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Abstract: Fractional-order calculus has become a useful mathematical framework to describe the
complex super-diffusive process; however, numerical solutions of the two-sided space-fractional
super-diffusive model with variable coefficients are difficult to obtain, and almost no method can
obtain an analytical solution. In this paper, a class of new fractional dimensional reproducing
kernel spaces (RKS) based on Caputo fractional derivatives is given, and we give analytical and
numerical solutions of the two-sided space-fractional super-diffusive model based on the class of
new RKS. The analytical solution is represented in the form of series in the reproducing kernel space.
Numerical experiments indicate that the piecewise reproducing kernel method is more accurate
than the traditional reproducing kernel method (RKM), and these new fractional reproducing kernel
spaces are efficient for the two-sided space-fractional super-diffusive model.

Keywords: two-sided fractional super-diffusive model; variable coefficient; reproducing kernel space;
analytical and numerical solution; reproducing kernel method

1. Introduction

In the process of solute transport in groundwater, the two-sided space-fractional
partial differential equations can be used to describe the abnormal diffusion phenomenon
in the process of solute transport in an aquifer. As for the numerical solution of this kind of
problem, some scholars [1] have conducted in-depth research on this kind of problem. In
this paper, we will consider the following two-sided space-fractional partial differential
Equations [2]:

ut(x, t) = C+(x, t)Dα,ρ
x,a+u(x, t) + C−(x, t)Dα,ρ

x,b−u(x, t) + g(x, t). (1)

with the initial condition u(x, 0) = 0, a ≤ x ≤ b, and boundary condition u(a, t) = 0,
u(b, t) = 0, 0 ≤ t ≤ T. g(x, t) is a known function, u(x, t) is a unknown function, C+(x, t)
and C−(x, t) are two known coefficients, Dα,ρ

x,a+u(x, t) and Dα,ρ
x,b−u(x, t) are defined as the

left and right Caputo-type fractional derivative Dα,ρ
a+ u(x, t) and Dα,ρ

b− u(x, t) of x, Dα,ρ
a+ u(x, t)

and Dα,ρ
b− u(x, t); see Definition 6. When 1 ≤ β ≤ 2, it is a super-diffusive process, when

β = 2, and if C+(x, t) = C−(x, t) and C(x, t) = C+(x, t) = C−(x, t), then, Equation (1)
becomes the standard diffusion Equation

∂u(x, t)
∂t

= C(x, t)
∂2u(x, t)

∂x2 + g(x, t), a ≤ x ≤ b, 0 ≤ t ≤ T.

Numerical solutions of the two-sided space-fractional super-diffusive model are diffi-
cult to obtain, and almost no method can obtain the analytical solution. In this paper, we
give analytical and numerical solutions of the two-sided space-fractional super-diffusive
model based on a class of the new reproducing kernel method.
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Reproducing kernel Hilbert spaces arise in a number of areas, including approximation
theory, statistics, machine-learning theory, group representation theory and various areas
of complex analysis. In 1950, N. Arronszajn [3] published the theory of reproducing
kernels, which formed a systematic theory of a reproducing kernel space. In 1986, Cui [4]
constructed a reproducing kernel space and gave its reproducing kernel expression for the
first time. At the same time, Cui gave the reproducing kernel method of a linear operator
equation. Since then, the reproducing kernel method has been widely used to solve various
Equations [5–12].

In [5], the authors used the spline reproducing kernel function approximation to
develop Filon and Levin methods for highly oscillatory integrals. In [6], the authors
found an identification approach for differential equation models by using a reproducing
kernel. In [7], the authors presented an optimal reproducing kernel method for nonlocal
boundary value problems by combining the piecewise polynomial kernel with polynomial
kernel. In [8], the authors presented a numerical technique to obtain the approximation
solution for linear Volterra integral equations of the second kind based on the reproducing
kernel theory.

In [9], the authors solved the time variable fractional order advection–reaction-diffusion
equations based on the piecewise reproducing kernel method. In [11], the authors gave
a fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-
Fractional Volterra integro-differential equations. In [12], the authors discussed techniques
for constructing univariate spline interpolations by employing a class of reproducing
kernel functions.

A key of the reproducing kernel method is the reproducing kernel space. Until now,
authors [5–12] all used integer-dimensional reproducing kernel space to solve fractional
order differential Equations [10–12]. In fact, for fractional order differential equations, the
integer dimensional reproducing kernel space is relatively larg. In this paper, a class of new
fractional reproducing kernel spaces based on Caputo fractional derivatives are given.

2. Main Notations

Throughout this paper, N0 will denote the set of non-negative integers. We will use
the notation bxc to design the integer part of a real number x—that is, the greatest integer
less than or equal to x. We also define bxe = bxc+ 1 if x /∈ N0 and bxe = bxc if x ∈ N0.

Definition 1. For c ∈ R, p ∈ N0, the space Lp
c [a, b] and L∞

c [a, b] are defined as

Lp
c [a, b] = { f | f ∈ L[a, b], ‖ f ‖Lp

c (a,b) :=
(∫ b

a |t
c f (t)|p dt

t

)1/p
< ∞, 1 ≤ p < ∞, }

L∞
c [a, b] = { f | f ∈ L[a, b], ‖ f ‖L∞

c (a,b) := ess sup
x∈[a,b]

[xc| f (x)|] < ∞}. (2)

The convention that L1
1[a, b] = L[a, b] is used.

Definition 2. For f (x) ∈ Lp
c [a, b], α, ρ are two positive real numbers. The left generalized

fractional integral Iα,ρ
a+ of order α is defined for any real number x > a is defined as

Iα,ρ
a+ f (x) =

ρ1−α

Γ(α)

∫ x

a

τρ−1 f (τ)
(xρ − τρ)1−α

dτ. (3)

This definition is a left fractional fractional integral of the n-fold of the form

Iα,ρ
a+ f (x) =

∫ x

a
tρ−1
1 dt1

∫ t1

a
tρ−1
2 dt2 · · ·

∫ tn−1

a
tρ−1
n f (tn) dtn. (4)
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Similarly, the right generalized fractional integral Iα,ρ
b− f of order α is defined for any real

number. x < b is defined as

Iα,ρ
b− f (x) =

ρ1−α

Γ(α)

∫ b

x

τρ−1 f (τ)
(τρ − xρ)1−α

dτ. (5)

This definition is a right fractional fractional integral of n-fold of the form

Iα,ρ
a+ f (x) =

∫ b

x
tρ−1
1 dt1

∫ b

t1

tρ−1
2 dt2 · · ·

∫ b

tn−1

tρ−1
n f (tn) dtn. (6)

Definition 3. For 0 ≤ ε < 1, ρ is a non-negative real number, and the space Cρ
ε [a, b] is defined as

Cρ
ε [a, b] = { f | i f ρ 6= 0, (xρ − aρ)ε f (x) ∈ C[a, b]}, i f ρ = 0, (log x− log a)ε f (x) ∈ C[a, b]}. (7)

The norm is defined as

‖ f ‖Cρ
ε
=

{ ∫ b
a |(xρ − aρ)ε f (x)|dx, ρ 6= 0,∫ b
a |(log x− log a)ε f (x)|dx, ρ = 0.

(8)

The convention that C0,ρ[a, b] = C[a, b] is used. ρ is weighted.

Definition 4. For 0 ≤ ε < 1, n ∈ N0, ρ is a non-negative real number, and space Cn
γ,ε[a, b] is

defined as

Cn
γ,ε[a, b] = { f |γn−1 f ∈ C[a, b], γn f ∈ Cρ

ε [a, b], γ = x1−ρ d
dx
},

The norm is defined as

‖ f ‖Cn
γ,ε =

n−1

∑
k=0
‖γk f ‖C + ‖γn f ‖Cε,ρ .

The convention Cn
γ,0[a, b] = Cn

γ[a, b] endowed with the norm ‖ f ‖Cn
γ
= ∑n

k=0 ‖γk f ‖C is used.

Definition 5. For n ∈ N0, ρ is a non-negative real number, and space ACn
ρ [a, b] is defined as

ACn
ρ [a, b] = { f |γn−1 f ∈ AC[a, b], γ = x1−ρ d

dx
}, AC1

ρ [a, b] = AC[a, b],

with γ := x1−ρ d
dx and AC1

ρ = AC[a, b].

It has been shown in [11] that the space ACn
ρ [a, b] consists of those and only those

functions f that are represented in the form:

f (x) =
n−1

∑
k=0

ck(xρ − aρ)k +
∫ x

a
(xρ − tρ)n−1g(t) dt

with g ∈ L1[a, b] and ck ∈ R.

Definition 6. If f (x) ∈ ACn
ρ [a, b], then the left and right corresponding generalized Caputo

fractional derivatives of order α of f to these generalized integrals (3) and (5) are defined by [13,14]:

Dα,ρ
a+ f (x) = In−α,ρ

a+ (γn f )(x) =
ρα−n+1

Γ(n− α)

∫ x

a

τρ−1(γn f )(τ)
(xρ − τρ)α−n+1 dτ, α /∈ N0. (9)
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Dα,ρ
b− f (x) = In−α,ρ

b− (γn f )(x) =
ρα−n+1

Γ(n− α)

∫ b

x

τρ−1(γn f )(τ)
(τρ − xρ)α−n+1 dτ, α /∈ N0. (10)

where α ≥ 0 and n = bαe.

3. A Class of Fractional Reproducing Kernel Space

Theorem 1. If f ∈ ACn
ρ [a, b] and D(n+1)α,ρ

a+ f ∈ C[a, b]. Then, the generalized Taylor expansion
of f with the generalized left Caputo-type fractional derivatives could also be written with the
remainder in integral form.

f (x) =
n

∑
j=0

(
xρ − aρ

ρ

)jαD jα,ρ
a+ f (a)

Γ(jα + 1)
+

1
Γ((n + 1)α)

∫ x

a
(

xρ − tρ

ρ
)(n+1)α−1D

(n+1)α,ρ
a+ f (t)

t1−ρ
dt. (11)

Similarly, if f ∈ ACn
ρ [a, b] and D(n+1)α,ρ

b− f ∈ C[a, b]. Then, the generalized Taylor expansion
of f with the generalized right Caputo-type fractional derivatives could also be written with the
remainder in integral form.

f (x) =
n

∑
j=0

(
bρ − xρ

ρ

)jαD jα,ρ
b− f (b)

Γ(jα + 1)
+

ρ1−(n+1)α

Γ((n + 1)α)

∫ b

x

τρ−1D(n+1)α,ρ
b− f (τ)

(τρ − xρ)1−(n+1)α
dτ, (12)

where ρ > 0, α > 0, n ∈ N0.

Theorem 2. If ρ ≥ 1, α > 0, n ∈ N0, space Wα,ρ,m
a+ [a, b] is defined as

Wα,ρ,m
a+ [a, b] = { f | f ∈ ACm

ρ [a, b],D(n+1)α,ρ
a+ f ∈ C[a, b]}. (13)

The inner product of space Wα,ρ,m
a+ [a, b] is defined with the following form

〈u(x), v(x)〉Wα,ρ,m
a+

[a,b] =
m

∑
j=0
D jα,ρ

a+ u(a)D jα,ρ
a+ v(a) +

∫ b

a
D(m+1)α,ρ

a+ u(t)D(m+1)α,ρ
a+ v(t)dt. (14)

The norm is

‖u(x)‖ =
(
〈u(x), v(x)〉Wα,ρ,m

a+
[a,b]

) 1
2
.

Then, the space Wα,ρ,m
a+ [a, b] is a reproducing kernel space, and its reproducing kernel is

Kα,ρ,m
a+ (x, y) =


m
∑

j=0

(
1

Γ(jα+1)

)2( xρ−aρ

ρ

)jα( yρ−aρ

ρ

)jα
+
(

1
Γ((m+1)α)

)2 ∫ x
a t2ρ−2

(
(xρ−tρ)(yρ−tρ)

ρ2

)(m+1)α−1
dt, x < y

m
∑

j=0

(
1

Γ(jα+1)

)2( xρ−aρ

ρ

)jα( yρ−aρ

ρ

)jα
+
(

1
Γ((m+1)α)

)2 ∫ y
a t2ρ−2

(
(xρ−tρ)(yρ−tρ)

ρ2

)(m+1)α−1
dt, y < x

(15)

where Re(α) ≥ 0, ρ > 0, γ = x1−ρ d
dx , AC1

ρ = AC[a, b] and m ∈ N0.

Proof. Suppose that { fn}∞
n=1 is a Cauchy sequence in Wα,ρ,m

a+ [a, b]—that is,

‖ fn+p − fn‖Wα,γ,m
a+

[a,b]

=
m

∑
j=0

(
D jα,ρ

a+ fn+p(a)−D jα,ρ
a+ fn(a)

)2
+
∫ b

a

(
D(m+1)α,ρ

a+ fn+p(x)−D(m+1)α,ρ
a+ fn(x)

)2
dx → 0, (n→ ∞).

(16)
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We know that {D jα,ρ
a+ fn(a)}∞

n=1, (j = 0, 1, . . . , m) are all real number Cauchy sequences,

and {D(m+1)α,ρ
a+ fn(x)}∞

n=1 is a Cauchy function sequence in L2[a, b]. Therefore, there exist a
real number ri, (i = 0, 1, 2, . . . , m− 1) and a real function f ∈ C[a, b], such that

lim
n→∞

D jα,ρ
a+ fn(a) = rj,

∫ b

a
(D(m+1)α,ρ

a+ fn(x)− f (x))2dx → 0, (n→ ∞). (17)

Let

g(x) =
m

∑
j=0

(
xρ − aρ

ρ

)jα rj

Γ(jα + 1)
+

1
Γ((m + 1)α)

∫ x

a
(

xρ − tρ

ρ
)(m+1)α−1D

(m+1)α,ρ
a+ f (t)

t1−ρ
dt. (18)

It was shown in [13] that the space ACn
ρ [a, b] consists of those and only those functions

g(x) that are represented in the form

g(x) =
m−1

∑
j=0

cj(xρ − aρ)j +
∫ x

a
(xρ − tρ)m−1 f (t) dt

with g ∈ L1[a, b] and cj ∈ R.

We can obtain g(x) ∈ Wα,ρ,n,m
a+ [a, b], and D jα,ρ

a+ g(a) = D jα,ρ
a+ f (a) = rj, (j = 0, 1, . . . m),

‖D(m+1)α,ρ
a+ fn(x)− f (x)‖Wα,ρ,m

a+
[a,b] → 0, (n → ∞). Thus, Wα,ρ,m

a+ [a, b] is complete—namely,

Wα,ρ,m
a+ [a, b] is a Hilbert space.

Next, we prove that space Wα,ρ,m
a+ [a, b] is a reproducing kernel space.

For any f (x) ∈Wα,ρ,m
a+ [a, b] of

f (x) =
m

∑
j=0

(
xρ − aρ

ρ

)jαD jα,ρ
a+ f (a)

Γ(jα + 1)
+

1
Γ((m + 1)α)

∫ x

a
(

xρ − tρ

ρ
)(m+1)α−1D

(m+1)α,ρ
a+ f (t)

t1−ρ
dt, (19)

we find that

| f (x)| ≤
∣∣∣∣∣ m

∑
j=0

(
xρ − aρ

ρ

)jαD jα,ρ
a+ f (a)

Γ(jα + 1)

∣∣∣∣∣+
∣∣∣∣∣∣ 1
Γ((m + 1)α)

∫ x

a
(

xρ − tρ

ρ
)(m+1)α−1D

(m+1)α,ρ
a+ f (t)

t1−ρ
dt

∣∣∣∣∣∣
≤
(

m

∑
j=0

(
xρ − aρ

ρ

)2jα( 1
Γ(jα + 1)

)2
) 1

2
(

m

∑
j=0

(
D jα,ρ

a+ f (a)
)2
) 1

2

+

(∫ b
a t2ρ−2(bρ − tρ)2(m+1)α−2dt

) 1
2

ρ(m+1)α−1(Γ((m + 1)α)

(∫ b

a

(
D(m+1)α,ρ

a+ f (t)
)2

dt
) 1

2

≤


(

m

∑
j=0

(
bρ − aρ

ρ

)2jα( 1
Γ(jα + 1)

)2
) 1

2

+

(∫ b
a t2ρ−2(bρ − tρ)2(m+1)α−2dt

) 1
2

ρ(m+1)α−1(Γ((m + 1)α)

‖ f ‖ACn
γ [a,b]

(20)

There exist C with
| f (x)| ≤ C‖ f ‖Wα,ρ,m

a+
[a,b],

where C =

(
∑m

j=0

(
bρ−aρ

ρ

)2jα( 1
Γ(jα+1)

)2
) 1

2
+

(∫ b
a t2ρ−2(bρ−tρ)2(m+1)α−2dt

) 1
2

ρ(m+1)α−1(Γ((m+1)α)
.

Thus, I( f ) = f (x) is bounded on Wα,ρ,m
a+ [a, b]. The space Wα,ρ,n,m

a+ [a, b] is a reproducing
kernel space.
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Next, we verify that Kα,ρ,m
a+ (x, y) is a reproducing kernel of the space Wα,ρ,m

a+ [a, b].
Note that Ky(x) = Kα,ρ,m

a+ (x, y). For any u(y) ∈Wα,ρ,m
a+ [a, b], we have

〈 f (x), Ky(x)〉Wα,ρ,n
a+

[a,b] =
m

∑
j=0
D jα,ρ

a+ f (a)D jα,ρ
a+ Ky(a) +

∫ b

a
D(m+1)α,ρ

a+ f (t)D(m+1)α,ρ
a+ Ky(t)dt.

=
m

∑
j=0

(
xρ − aρ

ρ

)jαD jα,ρ
a+ f (a)

Γ(jα + 1)
+

1
Γ((m + 1)α)

∫ x

a
(

xρ − tρ

ρ
)(m+1)α−1D

(m+1)α,ρ
a+ f (t)

t1−ρ
dt,

= f (y).

(21)

Thus, Ky(x) = Kα,ρ,m
a+ (x, y) is the reproducing kernel of the space Wα,ρ,m

a+ [a, b].

Similarly, we can obtain the following Theorem 3.

Theorem 3. If space Wα,ρ,m
b− [a, b] is defined as

Wα,ρ,m
a+ [a, b] = { f | f ∈ ACm

γ [a, b],D(m+1)α,ρ
b− f ∈ C[a, b]}. (22)

The inner product of space Wα,ρ,m
b− [a, b] is the following form

〈u(x), v(x)〉Wα,ρ,m
b− [a,b] =

m

∑
j=0
D jα,ρ

b− u(b)D jα,ρ
b− v(b) +

∫ b

a
D(m+1)α,ρ

b− u(t)D(m+1)α,ρ
b− v(t)dt. (23)

The norm is ‖u(x)‖ =
(
〈u(x), v(x)〉Wα,ρ,m

b− [a,b]

) 1
2
. Then, the space Wα,ρ,m

b− [a, b] is a reproduc-

ing kernel space, and its reproducing kernel is

Rα,ρ,m
b− (x, y) =



m
∑

j=0

(
1

Γ(jα+1)

)2( bρ−xρ

ρ

)jα( bρ−yρ

ρ

)jα

+
(

1
Γ((m+1)α)

)2 ∫ b
x t2ρ−2

(
(tρ−xρ)(tρ−yρ)

ρ2

)(m+1)α−1
dt, y < x,

m
∑

j=0

(
1

Γ(jα+1)

)2( bρ−xρ

ρ

)jα( bρ−yρ

ρ

)jα

+
(

1
Γ((m+1)α)

)2 ∫ b
y t2ρ−2

(
(tρ−xρ)(tρ−yρ)

ρ2

)(m+1)α−1
dt, x < y,

(24)

where Re(α) ≥ 0, ρ > 0, γ = x1−ρ d
dx , AC1

ρ = AC[a, b] and n, m ∈ N0.

Thus, we can obtain some reproducing kernels by choosing different parameters α, ρ
and n in (24). These reproducing kernels are shown in Table 1.

Table 1. Some new reproducing kernel functions with a = 0 and x > y.

α ρ m Kα,ρ,m
a+ (x, y)

α = 1
2 ρ = 1 1 4xy

π + y + 1
α = 2 ρ = 1 1 35x3y4−21x2y5+7x(y5+180)y−y7+5040

5040
α = 1

2 ρ = 4
3 1 9x4/3y4/3

4π +
3y5/3

5 + 1
α = 1

2 ρ = 6
5 1 25x6/5y6/5

9π +
5y7/5

7 + 1
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Table 1. Cont.

α ρ m Kα,ρ,m
a+ (x, y)

α = 1 ρ = 3
2 1 2

63 x3/2(3y2 + 14)y3/2 − 4y5

105 + 1
α = 3

2 ρ = 5
4 1 256x5/4y5/4

225π +
16y4(−52x5/4y5/4+91x5/2+11y5/2)

75075 + 1
α = 2 ρ = 3

2 1 1
9 x3/2y3/2 +

2(231x3/2y19/2+836x9/2y13/2−627x3y8−35y11)
7702695 + 1

α = 1
3 ρ = 1 2 x2y2

Γ( 5
3 )

2 +
xy

Γ( 4
3 )

2 + y + 1

α = 1
3 ρ = 5

4 2 256x5/2y5/2

625Γ( 5
3 )

2 +
16x5/4y5/4

25Γ( 4
3 )

2 +
2y3/2

3 + 1

α = 1
2 ρ = 1 2 x2y2 +

4xy
π +

2
√

x
√

y(x+y)−(x−y)2(2 log(
√

x+
√

y)−log(x−y))
2π + 1

α = 1 ρ = 3
2 2 − 4x3/2(4y5−455)y3/2

4095 +
2x3(9y2+70)y3

2835 +
y8

1170 + 1
α = 1 ρ = 3

2 3 2x3/2(y8+7410)y3/2

33345 +
8x9/2(81y2+910)y9/2

2985255 + x3
(

4y3

81 −
2y8

12285

)
− 2y11

220077 + 1

α = 1
2 ρ = 1 3 x2y2 +

4xy(4x2y2+9)
9π +

xy2

2 −
y3

6 + 1
α = 1

2 ρ = 1 4 x4y4

4 +
16x3y3

9π + x2y2 +
3(x−y)4(2 log(

√
x+
√

y)−log(x−y))−2
√

x
√

y(x+y)(3x2−14xy+3y2)
72π +

4xy
π + 1

α = 1
2 ρ = 1 5 32xy(16x4y4+100x2y2+225)+15π(30x4y4+10x2(y+12)y2−5xy4+y5+120)

1800π

α = 1
2 ρ = 4

3 5 − 27x4/3y17/3

3536 +
27x8/3y8/3(8y5/3+195)

16640 +
6561x16/3y16/3

262144 + 9
4π x4/3y4/3 +

6561x20/3y20/3

409600π +
81x4y4

256π +
81y7

49504 + 1

4. Representation of Solutions

Next, we give analytical and numerical solutions of the two-sided space-fractional
super-diffusive model based on this class of RKS. Let

L(x,t)u(x, t) = ut(x, t)− C+(x, t)Dα,ρ
x,a+u(x, t)− C−(x, t)Dα,ρ

x,b−u(x, t). (25)

Equation (1) is converted to the following form:
L(x,t)u(x, t) = g(x, t), (x, t) ∈ Ω = [a, b]× [0, T],
u(x, 0) = 0, 0 ≤ x ≤ T,
u(a, t) = 0, u(b, t) = 0, 0 ≤ t ≤ T.

(26)

First, we calculate the reproducing kernel for Equation (26).
Using method of [15], we can obtain the following reproducing kernel K(x, y, s, t) for

Equation (26).
K(x, y, s, t) = ˜̃Kα,ρ,m

a+ (x, y)× K1,1,2
0+ (s, t),

where

K̃α,ρ,m
a+ (x, y) = Kα,ρ,m

a+ (x, y)−
Kα,ρ,m

a+ (a, y)× Kα,ρ,m
a+ (x, a)

Kα,ρ,m
a+ (a, a)

.

˜̃Kα,ρ,m
a+ (x, y) = K̃α,ρ,m

a+ (x, y)−
K̃α,ρ,m

a+ (b, y)× K̃α,ρ,m
a+ (x, b)

K̃α,ρ,m
a+ (b, b)

.

K1,1,2
0+ (s, t) = K1,1,2

0+ (s, t)−
K1,1,2

0+ (0, t)× K1,1,2
0+ (s, 0)

K1,1,2
0+ (0, 0)

.

Secondly, we find an analytical solution for Equation (26).

Theorem 4. If L−1 is existing and {xi, ti}∞
i=1 is denumerable dense points in Ω, let

ψi(x, t) = L(y,s)K(x, y, s, t)|(y,s)=(xi ,ti)
,

=
( ∂

∂s
K(x, y, s, t)− C+(x, t)Dα,ρ

y,a+K(x, y, s, t)− C−(x, t)Dα,ρ
y,b−K(x, y, s, t)

)
|(y,s)=(xi ,ti)

,
(27)



Fractal Fract. 2022, 6, 492 8 of 11

ψi(x, t) =
i

∑
k=1

βikψk(x, t), (βii > 0, i = 1, 2, · · · , ∞),

where the βik are the Gram–Schmidt orthogonalization coefficients. Then,

u(x, t) =
∞

∑
i=1

i

∑
k=1

βikg(xk, tk)ψi(x, t) (28)

is an analytical solution of Equation (26).

Proof. u(x, t) can be expanded to a Fourier series in terms of the normal orthogonal basis
{ψ̄i(x, t)}∞

i=1,

u(x, t) =
∞

∑
i=1
〈u(x, t), ψ̄i(x, t)〉ψ̄i(x, t)

=
∞

∑
i=1

i

∑
k=1

βik〈u(x, t), ψk(x, t)〉ψ̄i(x, t)

=
∞

∑
i=1

i

∑
k=1

βik〈u(x, t),L(y,s)K(x, y, s, t)|(y,s)=(xk ,tk)
〉ψ̄i(x, t)

=
∞

∑
i=1

i

∑
k=1

βik(L(y,s)〈u(x, t), K(x, y, s, t)〉)|(y,s)=(xk ,tk)
ψ̄i(x, t)

=
∞

∑
i=1

i

∑
k=1

βik(L(y,s)u(y, s))|(y,s)=(xk ,tk)
ψ̄i(x, t)

=
∞

∑
i=1

i

∑
k=1

βikg(xk, tk)ψ̄i(x, t).

Finally, we find a numerical solution for Equation (26).
Deriving from the form of (28), we obtain an N-term numerical solution of Equation (26) as

vN(x, t) =
N

∑
i=1

i

∑
k=1

βikm(xk, tk)ψi(x, t). (29)

However, the direct application of (29) could possibly not have a good numerical
simulation effect for Equation (26). The focus of this paper is to fill this gap; thus, we
combine the piecewise method with RKM.

Dividing t ∈ [0, 1] into n, the equal subintervals [ti, ti+1]. Let h = 1
n , ti = ih,

i = 0, 1, 2, . . . , n− 1. On the subregion Ω1 = [0, 1] × [ti, ti+1], stretching [ti, ti+1] to [0, 1],
(26) is turned into

L(x,ti)
v(x, ti) = g(x, t1), (x, ti) ∈ Ω = [0, 1]× [0, 1],

v(x, 0) = 0, 0 ≤ x ≤ 1,
v(0, ti) = 0, v(1, ti) = 0, 0 ≤ t1 ≤ 1.

(30)

Solving (30) by the RKM, we can obtain the vi,N(x, t) of (26) on [0, 1]× [ti, ti+1]. Clearly,
vi,N(x, t) can provide an approximate solution of C(x, ti). Combining all these solutions,
we can obtain the approximate solution CN(x, t) of (1).

Regarding the convergence analysis and error estimation, those detailed proofs can be
seen in [8,10,11].
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5. Numerical Experiment

In order to prove the accuracy and effectiveness of this method, the results of numerical
simulations are presented.

Experiment 1. Consider the model (1), C+(x, t) = Γ(1.7)x1.3, C−(x, t) = Γ(1.7)(1− x)1.3,
and then model (1) is the following form:

ut(x, t) = Γ(1.7)x1.3Dα,ρ
x,0+u(x, t) + Γ(1.7)(1− x)1.3Dα,ρ

x,1−u(x, t) + g(x, t),
u(x, 0) = 4x2(1− x)2, 0 ≤ x ≤ 1,
u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1.

(31)

The exact solution is ue(x, t) = 4x2(1− x)2(t + 1), where g(x, t) = 4x2(1− x)2(t +
1)− Γ(1.7)x1.3Dα,ρ

x,0+(4x2(1− x)2(t + 1))− Γ(1.7)(1− x)1.3Dα,ρ
x,2−(4x2(1− x)2(t + 1)).

The numerical results are shown in Figures 1–3 and Table 2. Table 2 shows the absolute
errors in two different reproducing kernel spaces. The traditional reproducing kernel
method refers to the reproducing kernel method of [15], and the present method refers
to the piecewise reproducing kernel method. It can be seen that, for Experiment 1, the
numerical results obtained by two reproducing kernel spaces are feasible and effective.
From Figures 1–3 and Table 2, it can be seen more intuitively that the smaller the value of h
is, the smaller the error.

(a) The exact solution. (b) The numerical solution. (c) The absolute error.

Figure 1. The numerical results at α = 1.3, ρ = 1, m = 2. The exact solution is ue(x, t), the numerical
solution is u4(x, t), and the absolute error is |ue(x, t)− u4(x, t)|.

Traditional RKM

Present method(h=0.001)

0.2 0.4 0.6 0.8 1.0

x

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Absolute error

(a)

Traditional RKM

Present method(h=0.001)

0.2 0.4 0.6 0.8 1.0

x

0.02

0.04

0.06

0.08

0.10

0.12

Absolute error

(b)

Figure 2. Comparison of the absolute errors for two reproducing kernel methods at t = 0.01 and
different reproducing kernel spaces. (a) The absolute errors in reproducing kernel space l (α = 1,
ρ = 1, andm = 2). (b) The absolute errors in reproducing kernel space 2 (α = 1

3 , ρ = 4
5 , andm = 2).
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Figure 3. The logarithm of the absolute error at different reproducing kernel spaces t = 0.01. (a) The
logarithm of the absolute error in reproducing kernel space l (α = 1, ρ = 1, m = 2). (b) The logarithm
of the absolute error in reproducing kernel space 2 (α = 1

3 , ρ = 4
5 , m = 2).

Table 2. Comparison of the absolute errors for Experiment 1 at t = 0.1 (Two forms of the reproducing
kernel spaces).

Reproducing Kernel l (α = 1, ρ = 1, m = 2) Reproducing Kernel 2 (α = 1
3 , ρ = 4

5 , m = 2)
(x, t) h = 0.1 h = 0.01 h = 0.001 h = 0.1 h = 0.01 h = 0.001

(0.1, 0.1) 1.4440 × 10−2 2.8809 × 10−3 3.0098 × 10−4 1.4464 × 10−3 1.0353 × 10−3 1.0435 × 10−4

(0.3, 0.3) 2.0026 × 10−1 2.2921 × 10−2 2.3158 × 10−3 3.6627 × 10−2 1.1251 × 10−3 1.1362 × 10−4

(0.5, 0.5) 4.8845 × 10−1 5.0010 × 10−2 5.0002 × 10−3 1.1624 × 10−2 3.1989 × 10−3 3.0835 × 10−4

(0.6, 0.6) 6.1882 × 10−1 6.0286 × 10−2 5.9944 × 10−3 1.5634 × 10−2 4.0257 × 10−3 3.8357 × 10−4

(0.7, 0.7) 7.0611 × 10−1 6.4478 × 10−2 6.3604 × 10−3 1.8338 × 10−2 4.1408 × 10−3 3.8142 × 10−4

(0.9, 0.9) 6.3208 × 10−1 4.0652 × 10−2 3.7896 × 10−3 1.1447 × 10−2 3.4362 × 10−3 7.5174 × 10−4

(1.0, 1.0) 4.0413 × 10−1 4.7204 × 10−3 4.7920 × 10−5 2.8127 × 10−3 6.8379 × 10−3 7.3464 × 10−4

6. Conclusions and Remarks

In this paper, we provided some new fractional reproducing kernel spaces. The
analytical solution of the two-sided space-fractional super-diffusive model was represented
in the form of series based on these new reproducing kernel spaces. The N-term numerical
solution of the two-sided space-fractional super-diffusive model was obtained. For more
accuracy, we used the piecewise reproducing kernel method.

In Figure 1, the exact solution and N-term numerical solution solution are compared.
In Figure 2, comparisons are made between the traditional reproducing kernel method and
the piecewise reproducing kernel method. Figure 3 and Table 2 show the advantages of the
piecewise reproducing kernel method. We found that these new fractional reproducing
kernel spaces were efficient for the two-sided space-fractional super-diffusive model.
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