDα
0+D

α
0+

(
tα−1E2α,α(−λt2α)

)
=c Dα

0+

(
λt2α−1E2α,2α(−λt2α)

)
= λcDα

0+

(
∞

∑
k=0

(−λ)kt2αk+2α−1

Γ(2αk + 2α)

)

= λ

 ∞

∑
k=0

(−λ)kcDα
0+

(
t2αk+2α−1

)
Γ(2αk + 2α)


= λtα−1

∞

∑
k=0

(−λ)kt2αk

Γ(2αk + α)

= λtα−1E2α,α(−λt2α)

as required.

Lemma 2. For 0 < α < 1 and 0 < t < 1, we have

−cDα
0+D

α
0+

(
tαE2α,α+1(−λt2α)

)
= λtαE2α,α+1(−λt2α)

Proof. Once again, using the properties of the Mittag-Leffler function we can write

Dα
0+

(
tαE2α,α+1(−λt2α)

)
= Dα

0+

(
∞

∑
k=0

(−λ)kt2αk+α

Γ(2αk + α + 1)

)

=
∞

∑
k=0

(−λ)kDα
0+

(
t2αk+α

)
Γ(2αk + α + 1)

=
∞

∑
k=0

(−λ)kt2αk

Γ(2αk + 1)

= E2α,1(−λt2α).

(24)

in which the third equality comes from Property 3. Now, taking the left Caputo fractional
derivative of both sides of (24) we get

cDα
0+D

α
0+

(
tαE2α,α+1(−λt2α)

)
= cDα

0+

(
E2α,1(λt2α)

)
= cDα

0+

(
∞

∑
k=0

(−λ)kt2αk

Γ(2αk + 1)

)

=
∞

∑
k=0

(−λ)kcDα
0+

(
t2αk
)

Γ(2αk + 1)

=
∞

∑
k=1

(−λ)ktα(2k−1)

Γ(1 + α(2k− 1))

=
∞

∑
k=0

(−λ)k+1tα(2k+1)

Γ(1 + α(2k + 1))

= −λtα
∞

∑
k=0

(−λ)kt2αk

Γ(2kα + α + 1)

= −λtαE2α,α+1(−λt2α)

as desired.
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Lemma 3. For 0 < α < 1 and 0 < t < 1, we have

−cDα
0+D

α
0+

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s)y(s)ds

)
= −q(t)y(t) + λ

∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s)y(s)ds

Proof. Let c4 = 1/Γ(1− α). Observe that,

I1−α
0+

∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s)y(s)ds = c4

∫ t

0

∫ r
0 (r− s)2α−1E2α,2α(−λ(r− s)2α)q(s)y(s)ds

(t− r)α
dr

= c4

∫ t

0
q(s)y(s)

(∫ t

s

(r− s)2α−1

(t− r)α
E2α,2α(−λ(r− s)2α)dr

)
ds

= c4

∫ t

0
q(s)y(s)

(
∞

∑
k=0

(−λ)k

Γ(2αk + 2α)

∫ t

s

(r− s)2α−1+2αk

(t− r)α
dr

)
ds

=
∫ t

0
q(s)y(s)

(
∞

∑
k=0

(−λ)k(t− s)2αk+α

Γ(2αk + α + 1)

)
ds

=
∫ t

0
q(s)y(s)(t− s)αE2α,α+1(−λ(t− s)2α)ds.

(25)

Next, differentiating both sides of (25) with respect to t and noting thatDα
0+ = D(I1−α

0+ )
we find,

Dα
0+

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s)y(s)ds

)
=
∫ t

0
(t− s)α−1E2α,α(−λ(t− s)2α)q(s)y(s)ds. (26)

as d
dt (t

αE2α,α+1(−λt2α)) = tα−1E2α,α(−λt2α). Next, we are going to take the left Caputo
fractional derivative of both sides of (26). However, since the right hand side of (26) as
a function of t is zero at t = 0, we can use Property 6 and replace the Caputo fractional
derivative cDα

0+ by the Riemann–Liouville one Dα
0+ . In order to do so, first we need to

apply I1−α
0+ followed by the classical derivative of the right hand side of (26) as follows,

I1−α
0+

∫ t

0
(t− s)α−1E2α,α(−λ(t− s)2α)q(s)y(s)ds = c4

∫ t

0

∫ r
0 (r− s)α−1E2α,α(−λ(r− s)2α)q(s)y(s)ds

(t− r)α
dr

= c4

∫ t

0
q(s)y(s)

(∫ t

s

(r− s)α−1

(t− r)α
E2α,α(−λ(r− s)2α)dr

)
ds

= c4

∫ t

0
q(s)y(s)

(
∞

∑
k=0

(−λ)k

Γ(2αk + α)

∫ t

s

(r− s)α−1+2αk

(t− r)α
dr

)
ds

=
∫ t

0
q(s)y(s)

(
∞

∑
k=0

(−λ)k(t− s)2αk

Γ(2αk + 1)

)
ds

=
∫ t

0
q(s)y(s)E2α,1(−λ(t− s)2α)ds.

Taking the derivative of the previous equation and using the fact stated in the previous
paragraph, we get

cDα
0+

∫ t

0
(t− s)α−1E2α,α(−λ(t− s)2α)q(s)y(s)ds = q(t)y(t) +

∫ t

0
q(s)y(s)(t− s)−1E2α,0(−λ(t− s)2α)ds

= q(t)y(t)− λ
∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s)y(s)ds.

(27)

where we used Property 7 to arrive at the second equality above. Combining (26) and (27)
completes the proof.
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Theorem 1. For 1/2 < α < 1, the integral equation

y(t, λ) = c1tα−1 E2α,α(−λt2α) + c2tαE2α,α+1(−λt2α) +
∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds (28)

satisfies (1) with initial conditions I1−α
0+ y(t)|t=0 = c1 and Dα

0+y(t)|t=0 = c2 in which c1 and c2
are given constants, and that this solution is unique.

Proof. We apply −cDα
0+D

α
0+ on both sides of (28) to find,

−cDα
0+D

α
0+(y(t, λ)) = −cDα

0+D
α
0+

(
c1tα−1 E2α,α(−λt2α) + c2tαE2α,α+1(−λt2α)

)
+

− cDα
0+D

α
0+

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds

)
= λc1tα−1 E2α,α(−λt2α) + λc2tαE2α,α+1(−λt2α)− q(t)y(t)+

λ
∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds

= −q(t)y(t) + λ
(

c1tα−1 E2α,α(−λt2α) + c2tαE2α,α+1(−λt2α)
)
+

λ

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds

)
= −q(t)y(t) + λ(y(t, λ)),

(29)

in which second equality come from Lemmas 1–3. We verify the initial conditions. Taking
I1−α

0+ of both sides (28), we get,

I1−α
0+ (y(t, λ)) = I1−α

0+

(
c1tα−1 E2α,α(−λt2α) + c2tαE2α,α+1(−λt2α)

)
+

I1−α
0+

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds

)
= c1E2α,1(−λt2α) + c2tE2α,2(−λt2α) +

∫ t

0
(t− s)αE2α,2α+1(−λ(t− s)2α)q(s) y(s, λ) ds,

(30)

where the third term of the second equality comes from (25). Since E2α,1(−λt2α)|t=0 = 1
and the other two terms of the above equality vanish when t = 0, we have verified the first
initial condition. Again Taking Dα

0+ on both sides (28), we can find,

Dα
0+(y(t, λ)) = Dα

0+

(
c1tα−1 E2α,α(−λt2α) + c2tαE2α,α+1(−λt2α)

)
+

Dα
0+

(∫ t

0
(t− s)2α−1E2α,2α(−λ(t− s)2α)q(s) y(s, λ) ds

)
= −c1λt2α−1E2α,2α(−λt2α) + c2E2α,1(−λt2α) +

∫ t

0
(t− s)α−1E2α,α(−λ(t− s)2α)q(s) y(s, λ) ds,

(31)

where the second equality above comes from (23), (24) and (26). The second initial condition
can readily be obtained by substituting t = 0 in (31).

5. Analyticity of Solutions with Respect to the Parameter λ

In this section we show that the solutions (15) or (28) are, generally speaking, entire
functions of the parameter λ for each t under consideration and λ ∈ C. First, we show
continuity with respect to said parameter. Consider the case where c1 = 0, i.e., y ∈ C[0, 1].

Lemma 4. Let y ∈ C[0, 1], λ ∈ C. Then, for each fixed t ∈ [0, 1], y(t, λ) is continuous with
respect to λ .

Proof. Let Λ > 0 be arbitrary but fixed, and let |λ|, |λ0| < Λ. Using (28),
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y(t, λ)− y(t, λ0) =
1

Γ(2α)

∫ t

0
(t− s)2α−1((q(s)− λ)y(s, λ)− (q(s)− λ0)y(s, λ0))ds

=
1

Γ(2α)

∫ t

0
(t− s)2α−1((λ0 − λ)y(s, λ) + (q(s)− λ0)(y(s, λ)− y(s, λ0)))ds.

So,

y(t, λ)− y(t, λ0) = −(λ− λ0)
1

Γ(2α)

∫ t

0
(t− s)2α−1y(s, λ)ds +

1
Γ(2α)

∫ t

0
(t− s)2α−1(q(s)− λ0)(y(s, λ)− y(s, λ0))ds. (32)

Now, let ε > 0 and |λ− λ0| < δ where δ > 0 is to be chosen later. Then,

|y(t, λ)− y(t, λ0)| ≤ δ
1

Γ(2α)

∫ t

0
(t− s)2α−1|y(s, λ)|ds +

1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ0||y(s, λ)− y(s, λ0)|ds.

Using (22) and Gronwall’s inequality, we get

|y(t, λ)− y(t, λ0)| ≤
δc3t2α

2α Γ(2α)
+

1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ0||y(s, λ)− y(s, λ0)|ds

≤ δc3

Γ(2α + 1)
e

1
Γ(2α)

∫ 1
0 (t−s)2α−1|q(s)−λ0| ds

≤ δc3

Γ(2α + 1)
e

1
Γ(2α)

∫ 1
0 (1−s)2α−1|q(s)−λ0| ds := Cδ

where
C =

c3

Γ(2α + 1)
e

1
Γ(2α)

∫ 1
0 (1−s)2α−1|q(s)−λ0| ds

is a function of α and λ0 only as q ∈ L∞(0, 1). Thus, for any t ∈ [0, 1], the continuity of
y(t, λ) follows by choosing δ < ε

C . It also follows from this that,

sup
t∈[0,1]

|y(t, λ)− y(t, λ0)| < ε, |λ− λ0| < δ. (33)

Next, we consider the differentiability of y(t, λ) with respect to λ.

Lemma 5. Let y ∈ C[0, 1], λ ∈ C. Then, for each fixed t ∈ [0, 1], y(t, λ) is differentiable with
respect to λ.

Proof. As before let |λ| < Λ, t ∈ [0, 1]. Equation (32) can be rewritten as

y(t, λ)− y(t, λ0)

λ− λ0
= − 1

Γ(2α)

∫ t

0
(t− s)2α−1y(s, λ) ds +

1
Γ(2α)

∫ t

0
(t− s)2α−1(q(s)− λ0)

y(s, λ)− y(s, λ0)

λ− λ0
ds.

As y(t, λ0) is given, we define h(t, λ0) to be the unique solution of the Volterra integral
equation of the second kind,

h(t, λ0) = −
1

Γ(2α)

∫ t

0
(t− s)2α−1y(s, λ0) ds +

1
Γ(2α)

∫ t

0
(t− s)2α−1(q(s)− λ0)h(s, λ0) ds.

So,
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∣∣∣∣y(t, λ)− y(t, λ0)

λ− λ0
− h(t, λ0)

∣∣∣∣ ≤ 1
Γ(2α)

∫ t

0
(t− s)2α−1|y(s, λ)− y(s, λ0)|ds

+
1

Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ0|

∣∣∣∣y(s, λ)− y(s, λ0)

λ− λ0
− h(s, λ0)

∣∣∣∣ds.

Let ε > 0 and choose δ > 0 as in (33). Using Gronwall’s inequality and (33) we get, for
t ∈ [0, 1],

∣∣∣∣y(t, λ)− y(t, λ0)

λ− λ0
− h(t, λ0)

∣∣∣∣ ≤ ε

2αΓ(2α)
+

1
Γ(2α)

∫ t

0
(t− s)2α−1|q(s)− λ0|

∣∣∣∣y(s, λ)− y(s, λ0)

λ− λ0
− h(s, λ0)

∣∣∣∣ds,

≤ ε

Γ(2α + 1)
e

1
Γ(2α)

∫ 1
0 (t−s)2α−1|q(s)−λ0| ds

= O(ε).
(34)

for λ near λ0 since, for t ∈ [0, 1],
∫ 1

0 (t− s)2α−1|q(s)− λ0| ds = O(1). Thus,

∂y(t, λ)

∂λ
|λ=λ0 := lim

λ→λ0

y(t, λ)− y(t, λ0)

λ− λ0
= h(t, λ0),

exists at λ0. Since λ0 is arbitrary yλ(t, λ) exists for all λ with |λ| < Λ, real or complex and
the result follows.

Theorem 2. For each t ∈ [0, 1], y(t, λ) is an entire function of λ.

Proof. This follows from Lemma 5 since λ ∈ C and |λ| < Λ where Λ > 0 is arbitrary.

6. A Dirichlet-Type Problem

Let y ∈ C[0, 1], λ ∈ C be fixed. In this case we note that the first of the boundary
conditions (2) is equivalent to the usual fixed end (Dirichlet) boundary conditions, that is,

y ∈ C[0, 1] ⇐⇒ I1−α
0+ y(t, λ)|t=0 = 0 ⇐⇒ y(0, λ) = 0.

The continuity assumption implies that there is a number M such that |y(t, λ)| ≤ M,
for all t ∈ [0, 1]. Thus,

|I1−α
0+ y(t, λ)| ≤ M

Γ(α)

∫ t

0
(t− s)−α ds =

M t1−α

(1− α)Γ(α)
,

and so I1−α
0+ y(t, λ)|t=0 = 0. On the other hand (15) now implies that c1 = 0, i.e., y(0, λ) = 0,

so that y ∈ C[0, 1]. However, the condition y(1, λ) = 0 is independent of the statement that
I1−α

0+ y(t, λ)|t=1 = 0.
Since, for any z 6= 0, the Mittag-Leffler functions satisfy

Eδ,δ(z) =
1
z

Eδ,0(z),

we get

t2α−1E2α,2α(−λt2α) = − 1
λt

E2α,0(−λt2α). (35)

Hence, using (28) and (35) we get

y(t, λ) = c1 tα−1 E2α,α(−λt2α) + c2 tαE2α,α+1(−λt2α)−
∫ t

0

E2α,0(−λ(t− s)2α)

λ(t− s)
q(s)y(s, λ) ds. (36)
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Remark 1. When α→ 1, the integral Equation (36) becomes

y(t, λ) = y(0, λ) cos(
√

λt) + y′(0, λ)
sin(
√

λt)√
λ

+
∫ t

0

sin(
√

λ(t− s))√
λ

q(s)y(s, λ)ds, (37)

which is exactly the integral equation equivalent of the classical Sturm–Liouville equation −y′′ +
q(t)y = λy for λ > 0.

Remark 2. Observe that, for each α,

lim
s→t−

−E2α,0(−λ(t− s)2α)

λ(t− s)
=

{
0, if α ∈ (1/2, 1],
1, if α = 1/2.

and so, for each 1/2 < α < 1, the kernel appearing in (36) is uniformly bounded on [0, 1]. This
agrees with the equivalent result for the classical case (37).

7. Existence and Asymptotic Distribution of the Eigenvalues

Without loss of generality we may assume that c2 = 1 in (36) and y(t, λ) is the
corresponding solution. In the sequel we always assume that 1/2 < α < 1.

Lemma 6. For each t ∈ [0, 1], 1/2 < α < 1, and | arg(−λ)| ≤ µ where µ ∈ (απ, π), we have∣∣tαE2α,α+1(−λt2α)
∣∣→ 0 as |λ| → ∞.

Proof. By (14) we can write

tαE2α,α+1(−λt2α) = tα

(
1

2α
(−λt2α)

1−(α+1)
2α

)
exp

{
(−λt2α)

1
2α

}
+O

(
1
λ

)
= − i

2α
√

λ
exp

{
(−λ)

1
2α t
}
+O

(
1
λ

)
= − i

2α
√

λ
exp

{
|λ|

1
2α

(
cos(

arg(−λ)

2α
) + i sin(

arg(−λ)

2α
)

)
t
}
+O

(
1
λ

)
.

Therefore, ∣∣∣tαE2α,α+1(−λt2α)
∣∣∣ = 1

2α
√

λ
exp

{
|λ|

1
2α cos(

arg(−λ)

2α
)t
}

.

Regarding the assumption on arg(−λ), we have cos( arg(−λ)
2α ) < 0 and it completes

the proof.

Lemma 7. For each t ∈ [0, 1], s ∈ [0, t], 1/2 < α < 1, and | arg(−λ)| ≤ µ where µ ∈ (απ, π),

we have
∣∣∣ E2α,0(−λ(t−s)2α)

λ(t−s)

∣∣∣→ 0 as |λ| → ∞.

Proof. By (14) we can write

E2α,0(−λ(t− s)2α)

λ(t− s)
=

(
1

2α (−λ(t− s)2α)
1

2α

)
exp

{
(−λ(t− s)2α)

1
2α

}
+O

(
1
λ

)
λ(t− s)

=
1

2α

(−λ)
1

2α

λ
exp

{
(−λ)

1
2α (t− s)

}
+O

(
1

λ2

)
.

Then,∣∣∣∣E2α,0(−λ(t− s)2α)

λ(t− s)

∣∣∣∣ = 1
2α|λ|(2α−1)/2α

exp
{
(t− s)|λ|1/2α cos

(
arg(−λ)

2α

)}
+ O

(
1
|λ|2

)
.
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Arguing as in the previous lemma we reach the desired conclusion.

Lemma 8. For each t ∈ [0, 1], s ∈ [0, t], 1/2 < α < 1, and | arg(−λ)| ≤ µ where µ ∈ (απ, π),

we have
∣∣∣ E2α,1−α(−λ(t−s)2α)

λ(t−s)α

∣∣∣→ 0 as |λ| → ∞

Proof. By (14) we can write

E2α,1−α(−λ(t− s)2α)

λ(t− s)α
=

(
1

2α (−λ(t− s)2α)
1−(1−α)

2α

)
exp

{
(−λ(t− s)2α)

1
2α

}
+O

(
1
λ

)
λ(t− s)α

=
i√
λ2α

exp
{
(−λ)

1
2α (t− s)

}
+O

(
1

λ2

)
.

Then,∣∣∣∣E2α,1−α(−λ(t− s)2α)

λ(t− s)α

∣∣∣∣ = 1
2α
√
|λ|

exp
{
(t− s)|λ|1/2α cos

(
arg(−λ)

2α

)}
. (38)

The result follows since the exponential term is uniformly bounded.

Lemma 9. For each t ∈ [0, 1], and 1/2 < α < 1, the solution y(t, λ) is an entire function of λ of
order at most 1/2α.

Proof. Let λ ∈ C. Define f by

y(t, λ) = exp
{

t|λ|1/2α cos
(

arg(−λ)

2α

)}
f (t). (39)

Then, using (36),

f (t) = tαE2α,α+1(−λt2α) exp
{
− t|λ|1/2α cos

(
arg(−λ)

2α

)}
−
∫ t

0

E2α,0(−λ(t− s)2α)

λ(t− s)
exp

{
− (t− s)|λ|1/2α cos

(
arg(−λ)

2α

)}
q(s) f (s) ds

Applying Lemma 6 there exists Λ ∈ R+ such that for all |λ| > Λ we have

| f (t)| ≤ 1 +
1

2α|λ|(2α−1)/2α

∫ t

0
|q(s)| | f (s)| ds

which, on account of Gronwall’s inequality, gives us

| f (t)| ≤ exp
{

1
2α|λ|(2α−1)/2α

∫ 1

0
|q(s)| ds

}
(40)

for all sufficiently large |λ|. Thus, f ∈ L∞[0, 1] so that (39) yields, for some M,

|y(t, λ)| ≤ M exp
(
|λ|1/2α

)
and the order claim is verified.

Lemma 10. For each t ∈ [0, 1], I1−α
0+ y(t, λ) is an entire function of λ of order at most 2α.
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Proof. This is clear from the definition, the possible values of α, and since y(t, λ) is itself
entire and of order at most 1/2α, from Lemma 9.

Lemma 11. The boundary value problem (1) and (2) has infinitely many complex eigenvalues (real
eigenvalues are not to be excluded here).

Proof. By Lemma 10, we know that I1−α
0+ y(t, λ) is entire for each t ∈ [0, 1], and 1/2 < α < 1

as well. So, the eigenvalues of our problem are given by the zeros of I1−α
0+ y(1, λ), which

must be countably infinite in number since the latter function is of fractional order 1/2α (on
account of the restriction on α). This gives us the existence of infinitely many eigenvalues,
generally in C.

Next, we give the asymptotic distribution of these eigenvalues when α is either very
close to 1/2 from the right or very close to 1 from the left. Recall (36) with c2 = 1, so that

y(t, λ) = tαE2α,α+1(−λt2α)−
∫ t

0

E2α,0(−λ(t− s)2α)

λ(t− s)
q(s)y(s, λ) ds. (41)

An iterative method for solving for approximate solutions of (41) maybe found in [16].
Keeping in mind the boundary condition (2) at t = 1, we calculate I1−α

0+ y(t, λ) and then
evaluate this at t = 1 in order to find the dispersion relation for the eigenvalues. However,
our derivation is theoretical in nature. A straightforward though lengthy calculation
using (41) and the definition of the Mittag-Leffler functions show that

I1−α
0+ y(t, λ) = I1−α

0+ {t
αE2α,α+1(−λt2α)}+ I1−α

0+

(∫ t

0

E2α,0(−λ(t− s)2α)

λ(t− s)
q(s)y(s, λ) ds

)
= tE2α,2(−λt2α) +

1
λ

∫ t

0

E2α,1−α(−λ(t− s)2α)

(t− s)α
q(s)y(s, λ) ds (42)

so that the eigenvalues of (1) and (2) are given by those λ ∈ C such that

E2α,2(−λ) +
1
λ

∫ 1

0

E2α,1−α(−λ(1− s)2α)

(1− s)α
q(s)y(s, λ) ds = 0. (43)

Let us consider first the case where λ ∈ R. Lemma 8 implies that the right side of (38)
tends to 0 as λ→ ∞. Indeed this, combined with (39), implies that∣∣∣∣E2α,1−α(−λ(t− s)2α)

λ(t− s)α
y(s, λ)

∣∣∣∣ = O

(
1√
|λ|

)
for all sufficiently large λ.

Thus, the real eigenvalues of the problem (1) and (2) become the zeros of a transcen-
dental equation of the form,

E2α,2(−λ) + O
(

1√
λ

)
= 0.

We are concerned with the asymptotic behaviour of these real zeros. Recall the distribu-
tion of the real zeros of E2α,2(−λ) in [1]. There we showed that, for each
n = 0, 1, 2, . . . , N∗ − 1, where N∗ depends on α, the interval

In(α) :=

( (2n + 1
2 + 1

2α )π

sin( π
2α )

)2α

,

(
(2n + 3

2 + 1
2α )π

sin( π
2α )

)2α
, (44)
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always contains at least two real zeros of E2α,2(−λ). For α→ 1, these intervals approach
the intervals (

(2n + 1)2 π2, (2n + 2)2 π2
)

,

whose end-points are each eigenvalues of the Dirichlet problem for the classical equation
−y′′ = λ y on [0, 1]. Since each interval In contains two zeros we can denote the first of
these two zeros by λ2n(α). Equation (44) now gives the a-priori estimate(

(2n + 1
2 + 1

2α )π

sin( π
2α )

)2α

≤ λ2n(α) ≤
(
(2n + 3

2 + 1
2α )π

sin( π
2α )

)2α

. (45)

For each α < 1, and close to 1, and for large λ, the real zeros of the preceding equation
approach those of E2α,2(−λ) and spread out towards the end-points of intervals of the
form (44). For α close to 1/2 there are no zeros, the first two zeros appearing only when
α ≈ 0.7325. For α larger than this critical value, the zeros appear in pairs and in intervals of
the form (44).

Next, recall that for α < 1 there are only finitely many such real zeros, (see [1]) their
number growing without bound as α → 1. It also follows from Lemma 11 that, for each
α, the remaining infinitely many eigenvalues must be non-real. As α→ 1− these non-real
eigenvalues tend to the real axis thereby forming more and more real eigenvalues until the
spectrum is totally real when α = 1 and the problem then reduces to a (classical) regular
Sturm–Liouville problem.

Finally, for α close to 1, (45) leads to the approximation,

λ2n(α) ≈
(
(2n + 2)π

sin( π
2α )

)2α

,

from which this, in conjunction with (44) and α→ 1, we can derive the classical eigenvalue
asymptotics, λn ∼ n2π2 as n→ ∞.

8. Conclusions

We consider the fractional eigenvalue problem,

−cDα
0+ ◦ D

α
0+y(t) + q(t)y(t) = λy(t), 0 ≤ t ≤ 1,

where α is a real parameter, 1/2 < α < 1, λ is a generally unspecified complex parameter,
with mixed Caputo and Riemann–Liouville derivatives and q an essentially bounded func-
tion, subject to the following boundary conditions involving the Riemann–Liouville integrals,

I1−α
0+ y(t)|t=0 = 0, and I1−α

0+ y(t)|t=1 = 0.

We show that this problem admits, for each α under consideration, and for eigenfunc-
tions that are in C[0, 1], a finite number of real eigenvalues and an infinite number of
non-real eigenvalues. The real eigenvalues, though finite in number for each α, are approxi-
mated by (44) and (45), which as α→ 1 gives the classical asymptotic relation λn ∼ n2π2

as n→ ∞.
As α→ 1− we observe that the spectrum obtained approaches the Sturm–Liouville

spectrum of the classical problem

−y′′ + q(t)y = λy, y(0) = y(1) = 0.

The same results hold if the eigenfunctions are merely C(0, 1] (i.e., c1 6= 0) except that
now the latter have an infinite discontinuity at t = 0 for each α. The proofs are identical
and are therefore omitted.
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