Well-Posedness and Global Attractors for Viscous Fractional Cahn–Hilliard Equations with Memory
Abstract
:1. Introduction
- To prove the semigroup of solution operators admits a compact global attractor.
2. Past History Formulation and Functional Setup
- (K1)
- and for all .
- (K2)
- for all .
- (K3)
- . (For the sake of simplicity, we now assume throughout the rest of the paper.)
- (K4)
- (K5)
- for a.e. , for some
3. Variational Formulation and Well-Posedness
- (N1)
- and there exists such that, for all
- (N2)
- There exist and such that, for all
- (N3)
- There exist such that, for all
- (N4)
- There exist and such that, for all
4. Absorbing Sets and Global Attractors
- 1
- For each, ;
- 2
- For every nonempty bounded subset B of,
- 3
- The global attractor is the unique maximal compact invariant subset in given by
- 4
- The global attractor is connected and given by the union of the unstable manifolds connecting the equilibria of .
- 5
- For each , the set is a connected compact invariant set, consisting of the fixed points of
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (a)
- The operator generates a submarkovian semigroup on and hence can be extended to a strongly continuous contraction semigroup on for every , and to a contraction semigroup on
- (b)
- The operator has a compact resolvent, and hence has a discrete spectrum. The spectrum of may be ordered as an increasing sequence of real numbers that diverges to Moreover, 0 is not an eigenvalue for , and if is an eigenfunction associated with the eigenvalue , then .
- (c)
- Denoting the generator of the semigroup on by so that , then the spectrum of is independent of p for every .
- (d)
- There holds provided that . Let and assume that . Then,
References
- Gal, C.G.; Warma, M. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discret. Contin. Dyn. Syst. 2016, 36, 1279–1319. [Google Scholar] [CrossRef]
- Warma, M. The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets. Potential Analysis (to appear). Potential Anal. 2015, 42, 499–547. [Google Scholar] [CrossRef]
- Bucur, C.; Valdinoci, E. Nonlocal Diffusion and Applications; Lecture Notes of the Unione Matematica Italiana; Springer: Bologna, Italy, 2016; Volume 20. [Google Scholar]
- Caffarelli, L.A.; Roquejoffre, J.-M.; Sire, Y. Variational problems with free boundaries for the fractional laplacian. J. Eur. Math. Soc. 2010, 12, 1151–1179. [Google Scholar] [CrossRef]
- Gal, C.G. Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions. Eur. J. Appl. Math. 2017, 28, 736–788. [Google Scholar] [CrossRef]
- Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system i. interfacial energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions. i. macroscopic limits. J. Statist. Phys. 1997, 87, 37–61. [Google Scholar] [CrossRef]
- Gal, C.G. Doubly Nonlocal Cahn–Hilliard Equations; Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire: Berlin, Germany, 2016. [Google Scholar]
- Gal, C.G. On the strong-to-strong interaction case for doubly nonlocal Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 2017, 37, 131–167. [Google Scholar] [CrossRef]
- Andreu-Vaillo, F.; Mazón, J.M.; Rossi, J.D.; Toledo-Melero, J.J. Nonlocal Diffusion Problems; Mathematical Surveys and Monographs; American Mathematical Society, Real Sociedad Matemática Española: Providence, RI, USA, 2010; Volume 165. [Google Scholar]
- Bates, P.; Han, J. The Neumann Boundary Problem for a Nonlocal Cahn–Hilliard Equation. J. Differ. Equ. 2005, 212, 235–277. [Google Scholar] [CrossRef]
- Colli, P.; Frigeri, S.; Grasselli, M. Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Math. Anal. Appl. 2012, 386, 428–444. [Google Scholar] [CrossRef]
- Frigeri, S.; Grasselli, M. Global and trajectory attractors for a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Dynam. Differ. Equ. 2012, 24, 827–856. [Google Scholar] [CrossRef] [Green Version]
- Frigeri, S.; Grasselli, M.; Rocca, E. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility. Nonlinearity 2015, 28, 1257–1293. [Google Scholar] [CrossRef]
- Gal, C.G.; Grasselli, M. Longtime behavior of nonlocal Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 2014, 34, 145–179. [Google Scholar] [CrossRef]
- Grasselli, M.; Schimperna, G. Nonlocal phase-field systems with general potentials. Discret. Contin. Dyn. Syst. 2013, 33, 5089–5106. [Google Scholar] [CrossRef]
- Porta, F.D.; Grasselli, M. Convective nonlocal cahn-hilliard equations with reaction terms. Discret. Contin. Dyn. Syst. Ser. B 2015, 20, 1529–1553. [Google Scholar] [CrossRef]
- Shomberg, J.L. Upper-Semicontinuity of the Global Attractors for a Class of Nonlocal Cahn–Hilliard Equations. arXiv 2018, arXiv:1805.06320. [Google Scholar]
- Shomberg, J.L. Well-posedness and global attractors for a non-isothermal viscous relaxation of nonlocal Cahn–Hilliard equations. AIMS Math. Nonlinear Evol. PDEs Interfaces Appl. 2016, 1, 102–136. [Google Scholar]
- Akagi, G.; Schimperna, G.; Segatti, A. Fractional Cahn–Hilliard, Allen–Cahn and Porous Medium Equations. J. Differ. Equ. 2016, 261, 2935–2985. [Google Scholar] [CrossRef]
- Conti, M.; Pata, V.; Squassina, M. Singular limit of differential systems with memory. Indiana Univ. Math. J. 2006, 55, 169–215. [Google Scholar] [CrossRef]
- Gal, C.G.; Shomberg, J.L. Coleman-Gurtin type equations with dynamic boundary conditions. Phys. D 2015, 292/293, 29–45. [Google Scholar] [CrossRef]
- Giorgi, C.; Pata, V.; Marzocchi, A. Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA Nonlinear Differ. Equ. Appl. 1998, 5, 333–354. [Google Scholar] [CrossRef]
- Giorgi, C.; Pata, V.; Marzocchi, A. Uniform attractors for a non-autonomous semilinear heat equation with memory. Quart. Appl. Math. 2000, 58, 661–683. [Google Scholar] [CrossRef]
- Shomberg, J.L. Robust exponential attractors for Coleman–gurtin equations with dynamic boundary conditions possessing memory. Electron. J. Differ. Equ. 2016, 2016, 1–35. [Google Scholar]
- Cavaterra, C.; Grasselli, M.; Grasselli, M. Cahn–Hilliard equations with memory and dynamic boundary conditions. Asymptot. Anal. 2011, 71, 123–162. [Google Scholar] [CrossRef] [Green Version]
- Conti, M.; Mola, G. 3-D viscous Cahn–Hilliard equation with memory. Math. Models Methods Appl. Sci. 2008, 32, 1370–1395. [Google Scholar] [CrossRef]
- Gal, C.G.; Grasselli, M. Singular limit of viscous Cahn–Hilliard equations with memory and dynamic boundary conditions. DCDS-B 2013, 18, 1581–1610. [Google Scholar] [CrossRef]
- Gatti, S.; Grasselli, M.; Miranville, A.; Pata, V. Memory relaxation of first order evolution equations. Nonlinearity 2005, 18, 1859–1883. [Google Scholar] [CrossRef]
- Gatti, S.; Grasselli, M.; Pata, V.; Squassina, M. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discret. Contin. Dyn. Syst. 2005, 12, 1019–1029. [Google Scholar] [CrossRef]
- Giorgi, C.; Grasselli, M.; Pata, V. Well-posedness and longtime behavior of the phase-field model with memory in a history space setting. Quart. Appl. Math. 2001, 59, 701–736. [Google Scholar] [CrossRef]
- Grasselli, M. On the large time behavior of a phase-field system with memory. Asymptot. Anal. 2008, 56, 229–249. [Google Scholar]
- Grasselli, M.; Pata, V. Robust exponential attractors for a phase-field system with memory. J. Evol. Equ. 2005, 5, 465–483. [Google Scholar] [CrossRef]
- Grasselli, M.; Pata, V.; Vegni, F. Longterm dynamics of a conserved phase-field system with memory. Asymptot. Anal. 2003, 33, 261–320. [Google Scholar]
- Gatti, S.; Miranville, A.; Pata, V.; Zelik, S. Continuous families of exponential attractors for singularly perturbed equations with memory. Proc. R. Soc. Edinb. Sect. A 2010, 140, 329–366. [Google Scholar] [CrossRef]
- Grasselli, M.; Schimperna, G.; Segatti, A.; Zelik, S. On the 3D Cahn–Hilliard equation with inertial term. J. Evol. Equ. 2009, 9, 371–404. [Google Scholar] [CrossRef]
- Grasselli, M.; Pata, V. Uniform Attractors of Nonautonomous Dynamical Systems with Memory; Evolution Equations, Semigroups and Functional Analysis; Birkhäuser: Boston, MA, USA, 2002; Volume 50. [Google Scholar]
- Adams, D.; Hedberg, L.I. Function Spaces and Potential Theory; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin, Germay, 1996; Volume 314. [Google Scholar]
- Bogdan, K.; Burdzy, K.; Chen, Z.-Q. Censored stable processes. Probab. Theory Relat. Fields 2003, 127, 89–152. [Google Scholar] [CrossRef]
- Pata, V.; Zucchi, A. Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 2001, 11, 505–529. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1983; Volume 44. [Google Scholar]
- Gal, C.G.; Miranville, A. Uniform global attractors for non-isothermal viscous and non-viscous Cahn–Hilliard equations with dynamic boundary conditions. Nonlinear Anal. Real World Appl. 2009, 10, 1738–1766. [Google Scholar] [CrossRef]
- Temam, R. Navier-Stokes Equations—Theory and Numerical Analysis; AMS Chelsea Publishing: Providence, RI, USA, 2001. [Google Scholar]
- Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces; Noordhoff International Publishing: Bucharest, Romania, 1976. [Google Scholar]
- Colli, P.; Krejčí, P.; Rocca, E.; Sprekels, J. Nonlinear evolution inclusions arising from phase change models. Czechoslov. Math. J. 2007, 57, 1067–1098. [Google Scholar] [CrossRef]
- Conti, M.; Zelati, M.C. Attractors for the non-viscous Cahn–Hilliard equation with memory in 2D. Nonlinear Anal. 2010, 72, 1668–1682. [Google Scholar] [CrossRef]
- Grasselli, M.; Schimperna, G.; Zelik, S. On the 2D Cahn–Hilliard equation with inertial term. Comm. Part. Differ. Equ. 2009, 34, 707–737. [Google Scholar] [CrossRef]
- Grasselli, M. Finite-dimensional global attractor for a nonlocal phase-field system. Ist. Lomb. (Rend. Sci.) Math. 2012, 146, 113–132. [Google Scholar] [CrossRef]
- Zheng, S.; Milani, A. Global attractors for singular perturbations of the Cahn–Hilliard equations. J. Differ. Equ. 2005, 209, 101–139. [Google Scholar] [CrossRef] [Green Version]
- Babin, A.V.; Vishik, M.I. Attractors of Evolution Equations; North-Holland: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics; Applied Mathematical Sciences; Springer: New York, NY, USA, 1988; Volume 68. [Google Scholar]
- Zheng, S. Nonlinear Evolution Equations; Monographs and Surveys in Pure and Applied Mathematics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; Volume 133. [Google Scholar]
- Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod: Paris, France, 1969. [Google Scholar]
- Tanabe, H. Equations of Evolution; Pitman: London, UK, 1979. [Google Scholar]
- Hale, J.K. Asymptotic Behavior of Dissipative Systems; Mathematical Surveys and Monographs—No. 25; American Mathematical Society: Providence, RI, USA, 1988. [Google Scholar]
- Milani, A.J.; Koksch, N.J. An Introduction to Semiflows; Monographs and Surveys in Pure and Applied Mathematics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2005; Volume 134. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztürk, E.; Shomberg, J.L. Well-Posedness and Global Attractors for Viscous Fractional Cahn–Hilliard Equations with Memory. Fractal Fract. 2022, 6, 505. https://doi.org/10.3390/fractalfract6090505
Öztürk E, Shomberg JL. Well-Posedness and Global Attractors for Viscous Fractional Cahn–Hilliard Equations with Memory. Fractal and Fractional. 2022; 6(9):505. https://doi.org/10.3390/fractalfract6090505
Chicago/Turabian StyleÖztürk, Eylem, and Joseph L. Shomberg. 2022. "Well-Posedness and Global Attractors for Viscous Fractional Cahn–Hilliard Equations with Memory" Fractal and Fractional 6, no. 9: 505. https://doi.org/10.3390/fractalfract6090505
APA StyleÖztürk, E., & Shomberg, J. L. (2022). Well-Posedness and Global Attractors for Viscous Fractional Cahn–Hilliard Equations with Memory. Fractal and Fractional, 6(9), 505. https://doi.org/10.3390/fractalfract6090505