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Abstract: Porous alumina ceramics with different porosities were prepared via atmospheric pressure
sintering using a sacrificial template method with alumina powder as the raw material and carbon
fiber (CF) and graphite as pore-forming agents. The effects of the contents and ratios of the pore-
forming agents and the aspect ratios of CF on the microstructure, mechanical properties, pore size,
and pore-size distribution of the porous alumina samples were investigated. In addition, the surface
fractal dimension (Ds) of porous alumina samples with different pore-forming agents was evaluated
based on the mercury intrusion porosimetry data. The pore-size distribution of the prepared porous
alumina samples showed single, double, or multiple peaks. The pore structure of the samples
maintained the fibrous shape of the original CF and the flake morphology of graphite with a uniform
pore-size distribution, but the pore structure and morphology were different. With the increase in the
content of the pore-forming agent, the porosity of the samples gradually increased to a maximum
of 63.2%, and the flexural strength decreased to a minimum of 12.36 MPa. The pore structure of the
porous alumina samples showed obvious fractal characteristics. Ds was closely related to the pore
structure parameters of the samples when the content of the pore-forming agent was 70 vol.%. It
decreased with an increase in the sample porosity, most probable pore size and median pore size, but
increased with an increase in the sample flexural strength.

Keywords: porous alumina; mercury intrusion porosimetry; pore structure; flexural strength; surface
fractal dimension

1. Introduction

Porous ceramics are composite materials constituting a ceramic matrix and gases
distributed in numerous internal pores in the ceramic matrix [1–6]. It has the advantages
of traditional ceramics, such as high-temperature, corrosion, and oxidation resistance, in
addition to being lightweight and having a high specific surface area and a low thermal
conductivity [7–10]. The permeability, thermal insulation, and sound absorption properties
of porous ceramics are outstanding among many other properties. Such ceramics are vital
in high-temperature equipment insulation [11] and high-temperature filtration [12] and
are also widely used in catalytic carriers, sound absorption, gas-sensitive materials, and
biological materials [13–15]. However, the performance of porous ceramics largely depends
on their pore structures. The pore structure is key in the study of porous ceramic materials
and poses a challenge [6,15–18].

Usually, pores are characterized using various types of high-resolution scanning
electron microscopes (SEM), photoelectromagnetic observation techniques, such as nuclear
magnetic resonance (NMR) and computed tomography scans, or fluid intrusion techniques,
such as mercury pressure and cryogenic liquid nitrogen adsorption [19–23]. Although
various types of SEM can observe pore morphologies and sizes, they cannot quantify the
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pore parameters. NMR and nitrogen adsorption are usually employed only to characterize
pore parameters at the nanoscale. In contrast, a mercury intrusion porosimeter (MIP) can
be used to measure pores with diameters ranging from 0.005 to 1000 µm, making MIP more
applicable than other test methods for ceramic-based materials [24,25].

Owing to the excellent properties of porous ceramics, many studies have shown
that the microstructure of porous materials significantly affects the intrinsic properties.
For example, the pore size and its distribution greatly affect the mechanical properties,
thermal properties, permeability, permeation rate, and filtration properties of porous
materials. Characterizing the macro–microstructure of porous materials is essential in the
preparation and application of porous materials. Traditional characterization methods
generally reduce the pore structure to a parallel-plate, cylindrical pore, or sphere-stacking
model [26,27]. However, the pores of porous materials have different sizes and shapes.
Because of the random pore distribution and complex structure, the traditional techniques
are oversimplified and insufficient for characterizing porous ceramic materials. Since
porous materials with complex pore structures are difficult to characterize using Euclidean
geometry, they can only be studied using statistics. The microstructures of porous materials
are characterized to an extent based on self-similarity; thus, fractal geometry can be used
for quantitative characterization [28–33]. The fractal dimension is an important parameter
for quantifying the geometric complexity and characteristics of fractal sets. Therefore, if a
suitable fractal model is obtained, the fractal dimension can be calculated, which is used to
effectively quantify the complexity and irregularity of pore structures.

In characterizing complex pore structures, there are various types of fractal dimensions,
including the fractal dimensions of the pore surface, pore volume, tortuosity, air void,
fracture surface, cracks, and particle size distribution [34]. Among them, the pore surface
fractal dimension (Ds) is used to quantify pore surface complexity [35,36]. Currently,
Ds is mainly calculated using the models developed by Neimark [37,38] and Zhang and
Li [39,40]. Neimark’s model is analogous to the relationship of the Ds determined using
the adsorption method, which is based on an ideal cylindrical pore assumption, and its
calculation results have some errors. In contrast, Zhang and Li’s model is based on the
principle of MIP testing and establishes a scalar form that is both consistent with the fractal
geometry theory and compatible with the specific process of MIP measurements, which
better employs the MIP data to determine accurate correct surface fractal dimensions.

Currently, people use Zhang and Li’s model to explore the fractal characteristics of
various porous materials so as to further analyze the relationship between pore structure
and the pore surface fractal dimension. Jin et al. [29] put forward the ratio of fractal
dimension and pore volume calculated by this model as a new parameter of strength model
through testing the strength and pore structure of Portland cement mortar. The relationship
between strength and pore structure is accurately simulated, and regression analysis shows
that the strength model has high prediction accuracy. Li et al. [31] used this model to
study the fractal characteristics of pores in Hybrid Basalt Polypropylene fiber-Reinforced
Concrete (HBPRC). The results showed that the Ds of HBPRC pores decreased successively
in gel region, capillary region and macropore region, but there was no obvious fractal
feature in transition region, which laid a foundation for further investigation of the reasons
for the deterioration of HBPRC structure.

To summarize, it is necessary to further investigate the pore characteristics of porous
alumina. In this study, porous alumina samples with different porosities were prepared
by sintering under atmospheric pressure using alumina powder as the raw material and
carbon fiber (CF) of different sizes and graphite as pore-forming agents. The pore structure
and Ds of porous alumina with various pore-forming agent contents were also assessed
based on the MIP data. The variation law of Ds under different pore-forming agents was
compared and analyzed. The relationship between the fractal dimensions and the pore
structure and flexural strength was examined in detail.



Fractal Fract. 2022, 6, 501 3 of 16

2. Materials and Methods
2.1. Raw Materials

Here, α-calcined alumina powder (>99.9%, CT3000SG, Almatis GmbH, Ludwigshafen,
Germany) was used as the ceramic phase with an average particle size of 0.5 µm. CF
with three specifications (>99.9%) was used as a pore-forming agent, and the specific
properties are shown in Table 1. The lengths of the CF with a 14.5-µm diameter were 90,
150, and 200 µm. Graphite powder (>99.9%, Malvern Instruments, Worcestershire, UK)
with a density of 2.25 g·cm−3 and an average diameter of 28.7 µm was also used as a
pore-forming agent. CF and graphite exist in the form of fiber and flake, respectively, in the
ceramic matrix.

Table 1. Properties of three kinds of carbon fiber.

Materials. Average Diameter
(µm)

Length
(µm) Aspect Ratios Density

(g·cm−3)

CF1 14.5 90.0 6.2 1.75
CF2 14.5 150.0 10.3 1.75
CF3 14.5 200.0 13.8 1.75

2.2. Preparation of Porous Alumina

In situ porous alumina ceramics were prepared via sintering, during which the internal
pore-forming agents were combusted [41,42]. Alumina, CF, and graphite powders were
wet-mixed for 24 h using a ball mill with alumina as the grinder. Ethanol was then
evaporated at a low temperature, and the sample was dried in an oven at 110 ◦C for 12 h.
The dried powder mixture was then sieved through a 200-mesh sieve. The obtained powder
was loaded into a compression mold and prepressed for 20 s at 125 MPa using a rapid
prototyping machine before being molded at 500 MPa using a cold isostatic press. Finally,
it was sintered at 1550 ◦C for 2 h at a heating rate of 1 ◦C min−1 in the air atmosphere and
cooled from the sintering temperature to 300 ◦C at a rate of 10 ◦C min−1. Porous alumina
samples were obtained after cooling naturally to room temperature.

The volume ratios of the alumina powder to the CF and graphite with different aspect
ratios were 3:7, 5:5, and 7:3, and for the pore-forming agents, the volume ratios of CF to
graphite were 3:7, 5:5, and 7:3, respectively. The ratios of the raw material for the prepared
27 samples are listed in Table 2.

2.3. Characterization Methods

The porosity of the samples was measured using the Archimedes method. An X-ray
diffraction (XRD) analyzer (D8 Discover, Bruker AXS, Karlsruhe, Germany) was used to
determine the crystal structure of the sintered samples. The four-point flexural method
was employed to measure the flexural strength of the specimens using a universal testing
machine (1600 series, INSTRON, High Wycombe, UK). Before the experiment, the surfaces
of the specimen were polished so that the upper and lower surfaces were parallel, and the
sample was chamfered. The sample was 3 mm × 4 mm × 30 mm, the upper and lower
spans were 10 and 20 mm, respectively, and the loading rate was 0.5 mm·min−1. SEM
(LEO 1530 FESEM, Gemini/Zeiss, Oberkochen, Germany) was employed to observe the
microstructure of the sample. The pore-size distribution of the samples was measured by
MIP (AutoPore IV 9500 V1.04, Micromeritics GmbH, Germany). The contact angle and
surface tension used for the calculations were 141.3◦ and 485 × 10−3 N·m−1, respectively.
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Table 2. The ratios of raw materials.

Samples Length of Carbon Fiber (µm)
Compositions of Pore Formers (vol.%)

Alumina Carbon Fiber Graphite

A11 90 70 9 21
A12 90 70 15 15
A13 90 70 21 9
A21 150 70 9 21
A22 150 70 15 15
A23 150 70 21 9
A31 200 70 9 21
A32 200 70 15 15
A33 200 70 21 9
B11 90 50 15 35
B12 90 50 25 25
B13 90 50 35 15
B21 150 50 15 35
B22 150 50 25 25
B23 150 50 35 15
B31 200 50 15 35
B32 200 50 25 25
B33 200 50 35 15
C11 90 30 21 49
C12 90 30 35 35
C13 90 30 49 21
C21 150 30 21 49
C22 150 30 35 35
C23 150 30 49 21
C31 200 30 21 49
C32 200 30 35 35
C33 200 30 49 21

A fractal model based on a thermodynamic approach, derived by Zhang and Li, was
employed in the MIP tests. This model can more accurately characterize the pore-size
distribution of porous alumina ceramics. Zhang and Li’s model is based on the conservation
of energy during MIP testing, i.e., the increase in surface energy of the system is equal to
the work done around it, as expressed below:

dW = −PdV = γL cos θdS (1)

where W is the work done by the external pressure, V the volume of the intruded mercury,
γL the surface tension between the mercury and the pore surface, θ the contact angle
between the mercury and the pore surface, and S the pore surface area. Integrating
the pressure at different stages of the mercury compression process, Equation (2) can be
obtained as follows:

−
∫ (SE)n

0
γL cos θdSE =

∫ Vn

0
PdV ≈ ∑ n

1 Pi∆Vi (2)

where SE is the fractal area of the Euclidean space pore surface and Pi and ∆Vi are the
pressure applied at stage i of mercury pressure and the volume of mercury intruded,
respectively. The correlation between the fractal surface area in a porous medium and the
volume enclosed by this surface is expressed in Equation (3):

S1/Ds ∼ V1/3 (3)

Based on dimensional analysis, the above equation can be translated into the following
form, which expresses the relationship between the volume extruded into the pore space
and the corresponding pore surface coverage:

(SE)n = kDs δ2−Ds
n VDs/3

n (4)
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where k is a factor relating the surface area and the corresponding volume, Vn the cumula-
tive pore volume of the nth stage, and δn the yardstick size for measuring the circumference
of pores with a radius equal to or smaller than rn. Combining Equations (1) and (4),
Equation (5) can be obtained.

ln
((

∑ n
i=1Pi∆Vi

)
/r2

n

)
= Ds ln

(
V1/3

n /rn

)
+ C (5)

where C is a regression constant. According to Equation (5), the MIP data can correspond
in a log–log coordinate system by calculation. Using linear regression, Ds is the slope of
the curve.

3. Results and Discussion
3.1. Pore-Size Distribution and Porosity of Alumina Samples

The pore-size distribution of the porous alumina samples with different volumes of
pore-forming agents, ratios of CF to graphite, and aspect ratios of CF as pore-forming
agents are shown in Figure 1. When 30 and 50 vol.% of the pore-forming agents were
added (samples A11–B33), and the proportion of CF in the pore-forming agents was certain,
the most probable pore size of the porous alumina samples showed no specific change
pattern as the aspect ratio of CF was increased. Some samples showed a double- or triple-
peak distribution. The most probable pore size for the samples with 50 and 70 vol.% CF
in the pore-forming agents decreased with an increase in the CF aspect ratio when the
pore-forming agent was 70 vol.% (C11–C33). In contrast, the most probable pore size for
the samples with 30 vol.% CF in the pore-forming agents increased as the CF aspect ratio
increased from 1 to 1.5 µm. Only sample C22 showed double peaks, indicating that the
pore-size distribution of the sintered samples was not conducive to double or multiple
peaks. The pore-size distributions for samples A11–C33 indicate that the measured pore
size is lower than the average diameter of the pore-forming agents, which also shows that
an ink-bottle pore structure was formed in the samples.

The effect of the ratio of the pore-forming agents and the CF aspect ratio on the pore
volume of porous alumina samples in different pore size ranges was investigated to directly
analyze the effects of the pore-forming volume content. The pore size ranges were divided
into 0–100, 100–500, 500–5000, and >5000 nm. The volume fractions of these pores are
shown in Figure 2. For the samples with 30 vol.% of the pore-forming agent, 500–5000- and
0–100-nm pores occupied a certain proportion with an increase in the CF aspect ratio. As
shown in Figure 2b, 100–500-nm pores in sample B22 increased rapidly compared with
those in other samples, and the volume fraction was approximately 96%. For the sample
with 70 vol.% of the pore-forming agents, different ratios of the pore-forming agents and
different lengths of CF had little effect on the distribution of pore sizes at all levels in the
sample. Pores in the range of 500–5000 nm were dominant, indicating that an increase in
the volume content of the pore-forming agents promoted the generation of large pores.

The porosity and median pore sizes of the porous alumina measured using the mercury
pressure method are shown in Figure 3. The sample with 30 vol.% of the pore-forming
agents had little effect on the porosity and median pore sizes of the sintered porous alumina
samples. Figure 3d,e show that the porosity of the samples increased with an increase in the
proportion of CF in the pore-forming agents for CF with 6.2 and 10.3 aspect ratios. When
the aspect ratio of CF was 13.8, the porosity of the samples increased and then decreased as
the CF proportion in the pore-forming agents increased. The porosity and median pore size
of the samples decreased and then increased as the proportion of CF in the pore-forming
agents increased when the content of the pore-forming agents was 50 vol.% for all three
aspect ratios of CF. This is because the high-volume content of flake graphite hindered
volume diffusion and further densification between the alumina particles before complete
combustion, resulting in the high porosity of the samples. The porosity of the samples was
lowest when the volume ratio of CF to graphite was 1:1. As the volume of CF continued
to increase, it affected the densification of the preformer at the same pressure, indicating
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that the porosity of the preformer was relatively high, resulting in higher porosity of the
sintered sample.
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Figure 1. Pore size distribution in porous alumina samples with different contents of pore-forming
agents. (a) 30 vol.% pore formers (CF:Graphite = 3:7) + 70 vol.% alumina; (b) 30 vol.% pore formers
(CF:Graphite = 5:5) + 70 vol.% alumina; (c) 30 vol.% pore formers (CF:Graphite = 7:3) + 70 vol.% alu-
mina; (d) 50 vol.% pore formers (CF:Graphite = 3:7) + 50 vol.% alumina; (e) 50 vol.% pore formers
(CF:Graphite = 5:5) + 50 vol.% alumina; (f) 50 vol.% pore formers (CF:Graphite = 7:3) + 50 vol.% alumina;
(g) 70 vol.% pore formers (CF:Graphite = 3:7) + 30 vol.% alumina; (h) 70 vol.% pore formers
(CF:Graphite = 5:5) + 30 vol.% alumina; (i) 70 vol.% pore formers (CF:Graphite = 7:3) + 30 vol.% alumina.

3.2. Mechanical Properties of Porous Alumina

The flexural strengths of the samples with different pore-forming agents after sintering
are shown in Figure 4. Figure 4a shows that the CF aspect ratio and content in the pore-
forming agent did not significantly affect the four-point flexural strengths of the samples
with 30 vol.% of the pore-forming agent, which ranged from 92.28 to 120.56 MPa. With
a lower content of the pore-forming agents, the dispersion of the pore-forming agents in
the preformers was more uniform. As shown in Figure 4b,c, the flexural strength of the
samples with different ratios of the pore-forming agents and CF aspect ratios under the
same condition of controlling the pore-forming agent content varied corresponding to the
variation of the porosity of the samples. For the sample with 50 vol.% of the pore-forming
agents and a CF aspect ratio of 6.2, the mechanical properties increased slightly and then
decreased as the volume content of CF in the pore-forming agent increased. The mechanical
properties of the samples with a CF aspect ratio of 10.3 increased significantly and then
decreased as the volume of CF increased. The highest strength of 118.73 MPa was achieved
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for the sample with 50 vol.% CF and 150-µm length, which was closely related to the internal
pore structure of the sample and consistent with the results of sample B22 (Figure 2). For
the samples with a CF aspect ratio of 13.8, the mechanical properties increased and then
decreased slightly as the volume content of CF increased. For the samples with 70 vol.%
pore-forming agents, the four-point flexural strengths of the samples with three CF aspect
ratios increased and then decreased as the CF content in the pore-forming agents increased,
and the maximum values obtained with a CF to graphite ratio of 1:1 were 30.07, 48.65, and
54.68 MPa, respectively.
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Figure 2. Pore volume fraction of porous alumina samples with different pore-forming agent con-
tents. (a) 30 vol.% pore formers + 70 vol.% alumina; (b) 50 vol.% pore formers + 50 vol.% alumina;
(c) 70 vol.% pore formers + 30 vol.% alumina.

3.3. Phase Composition and Microstructure of Porous Alumina

The compositions of the prepared porous alumina samples were analyzed. Figure 5
shows the XRD of the samples with 70 vol.% pore-forming agents. The samples sintered
at 1500 ◦C and held for 2 h showed only typical diffraction peaks of alumina. The CF and
graphite were completely combusted during the sintering of the raw material mixtures
with compositions, and no residual pore-forming agents were observed in the products.
When the pore-forming agent content was 30 vol.% and 50 vol.%, the XRD patterns of the
samples were consistent with those of the sample with 70 vol.% pore-forming agents.
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Figure 3. Physical properties of porous alumina samples measured using a mercury in-
trusion porosimeter. (a) 30 vol.% pore formers (CF:Graphite = 3:7) + 70 vol.% alumina;
(b) 30 vol.% pore formers (CF:Graphite = 5:5) + 70 vol.% alumina; (c) 30 vol.% pore formers
(CF:Graphite = 7:3) + 70 vol.% alumina; (d) 50 vol.% pore formers (CF:Graphite = 3:7) + 50 vol.%
alumina; (e) 50 vol.% pore formers (CF:Graphite = 5:5) + 50 vol.% alumina; (f) 50 vol.% pore formers
(CF:Graphite = 7:3) + 50 vol.% alumina; (g) 70 vol.% pore formers (CF:Graphite = 3:7) + 30 vol.%
alumina; (h) 70 vol.% pore formers (CF:Graphite = 5:5) + 30 vol.% alumina; (i) 70 vol.% pore formers
(CF:Graphite = 7:3) + 30 vol.% alumina.

The surface morphology of the sintered porous alumina samples with 70 vol.% pore-
forming agents is shown in Figure 6 (Figure 6a–i represent samples C11–C33, respectively).
In the past, porous materials were prepared by a single pore-forming agent, but the
composite pore-forming agents were studied, and the morphology of the pore-forming
agent was different: one is fibrous, the other is flat. From the figure, the pore structures
of the samples maintained the fibrous shape of the original CF and the flake morphology
of graphite. The pore sizes were uniformly distributed, indicating that the pore-forming
agents were uniformly distributed in the raw material mixture before sintering. The
alumina particles were sintered together to form larger grains, and the alumina ceramic
matrix was not very dense. This is attributed to the relatively high aspect ratio of CF, and
the direction of mixing in the raw material mixture was random; thus, large pores were
generated during the prepressing of the performer. Moreover, there were many small pores,
and the sizes of the alumina ceramic particles were also relatively low. For the porous
alumina samples with 30 and 50 vol.% pore-forming agents, the microscopic morphology
was similar to that of the sample with 70 vol.% pore-forming agents, and the pore shapes
were fibrous and flaky, but the pore content was slightly reduced.
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Figure 5. X-ray diffraction of porous alumina samples with 70 vol.% pore-forming agents.

3.4. Fractal Characteristics of Porous Alumina

Based on the MIP experimental data and Equation (5), the Ds and determination
coefficient (R2) of porous alumina samples with different pore-forming agent contents
were calculated, as shown in Figure 7. The Ds and R2 of the porous alumina samples with
different pore-forming agents are listed in Table 3.

The regression of the MIP results for 27 porous alumina samples showed that there
was a good correlation between ln

(
V1/3

n /rn

)
and ln

((
∑ n

i=1Pi∆Vi
)
/r2

n
)

for Ds between

2 and 3, and the correlation coefficients R2 were more than 0.98. The strong correlation
indicates that the fractal characteristics of the pore structure of the porous alumina samples
were significant. Comparing the data of samples, A, B, and C, the fractal dimensions
gradually decreased with an increase in the volume fraction of the pore-forming agent.
With an increase in the pore-forming agent, the porosity in the samples increased, and more
small pores interconnected to form large pores. With an increase in the CF content, the CF
agglomerated in the ceramic matrix, thereby worsening the dispersion. In addition, the
fibers overlapped and staggered frequently. Thus, the proportion of macropores increased,
and the pore structure complexity and Ds decreased.

Figures 8 and 9 show the Ds of the porous alumina samples versus the porosity, most
probable pore size, and median pore size of the samples for pore-forming agent contents of
30 vol.% and 50 vol.%, respectively. There is a weak or no correlation between the Ds of
the samples and the pore structure parameters for the two pore-forming agent contents,
the data dispersion is large, and R2 between the two is low. When the content of the
pore-forming agent was low, the distribution of CF was not regular with a change in the
CF aspect ratio and content, and the randomness of the pore composition in the sample
was large. Therefore, there was no close relationship between Ds and the pore structure of
these samples.

The relationships between the Ds and porosity, most probable pore size and median
pore size of the samples with 70 vol.% pore-forming agents are shown in Figure 10. The
porosity, most probable pore size, and median pore size of the samples decreased with
increasing Ds. Among them, the porosity varied linearly with Ds, showing an R2 of 0.64516.
The most probable pore size and median pore size have exponential relationships with Ds
with a negative regression index and a high R2 of 0.84284 and 0.90419, respectively. The
results showed that the Ds of porous alumina samples and the structure parameters were
closely related, indicating that the pore structure could be accurately and comprehensively
characterized using Ds.
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small pores interconnected to form large pores. With an increase in the CF content, the CF 
agglomerated in the ceramic matrix, thereby worsening the dispersion. In addition, the 
fibers overlapped and staggered frequently. Thus, the proportion of macropores in-
creased, and the pore structure complexity and Ds decreased. 

Figure 6. Scanning electron microscopy (SEM) images of porous alumina samples with 70 vol.%
pore-forming agents. (a) 90 µm CF:Graphite = 3:7; (b) 150 µm CF:Graphite = 3:7; (c) 200 µm
CF:Graphite = 3:7; (d) 90 µm CF:Graphite = 5:5; (e) 150 µm CF:Graphite = 5:5; (f) 200 µm
CF:Graphite = 5:5; (g) 90 µm CF:Graphite = 7:3; (h) 150 µm CF:Graphite = 7:3; (i) 200 µm
CF:Graphite = 7:3.
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Figure 7. Bi-logarithmic plots of ln
(

V1/3
n /rn

)
and ln

((
∑ n

i=1Pi∆Vi
)
/r2

n
)

for porous alumina samples
with different pore-forming agent contents. (a) 30 vol.% pore formers (CF:Graphite = 3:7) + 70 vol.%
alumina; (b) 30 vol.% pore formers (CF:Graphite = 5:5) + 70 vol.% alumina; (c) 30 vol.% pore formers
(CF:Graphite = 7:3) + 70 vol.% alumina; (d) 50 vol.% pore formers (CF:Graphite = 3:7) + 50 vol.%
alumina; (e) 50 vol.% pore formers (CF:Graphite = 5:5) + 50 vol.% alumina; (f) 50 vol.% pore formers
(CF:Graphite = 7:3) + 50 vol.% alumina; (g) 70 vol.% pore formers (CF:Graphite = 3:7) + 30 vol.%
alumina; (h) 70 vol.% pore formers (CF:Graphite = 5:5) + 30 vol.% alumina; (i) 70 vol.% pore formers
(CF:Graphite = 7:3) + 30 vol.% alumina.
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Figure 8. Relationship between Ds and (a) porosity, (b) the most probable pore size, and (c) median
pore radius for porous alumina samples with 30 vol.% pore-forming agents.
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Table 3. Surface fractal dimensions (Ds) of porous alumina pore surfaces.

Samples Ds R2

A11 2.67513 0.99238
A12 2.65407 0.99291
A13 2.67362 0.99270
A21 2.57677 0.99295
A22 2.63034 0.99429
A23 2.67939 0.99553
A31 2.66182 0.99424
A32 2.66401 0.99443
A33 2.69290 0.99381
B11 2.54288 0.99144
B12 2.66333 0.99302
B13 2.60491 0.99283
B21 2.57040 0.99180
B22 2.68943 0.99189
B23 2.54337 0.99100
B31 2.57598 0.99183
B32 2.63976 0.99387
B33 2.63289 0.99136
C11 2.56622 0.99346
C12 2.55775 0.99045
C13 2.44255 0.99028
C21 2.49620 0.99052
C22 2.52884 0.99065
C23 2.51773 0.99068
C31 2.47420 0.98923
C32 2.58065 0.99129
C33 2.53592 0.99098
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Figure 9. Relationship between Ds and (a) porosity, (b) the most probable pore size, and (c) median
pore radius for porous alumina samples with 50 vol.% pore-forming agents.
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Figure 10. Relationship between Ds and (a) porosity, (b) the most probable pore size, and (c) median
pore radius of porous alumina samples with 70 vol.% pore-forming agents.
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The relationships between the porosity, most probable pore size, median pore size, and
flexural strength of the samples with 70 vol.% pore-forming agents are shown in Figure 11.
The flexural strength of the samples decreased with an increase in the porosity, most
probable pore size, and median pore size, showing negative correlations. R2 of 0.71949,
0.89374, and 0.81622, respectively, were obtained by nonlinear fitting, indicating that the
pore structure of the samples is closely related to the flexural strength. In other words, the
larger the pores and the higher the porosity in the sample, the lower the flexural strength
of the sample.
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Figure 11. Relationship between flexural strength and (a) porosity, (b) the most probable pore size,
and (c) median pore radius of porous alumina samples with 70 vol.% pore-forming agents.

The relationship between the flexural strength and Ds of porous alumina samples
with 70 vol.% pore-forming agents is shown in Figure 12. The flexural strength and Ds
showed an exponential relationship with a negative regression index. This indicates that
the flexural strength of the samples gradually increased as Ds increased. In other words,
with a decrease in porosity, the relative content of the pores increased, and the complexity
of the pore structure increased accordingly, which is consistent with the results in Figure 11.
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Figure 12. Relationship between the flexural strength and Ds of porous alumina samples with
70 vol.% pore-forming agents.

4. Conclusions

The pore structure and morphology of the prepared porous alumina samples varied
with the volume content of the pore-forming agents, CF to graphite ratio, and CF aspect
ratios. With 70 vol.% pore-forming agents, the formation of double or multiple peaks was
hindered, and as the volume fraction of the pore-forming agent increased, the porosity of
the samples increased, especially the open pore rate, and the proportion of large pores in the
samples increased. The increase in the proportion of large pores and porosity decreased the
flexural strength of the samples. The pore structure of the samples had significant fractal
characteristics. There was no significant correlation between Ds and the pore structure
parameters of the samples when the pore-forming agents were 30 and 50 vol.% because CF
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decreased the densification of the samples. When the content of the pore-forming agents
was low, as the CF aspect ratio and content varied, the randomness of the pore compo-
sition within the samples improved, and the complexity of the pore structure changed
nonuniformly. When the content of the pore-forming agents was 70 vol.%, the proportion
of large pores in the samples increased, and the pore structure complexity decreased. Ds
was closely and highly negatively correlated with the pore structure parameters of the
samples. In addition, the pore structure significantly affected the mechanical properties of
the samples. The Ds of the samples was positively correlated with the flexural strength; it
increased with an increase in the flexural strength of the samples.
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