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Abstract: We examine a viscous Cahn–Hilliard phase-separation model with memory and where the
chemical potential possesses a nonlocal fractional Laplacian operator. The existence of global weak
solutions is proven using a Galerkin approximation scheme. A continuous dependence estimate
provides uniqueness of the weak solutions and also serves to define a precompact pseudometric.
This, in addition to the existence of a bounded absorbing set, shows that the associated semigroup of
solution operators admits a compact connected global attractor in the weak energy phase space. The
minimal assumptions on the nonlinear potential allow for arbitrary polynomial growth.

Keywords: Cahn–Hilliard equation; fractional Laplacian; memory

1. Introduction

Let Ω be a smooth (at least Lipschitz) bounded domain in RN , N = 3, 2, 1, with
boundary ∂Ω and let T > 0. We consider the following viscous fractional Cahn–Hilliard
equation in the unknown (order parameter) u satisfying

∂tu(t, x) =
∫ ∞

0
k(s)∆µ(t− s, x)ds in Ω× (0, T), (1)

k is a so-called relaxation kernel, with a chemical potential µ given by

µ(t, x) = α∂tu(t, x) + (−∆)βu(t, x) + F′(u(t, x)) in Ω×R, (2)

α > 0, β ∈ (0, 1), and typically, F is a double-well potential (the precise assumptions on F
are stated in (N1)–(N3) below), subject to the boundary conditions

u = 0 on RN\Ω× (0, T) and ∂nµ = 0 on ∂Ω× (0, T), (3)

with the given initial and past conditions

u(0) = u0(0) in Ω and u(−t) = u0(−t) in Ω× [0, T), (4)

for
u0 : Ω× (−∞, 0)→ R.

Here, we define (−∆)β with 0 < β < 1 as the (nonlocal) fractional Laplace operator.
In other words, let Ω ⊂ RN be an arbitrary open set and fix

L1(Ω) :=
{

u : Ω→ R measurable,
∫

Ω

|u(x)|
(1 + |x|)N+2β

dx < ∞
}

.

For u ∈ L1(RN), x ∈ RN , and ε > 0, we write

(−∆)β
ε u(x) = CN,β

∫
{y∈RN ,|y−x|>ε}

u(x)− u(y)
|x− y|N+2β

dy
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with the normalized constant CN,β given by

CN,β =
β22βΓ

(
N+2β

2

)
π

N
2 Γ(1− β)

, (5)

where Γ denotes the usual gamma function. The (restricted) fractional Laplacian (−∆)βu
of the function u is defined by the formula

(−∆)βu(x) = CN,βP.V.
∫
RN

u(x)− u(y)
|x− y|N+2β

dy = lim
ε↓0

(−∆)β
ε u(x), x ∈ RN , (6)

provided that the limit exists. We call Aβ the self-adjoint realization of the fractional
Laplacian (−∆)β with Dirichlet boundary condition (3)1, see, e.g., [1] (Section 2.2) (see
also [2]).

Some remarks: First, observe the chemical potential (2) involves the Neumann (no-
flux) condition described by (3). Hence, when the memory function k is close to the Dirac
delta function, we recover the usual parabolic equation associated with the Cahn–Hilliard
equation with the flux-free chemical potential.

Naturally, we are also interested in the closely related problem to (1)–(4) whereby the
fractional Laplace operator (−∆)β is replaced with the regional fractional Laplacian, Aβ

Ω,
defined by first setting

Aβ
Ω,εu(x) = CN,β

∫
{y∈Ω,|y−x|>ε}

u(x)− u(y)
|x− y|N+2β

dy,

where CN,β is given by (5), then

Aβ
Ωu(x) = CN,βP.V.

∫
Ω

u(x)− u(y)
|x− y|N+2β

dy = lim
ε↓0

Aβ
Ω,εu(x), x ∈ Ω, (7)

provided that the limit exists. Assuming u ∈ D(Ω) (see [1] (page 1280)) then the two
fractional Laplacian operators are related by

(−∆)βu(x) = Aβ
Ωu(x) + VΩ(x)u(x), ∀u ∈ D(Ω) (8)

with the following potential

VΩ(x) := CN,β

∫
RN\Ω

dy
|x− y|N+2β

, x ∈ Ω. (9)

The comparable Cahn–Hilliard problem with the regional fractional Laplacian is then
(1) with the chemical potential

µ = α∂tu + Aβ
Ωu + F′(u) in Ω× (0, T), (10)

now subject to the boundary conditions

u = 0 on ∂Ω× (0, T) and ∂nµ = 0 on ∂Ω× (0, T), (11)

with the above initial and past conditions in (4). Our focus here is on obtaining results
for the restricted fractional Laplacian, of which the regional counterpart can be view as
a perturbation thanks to (8). The restricted fractional Laplacian appears in the context
of nonlocal phase transitions with Dirichlet boundary conditions in [3,4]. On the other
hand, the regional fractional Laplacian is generally better suited to treat problems with
nonhomogeneous boundary data and even dynamic boundary conditions (see [1,5] and
the references therein).
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It should also be noted that we only consider the viscous case, where α > 0, since the
nonviscous counterpart α = 0 inherits no added regularity for α∂tφ.

Inside a bounded container Ω ⊂ R3, the Cahn–Hilliard equation (see [6]) is a phase
separation model for a binary solution (e.g., a cooling alloy, glass, or polymer),

∂tu = ∇ · [κ(u)∇µ],

where u is the order-parameter (the relative difference of the two phases), κ is the mobility
function (we set κ ≡ 1 throughout this article), and µ is the chemical potential (the first
variation of the free-energy E with respect to u). In the classical model,

µ = −∆u + F′(u) and E(u) =
∫

Ω

(
1
2
|∇u|2 + F(u)

)
dx,

where F describes the density of potential energy in Ω (e.g., the double-well potential
F(s) = (1− s2)2).

Recently the nonlocal free-energy functional has appeared in the literature [7],

E(φ) =
∫

Ω

∫
Ω

1
4

J(x− y)(φ(x)− φ(y))2dxdy +
∫

Ω
F(φ)dx,

hence, the chemical potential is,

µ = aφ− J ∗ φ + F′(φ), (12)

where

a(x) =
∫

Ω
J(x− y)dy and (J ∗ φ)(x) =

∫
Ω

J(x− y)φ(y)dy. (13)

In view of [8,9], the nonlocality expressed in (12)–(13) (see also [10–19]) is termed weak
while the type under consideration here in (2) and (6) is called strong. Under certain
conditions the strong type reduces to the weak (see [8], and also see [7]). Recently there
has been much interest in the nonlocal Cahn–Hilliard equation with strong interactions
of the restricted fractional Laplacian type (6) and the regional fractional Laplacian type (7)
(see [3,5,8,9,20]). The results in these references concern global well-posedness, and when
available, the existence of finite dimensional global attractors and regularity.

Additionally, there has been exceptional growth concerning dissipative infinite-
dimensional systems with memory including models arising in the theory of heat conduction
in special materials (see, e.g., [21–25]) and the theory of phase-transitions (see, e.g., [26–34]).
One feature of equations that undergo “memory relaxation” is the admissibility of a so-
called inertia term. For example, (see, e.g., [35]) the first-order equation with memory

ut(t) +
∫ ∞

0
kε(s) f (u(t− s))ds = 0

for
kε(s) =

1
ε

e−s/ε

leads us (formally) to the “hyperbolic relaxation” equation

εutt(t) + ut(t) + f (u(t)) = 0.

In this way, our model also includes the viscous Cahn–Hilliard equation with inertial
term (see [36]). Hence, the novelty in the present work is a relaxation of a phase-field model
with a strongly interacting nonlocal diffusion mechanism.

In this article, our aims were:
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• To provide a framework to establish the global (in time) well-posedness of the model
problems (1)–(4) and (1), (4), (10), and (11).

• To prove the semigroup of solution operators admits a compact global attractor.

In order to reach these aims, we require sufficient growth conditions on F (given below)
in order to employ a Galerkin scheme with suitable a priori estimates. With a finite energy
phase space identified, a one-parameter family of solution operators is defined, hence
generating a semidynamical system. This semigroup is dissipative on the energy phase
space and also defines an α-contraction on the phase space. The existence of a compact
global attractor follows.

2. Past History Formulation and Functional Setup

We now introduce the well-established past history approach from [37] (see also [27,29])
by defining the past history variable, for all s > 0 and t > 0,

ηt(x, s) =
∫ s

0
−∆µ(x, t− σ)dσ. (14)

Observe that η satisfies the boundary condition

ηt(x, 0) = 0 on Ω× (0, ∞). (15)

When k is sufficiently smooth and vanishes at +∞ (these assumptions will be made
more precise below), then integration by parts yields∫ ∞

0
k(s)∆µ(x, t− s)ds = −

∫ ∞

0
ν(s)ηt(x, s)ds

where ν(s) = −k′(s).
We may now formulate the model problem (1)–(4) as:

Problem P. Find (u, η) = (u(x, t), ηt(x, s)) on (0, ∞) such that

∂tu(x, t) +
∫ ∞

0
ν(s)ηt(x, s)ds = 0 in Ω× (0, ∞) (16)

µ(x, t) = α∂tu(x, t) + (−∆)βu(x, t) + F′(u(x, t)) in Ω× (0, ∞) (17)

∂tη
t(x, s) + ∂sηt(x, s) = −∆µ(x, t) in Ω× (0, ∞)× (0, ∞) (18)

held subject to (3) and (15), and satisfying the initial conditions (4)1 and

η0(x, s) = η0(x, s) in Ω× (0, ∞), (19)

whereby with (14),

η0(x, s) =
∫ s

0
−∆µ0(x,−y)dy in Ω× (0, ∞), (20)

where in light of (4)2,

µ0(x, t) = α∂tu0(x, t) + (−∆)βu0(x, t) + F′(u0(x, t)) for t ≤ 0. (21)

Additionally, we are also interested in treating the related problem where the above
fractional Laplace operator (−∆)β is replaced with the regional counterpart Aβ

Ω. Hence,
the formulation of the related regional Problem P is based on (1), (4), (10), and (11).

Here, we introduce some notation. From now on, we denote by ‖ · ‖X the norm in
the specified (real) Banach space X, and (·, ·)Y denotes the product on the specified (real)
Hilbert space Y. The dual pairing between Y and the dual Y∗ is denoted by 〈u, v〉Y∗×Y. The
set Ω is omitted from the space when we indicate the norm. We denote the measure of
the domain Ω by |Ω|. In many calculations, functional notation indicating dependence on
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the variable t is dropped; for example, we write u in place of u(t) or ηt in place of ηt(s).
Throughout the paper, C denotes a generic positive constant, while Q : R+ → R+ denotes a
generic increasing function. Such generic terms may or may not indicate dependencies on
the (physical) parameters of the model problem, and may even change from line to line.

Let us define the linear operator AN := −∆ on D(AN) = {ψ ∈ H2(Ω) : ∂nψ = 0 on ∂Ω},
as the realization in L2(Ω) of the Laplace operator endowed with Neumann boundary
conditions. Here, −∆ denotes the usual (local) Laplace operator. It is well-known that AN
is the generator of a bounded analytic semigroup e−AN t on L2(Ω). Additionally, AN is
nonnegative and self-adjoint on L2(Ω). With H−r(Ω) := (Hr(Ω))∗, r ∈ N+, denote by 〈·〉
the spatial average over Ω, i.e.,

〈ψ〉 :=
1
|Ω| 〈ψ, 1〉H−r×Hr .

We set Hr
(0)(Ω) = {ψ ∈ Hr(Ω) : 〈ψ〉 = 0}, H0(Ω) = L2(Ω), and we know that

A−1
N : H0

(0)(Ω)→ H0
(0)(Ω) is a well-defined mapping. We refer to the following norms in

H−r(Ω) (which are equivalent to the usual norms)

‖ψ‖2
H−r = ‖A−r/2

N (ψ− 〈ψ〉)‖2 + |〈ψ〉|2. (22)

The Sobolev space H1(Ω) is endowed with the norm,

‖ψ‖2
H1 := ‖∇ψ‖2 + 〈ψ〉2. (23)

Denote by λΩ > 0 the constant in the Poincaré–Wirtinger inequality,

‖ψ− 〈ψ〉‖ ≤
√

λΩ‖∇ψ‖. (24)

Whence, for λ∗Ω := max{λΩ, 1}, there holds, for all ψ ∈ H1(Ω),

‖ψ‖2 ≤ λΩ‖∇ψ‖2 + 〈ψ〉2 (25)

≤ λ∗Ω‖ψ‖2
H1 .

We now more rigorously describe the fractional Laplacian with Dirichlet boundary
conditions. For an arbitrary bounded domain Ω ⊂ RN and for β ∈ (0, 1), denote the
fractional-order Sobolev space by,

Wβ,2(Ω) :=
{

u ∈ L2(Ω) :
∫

Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2β
dxdy < ∞

}
,

to be equipped with the norm

‖u‖Wβ,2 :=
(∫

Ω
|u(x)|2dx +

CN,β

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2β
dxdy

)1/2

,

where CN,β is given by (5). Let

Wβ,2
0 (Ω) = D(Ω)

Wβ,2(Ω)
.

Hence, Wβ,2
0 (Ω) is a closed subspace of Wβ,2(Ω) containingD(Ω). Moreover, thanks to [38]

(Theorem 10.1.1),

Wβ,2
0 (Ω) = {u ∈Wβ,2(RN) : ũ = 0 on RN \Ω},
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where ũ is the quasi-continuous version (with respect to the capacity defined with the space
Wβ,2(Ω)) of u. One may easily show that the following defines an equivalent norm on the
space Wβ,2

0 (Ω),

|‖u‖|2
Wβ,2

0
=

CN,β

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2β
dxdy +

∫
Ω

VΩ(x)|u(x)|2dx

=
CN,β

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2β
dxdy. (26)

Here, VΩ is the potential (9).

Remark 1. Either definition of the space Wβ,2
0 (Ω) makes sense for any arbitrary open set Ω ⊂ R3

(not necessarily bounded). Furthermore, if Ω has a Lipschitz boundary, then by [39],
Wβ,2

0 (Ω) = Wβ,2(Ω) for every 0 < β ≤ 1
2 .

From now on, we write u ∈Wβ,2
0 (Ω) to mean u ∈Wβ,2(RN) and u = 0 on RN \Ω. Let

aE,β be the bilinear symmetric closed form with domain D(aE,β) = Wβ,2
0 (Ω) and defined

for u, v ∈Wβ,2
0 (Ω) by

aE,β(u, v) =
CN,β

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2β

dxdy +
∫

Ω
VΩ(x)u(x)v(x)dx

=
CN,β

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2β

dxdy. (27)

Let AE,β be the closed linear self-adjoint operator on L2(Ω) associated with aE,β by{
D(AE,β) := {u ∈Wβ,2

0 (Ω) : ∃v ∈ L2(Ω), aE,β(u, ϕ) = (v, ϕ) ∀ϕ ∈Wβ,2
0 (Ω)}

AE,βu = v.
(28)

According to [1] (Proposition 2.2), the operator AE,β on L2(Ω) associated with the
bilinear form aE,β is given by

D(AE,β) := {u ∈Wβ,2
0 (Ω) : (−∆)β

Eu ∈ L2(Ω)} and ∀u ∈ D(AE,β), AE,βu := (−∆)β
Eu. (29)

Observe that comparing (6) and (26)–(29) shows, for all u ∈ D(AE,β),

((−∆)β
Eu, u) = aE,β(u, u) = |‖u‖|2

Wβ,2
0

. (30)

Concerning the related regional problem discussed above, we let aD,β be the bilinear

symmetric closed form with domain D(aD,β) = Wβ,2
0 (Ω) and defined for u, v ∈Wβ,2

0 (Ω) by

aD,β(u, v) =
CN,β

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2β

dxdy. (31)

Let AD,β be the closed linear self-adjoint operator on L2(Ω) associated with aD,β by{
D(AD,β) := {u ∈Wβ,2

0 (Ω) : ∃v ∈ L2(Ω), aD,β(u, ϕ) = (v, ϕ) ∀ϕ ∈Wβ,2
0 (Ω)}

AD,βu = v.
(32)

Then, by [1] (Proposition 2.3), the operator AD,β on L2(Ω) associated with the bilinear
form aD,β is given by
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D(AD,β) := {u ∈Wβ,2
0 (Ω) : Aβ

Ωu ∈ L2(Ω)} and ∀u ∈ D(AD,β), AD,βu := Aβ
Ωu. (33)

We introduce the spaces for the memory variable η. First, the product in Hσ(Ω) for
σ ∈ R and u1, u2 ∈ Hσ(Ω) is defined by

(u1, u2)Hσ = (Aσ/2
N u1, Aσ/2

N u2). (34)

For a nonnegative measurable function θ defined on R+ and for a Hilbert space W
(with inner-product (·, ·)W), let L2

θ(R+; W) be the Hilbert space of W-valued functions on
R+ equipped with the following product,

(φ1, φ2)L2
θ(R+ ;W) =

∫ ∞

0
θ(s)(φ1(s), φ2(s))Wds.

Thus, we set

Mσ = L2
ν(R+; Hσ(Ω)) and M(0)

σ = L2
ν(R+; Hσ

(0)(Ω)) for σ ∈ R,

where ν = ν(s) is the kernel from (16). Hence, for σ ∈ R and φ1, φ2 ∈ Mσ, using (34) the
product inMσ (andM(0)

σ ) can be expressed as

(φ1, φ2)Mσ
=
∫ ∞

0
ν(s)(Aσ/2

N φ1(s), Aσ/2
N φ2(s))ds.

Naturally, we may also consider spaces of the form Hk
ν(R+; Hσ(Ω)) for k ∈ N.

We mention that solutions of Problem P must also satisfy the mass conservation
constraints,

〈u(t)〉 = 〈u0(0)〉 and 〈ηt(s)〉 = 0 ∀t > 0, ∀s > 0. (35)

With this, it is important to realize that the norm of ηt in the space M(0)
−1 may be

expressed without writing the average value of η0 in (22) by virtue of the second constraint
of (35). Indeed, for ηt ∈ M(0)

−1,

‖ηt‖M−1 =

(∫ ∞

0
ν(s)‖ηt(s)‖2

H−1 ds
)1/2

=

(∫ ∞

0
ν(s)‖A−1/2

N ηt(s)‖2ds
)1/2

.

We now state the basic function spaces we intend to study Problem P in. For each
β ∈ (0, 1) and σ ∈ R, define the following (weak) energy Hilbertian phase-space
Hβ,σ := Wβ,2

0 (Ω)×M(0)
σ−1, equipped with the norm on Wβ,2

0 (Ω)×M(0)
σ−1 whose square is

given by, for all φ = (u, η)tr ∈ Hβ,σ,

‖φ‖2
Hβ,σ

:= ‖u‖2
Wβ,2

0
+ ‖ηt‖2

Mσ−1
.

Then, for each M ≥ 0, define the closed subset

HM
β,σ = {φ = (u, η)tr ∈ Hβ,σ : |〈u〉| ≤ M}. (36)

When we are concerned with the dynamical system associated with the model Problem
P, we utilize the following metric space,

XM
β,σ :=

{
φ = (u, η)tr ∈ HM

β,σ : F(u) ∈ L1(Ω)
}

,
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endowed with the metric

dXM
β,σ
(φ1, φ2) := ‖φ1 − φ2‖HM

β,σ
+

∣∣∣∣∫Ω
F(u1)dx−

∫
Ω

F(u2)dx
∣∣∣∣1/2

.

Remark 2. The embedding HM
β,1 ↪→ HM

β,0 is continuous but not compact, due to the presence of

the second componentM(0)
σ−1. Indeed, see [40] for a counterexample.

It is appropriate for us to state the various assumptions that may be used on the kernel ν.

(K1) ν ∈ C1(R+) ∩ L1(R+) and ν(s) ≥ 0 for all s ∈ R+.

(K2) ν′(s) ≤ 0 for all s ∈ R+.

(K3) k0 =
∫ ∞

0
ν(s)ds > 0. (For the sake of simplicity, we now assume k0 = 1 throughout

the rest of the paper.)

(K4) ν0 = lim
s→0+

ν(s) < ∞.

(K5) ν′(s) + λν(s) ≤ 0 for a.e. s ∈ R+, for some λ > 0.

Some remarks for these assumptions: By assumption (K2), the inequality holds for all
ηt ∈ D(Tr)

(Trηt, ηt)M−1 ≤ 0. (37)

We remind the reader that the assumption (K5) is only required when we examine the
asymptotic behavior of the solutions (and in that case, (K2) is redundant).

In order to formulate a suitable (abstract) evolution equation for ηt, we define the
linear operator Tr = −∂s with the domain

D(Tr) = {ηt ∈ M(0)
−1 : ∂sηt ∈ M(0)

−1, ηt(0) = 0}.

It is well-known that Tr is the infinitesimal generator of the right-translation semigroup
onM−1; indeed, the following result comes from [37] (Theorem 3.1).

Proposition 1. The operator Tr with domain D(Tr) is an infinitesimal generator of a strongly
continuous semigroup of contractions onM−1, denoted eTrt.

As a consequence, we also have (see, e.g., [41] (Corollary IV.2.2)).

Corollary 1. Let T > 0 and assume g ∈ L1(0, T; H−1(Ω)). Then, for every η0 ∈ M−1, the
Cauchy problem for ηt, {

∂tη
t = Trηt + g(t), for t > 0,

η0 = η0,
(38)

has a unique (mild) solution η ∈ C([0, T];M−1) which can be explicitly given as

ηt(s) =


∫ s

0
g(t− y)dy, for 0 < s ≤ t,

η0(s− t) +
∫ t

0
g(t− y)dy, for s > t,

(39)

see also [21] (Section 3.2) and [37] (Section 3).

3. Variational Formulation and Well-Posedness

To begin this section, we state the assumptions on the nonlinear term F and report
some important consequences of these assumptions. These assumptions on F are based
on [13,15] and can be found in [5] (Section 3).
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(N1) F ∈ C2
loc(R) and there exists cF > 0 such that, for all r ∈ R,

F′′(r) ≥ −cF.

(N2) There exist cF > 0 and p ∈ (1, 2] such that, for all r ∈ R,

|F′(r)|p ≤ cF(|F(r)|+ 1).

(N3) There exist C1, C2 > 0 such that, for all r ∈ R,

F(r) ≥ C1|r|p/(p−1) − C2.

The last assumption is not needed to obtain the existence of weak solutions, but it is
relied upon later when we seek the existence of strong/regular solutions and uniqueness
of these solutions.

(N4) There exist ρ ≥ 2 and C3 > 0 such that, for all r ∈ R,

|F′′(r)| ≤ C3(1 + |r|ρ−2). (40)

The following remarks are from [5]. Assumption (N1) implies that the potential F is a
quadratic perturbation of some strictly convex function; i.e., there holds,

F(r) = G(r)− cF
2

r2, (41)

with G ∈ C2(R) strictly convex as G′′ ≥ 0 in Ω. Furthermore, with (N1), for each M ≥ 0
there are constants Ci > 0, i = 3, . . . , 6, (with C4 and C5 depending on M and F) such that,
for all r ∈ R,

F(r)− C3 ≤ C4(r−M)2 + F′(r)(r−M), (42)

1
2
|F′(s)|(1 + |r|) ≤ F′(r)(r−M) + C5, (43)

(see [26] (Equations (4.7) and (4.8))) and

|F(r)| − C6 ≤ |F′(r)|(1 + |r|). (44)

The last inequality appears in [42] (page 8). With the positivity condition (N3), it
follows that, for all r ∈ R,

|F′(r)| ≤ cF(|F(r)|+ 1). (45)

Assumption (N2) allows for arbitrary polynomial growth p̄ = p/(p− 1) in the potential
F. Significantly, the double-well potential F(r) = (r2 − 1)2 satisfies (N2) with p = 4/3 and
(N4) with p = 2.

We are now ready to introduce the variational/weak formulation of Problem P.
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Definition 1. Let T > 0 and φ0 = (u0, η0)
tr ∈ HM

β,0 = Wβ,2
0 (Ω)×M(0)

−1 be such that F(u0) ∈
L1(Ω). A pair φ = (u, η) satisfying

φ = (u, η) ∈ L∞(0, T;HM
β,0), (46)

∂tu ∈ L2(0, T; H−1(Ω)), (47)

∂tη ∈ L2(0, T; H−1
ν (R+; H−1

(0)(Ω))), (48)

µ ∈ L2(0, T; W−β,2(Ω)), (49)

F′(u) ∈ L∞(0, T; Lp(Ω)) (50)

is called a WEAK SOLUTION to Problem P on [0, T] with initial data φ0 = (u0, η0) ∈ HM
β,0 if the

following identities hold almost everywhere in (0, T), and for all v ∈ H1(Ω), ξ ∈ Wβ,2
0 (Ω) ∩

Lp(Ω), and ζ ∈ M1:

〈∂tu, v〉H−1×H1 +
∫ ∞

0
ν(s)〈ηt(s), v〉H−1×H1 ds = 0, (51)

aE,β(u, ξ) + 〈F′(u), ξ〉
W−β,2×Wβ,2

0
+ α〈∂tu, ξ〉

W−β,2×Wβ,2
0

= 〈µ, ξ〉
W−β,2×Wβ,2

0
, (52)

(∂tη
t, ζ)M−1 − (Trηt, ζ)M−1 = (µ, ζ)M0 . (53)

Furthermore, the initial conditions hold in the L2-sense

u(0) = u0 and η0 = η0. (54)

Finally, we say that φ = (u, η)tr is a GLOBAL WEAK SOLUTION of Problem P if it is a weak
solution on [0, T], for any T > 0.

Remark 3. It is important to note that although η0 is defined by (14) and (21), η0 may be taken to
be initial data independent of u. Henceforth we consider a more general problem with respect to
the original one.

Remark 4. Concerning Equation (53) and the representation Formula (39), we have

Trηt(s) = −∂sηt(s) =
{

∆µ(t− s) for 0 < s ≤ t,
−∂sη0(s− t) for s > t.

Thus, when given η0 ∈ M
(0)
−1, then Trηt ∈ H−1

ν (R+; H−1(Ω)), for each t ∈ (0, T), by
virtue of (49). Moreover, taking ζ = 1 in the variational equation

(∂tη
t, ζ)M−1 − (Trηt, ζ)M−1 = −

∫ ∞

0
ν(s)(−∆µ, ζ)H−1×H1 ds,

we find, for all s > t,

∂

∂t
〈ηt(s)〉+ ∂

∂s
〈η0(s− t)〉 = k0〈∆µ(t− s)〉.

We know that η0 ∈ M
(0)
−1 and k0 = 1, hence

∂

∂t
〈ηt(s)〉 = 0,

and it follows that
〈ηt(s)〉 = 0 ∀t ≥ 0.



Fractal Fract. 2022, 6, 505 11 of 28

Remark 5. In the Cahn–Hilliard model, it is well-known that the average value of u is conserved
(see, e.g., [43] (Section III.4.2)). A similar property holds here for our problem. Indeed, we may
choose the test function v = 1 in (51) which yields

∂

∂t
〈u(t)〉+

∫ ∞

0
ν(s)〈ηt(s)〉ds = 0.

By (4), there holds 〈ηt(s)〉 = 0 for all t > 0 and for all s > 0. Hence, we recover the
conservation of mass

〈u(t)〉 = 〈u0〉 and 〈∂tu(t)〉 = 0, ∀t ≥ 0. (55)

Remark 6. Before we continue to the existence statement, it is worthwhile to recall Theorem A1 (d)
in Appendix A for which the following embedding holds

D(AE,β) ↪→ L∞(Ω), ∀β ∈ (
N
4

, 1), for N = 1, 2, 3. (56)

Theorem 1. Let T > 0 and φ0 = (u0, η0)
tr ∈ HM

β,0 = Wβ,2
0 (Ω) ×M(0)

−1 for β ∈ (N
4 , 1),

N = 1, 2, 3, be such that F(u0) ∈ L1(Ω). Assume α > 0 and that (K1)–(K4) and (N1)–(N3) hold.
Problem P admits at least one weak solution φ = (u, η) on (0, T) according to Definition 1 with
the additional regularity

u ∈ L∞(0, T; Lp/(p−1)(Ω)), (57)
√

α∂tu ∈ L2(Ω× (0, T)), (58)

η ∈ L2(0, T; L2
−ν′(R+; H−1

(0)(Ω))), (59)

F(u) ∈ L∞(0, T; L1(Ω)), F′(u) ∈ L∞(0, T; L1(Ω)). (60)

for any T > 0. Furthermore, setting

E(t) := |‖u(t)‖|2
Wβ,2

0
+ 2(F(u(t)), 1) + ‖ηt‖2

M−1
+ C (61)

for some C > 0 sufficiently large, the following energy equality holds for every such weak solution,

E(t) + 2
∫ t

0

(
α‖∂tu(τ)‖2dτ −

∫ ∞

0
ν′(s)‖ητ(s)‖2

H−1 ds
)

dτ = E(0). (62)

Proof. The proof proceeds in several steps. The existence proof begins with a Faedo–
Galerkin approximation procedure in which we later pass to the limit. We first assume that
u0 ∈ D(AE,β). (This assumption will be used to show that there is a sequence {u0n}∞

n=1
such that u0n → u0 in D(AE,β) as well as L∞(Ω) per (56), which will be important in light
of the fact that F(u0n) is of arbitrary polynomial growth per assumptions (N1)–(N3).) The
existence of a weak solution for u0 ∈Wβ,2

0 (Ω) with F(u0) ∈ L1(Ω) follows from a density
argument. To establish the equality in the energy identity, we exploit the fact that the
potential F is a quadratic perturbation of some strictly convex function.

Step 1: The Galerkin approximation. To begin, we introduce the family {vj}j≥1 of eigen-
vectors of the fractional Laplacian AE,β, which exist thanks to Theorem A1 in Appendix A.
Moreover, there is a family {wj}j≥1 consisting of the eigenvectors of the Neumann–Laplacian
AN , and with this, we define the smooth sequence of {zj}j≥1 ⊂ D(Tr)∩W1,2

ν (R+; H1
(0)(Ω))

by zj = bjwj such that {bj}j≥1 ⊂ C∞
c (R+) is an orthonormal basis for L2

ν(R+). Using these,
we define the following finite-dimensional spaces:

Vn = span{v1, v2, . . . , vn}, Wn = span{w1, w2, . . . , wn}, Mn = span{z1, z2, . . . , zn}, (63)



Fractal Fract. 2022, 6, 505 12 of 28

and set

V∞ =
∞⋃

n=1

Vn, W∞ =
∞⋃

n=1

Wn, M∞ =
∞⋃

n=1

Mn.

Clearly, V∞ is a dense subspace of Wβ,2
0 (Ω) and W∞ is a dense subspace of H1(Ω). In

addition,M∞ is a dense subspace ofM(0)
−1. For T > 0 fixed, we look for two functions of

the form on (0, T),

un(t) =
n

∑
k=1

a(n)k (t)vk and ηt
n(s) =

n

∑
k=1

c(n)k (t)zk, (64)

where a(n)j and c(n)j are assumed to be (at least) C2([0, T]) for each j = 1, 2, . . . an for each
n = 1, 2, . . . , which solve the following approximating Problem Pn:

(∂tun, v) +
∫ ∞

0
ν(s)(ηt

n(s), v)ds = 0 (65)

aE,β(un, ξ) + (F′(un), ξ) + α(∂tun, ξ) = (µn, ξ) (66)

(∂tη
t
n, ζ)M−1 − (Trηt

n, ζ)M−1 = (µn, ζ)M0 (67)

un(0) = u0n, η0
n = η0n (68)

for every v ∈ Vn, ξ ∈ Wn and ζ ∈ Mn, and where u0n, and η0n denote the finite-
dimensional projections of u0 and η0 onto Vn andMn, respectively. This approximating
problem is equivalent to solving a Cauchy problem for a system of ordinary differential
equations (indeed, see, e.g., [26] (page 131)). Hence, the Cauchy–Lipschitz theorem en-
sures that there exists a Tn ∈ (0, ∞] such that this approximating system has a unique
maximal solution.

Step 2: A priori estimates. We now derive some a priori estimates in order to show
that Tn = ∞ for every n ≥ 1 and that the sequences of un, ηt

n, µn are bounded in suitable
functional spaces. By using v = µn as a test function in (65) and ξ = ∂tun as a test function
in (66) we obtain

(∂tun, µn) +
∫ ∞

0
ν(s)(ηt

n(s), µn)ds = 0 (69)

(µn, ∂tun) = ((−∆)β
Eun, ∂tun) + (F′(un), ∂tun) + α‖∂tun‖2, (70)

and taking ζ = ηt
n as a test function in (67) yields (for the products in M−1, this is a

multiplication by (−∆)−1ηt
n inM0)∫ ∞

0
ν(s)

(∫
Ω

∂tη
t
n(x, s)(−∆)−1ηt

n(x, s)dx
)

ds +
∫ ∞

0
ν(s)

(∫
Ω

∂sηt
n(x, s)(−∆)−1ηt

n(x, s)dx
)

ds

=
∫ ∞

0
ν(s)

(∫
Ω
(−∆)µn(x, t)(−∆)−1ηt

n(x, s)dx
)

ds,

which is, after an integration by parts,

(∂tη
t
n, ηt

n)M−1 + (∂sηt
n, ηt

n)M−1 = (µn, ηt
n)M0 . (71)

Then, combining the results produces the differential identity, which holds for almost
all t ∈ (0, T),

1
2

d
dt

{
|‖un‖|2Wβ,2

0
+ 2(F(un), 1) + ‖ηt‖2

M−1

}
+ α‖∂tun‖2 − (Trηt

n, ηt
n)M−1 = 0. (72)
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For all t ∈ (0, Tn), set

En(t) := |‖un(t)‖|2Wβ,2
0

+ 2(F(un(t)), 1) + ‖ηt
n‖2
M−1

+ C (73)

where in light of (N3), the functional En(t) is nonnegative for all t ∈ (0, Tn). We have

d
dt
En + 2α‖∂tun‖2 − 2

∫ ∞

0
ν′(s)‖ηt

n(s)‖2
H−1 ds = 0 (74)

for almost all t ∈ (0, Tn). Hence, integrating the equation above with respect to time in (0, t),
we are led to the following integral equality (which does hold for the approximate solutions)

En(t) + 2
∫ t

0

(
α‖∂tun(τ)‖2 −

∫ ∞

0
ν′(s)‖ητ

n(s)‖2
H−1 ds

)
dτ = En(0). (75)

Furthermore, from (73) and assumption (N3), we find the lower bound

|‖un(t)‖|2Wβ,2
0

+ 2C1‖un(t)‖p/(p−1)
Lp/(p−1) + ‖ηt

n‖2
M−1

≤ En(t). (76)

Using the fact that F(u0) ∈ L1(Ω), we also obtain the upper bound

En(t) ≤ En(0) ≤ |‖un(0)‖|2Wβ,2
0

+ (F(un(0)), 1) + ‖η0
n‖2
M−1

≤ Q(‖φn(0)‖HM
β,0
) + C. (77)

In particular, the uniform bound derived from (75)–(77) implies that the local solution
to Problem Pn can be extended up to time T, that is Tn = T, for every n. Moreover, from
(75) and (76) we deduce the following bounds for the approximate solution

‖un‖L∞(0,T;Wβ,2
0 )
≤ C (78)

‖ηn‖L∞(0,T;M−1)
≤ C (79)

‖F(un)‖L∞(0,T;L1) ≤ C (80)
√

α‖∂tun‖L2(Ω×(0,T)) ≤ C (81)

‖ηn‖L2(0,T;L2
−ν′ (R+ ;H−1)) ≤ C (82)

‖un‖L∞(0,T;Lp/(p−1)) ≤ C. (83)

Obviously, (45) and (80) immediately show us

‖F′(un)‖L∞(0,T;L1) ≤ C. (84)

Next, since 〈A−1
N ∂tun〉 = 0 (recall (55)), we may (and do) take v = A−1

N ∂tun in (65)
which leads us to the estimate,

‖A−
1
2

N ∂tun‖2 ≤
∫ ∞

0
ν(s)‖A−

1
2

N ηt
n(s)‖‖A−

1
2

N ∂tun(t)‖ds, (85)

that is,

‖∂tun‖2
H−1 ≤

∫ ∞

0
ν(s)‖ηt

n(s)‖H−1‖∂tun‖H−1 ds. (86)

Using the Cauchy–Schwartz inequality and assumption (K3), we can write

‖∂tun‖H−1 ≤ ‖ηt
n‖M−1 . (87)
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Thus, (79) and (87) yield

‖∂tun‖L∞(0,T;H−1) ≤ C. (88)

We need to bound F′(un), then µn. In light of (66), we apply (84), (88), and the fact that op-
erator AE,β is bounded from Wβ,2

0 (Ω) into W−β,2(Ω) (in particular, ‖AE,βun‖L2(0,T;W−β,2(Ω))

≤ C), to obtain the following uniform bounds for µn

|〈µn〉| ≤ C, (89)

and

‖µn‖L2(0,T;W−β,2(Ω)) ≤ C. (90)

This completes Step 2.
Step 3: Passage to the limit. On account of the above uniform inequalities, we can argue

that there are functions u, η, µ, such that, up to subsequences,

un ⇀ u weakly-* in L∞(0, T; Wβ,2
0 (Ω)), (91)

un ⇀ u weakly-* in L∞(0, T; Lp/(p−1)(Ω)), (92)

∂tun ⇀ ∂tu weakly-* in L∞(0, T; H−1(Ω)), (93)
√

α∂tun ⇀
√

α∂tu weakly in L2(Ω× (0, T)), (94)

ηn ⇀ η weakly-* in L∞(0, T;M−1), (95)

ηn ⇀ η weakly in L2(0, T; L2
−ν′(R+; H−1(Ω))), (96)

∂tηn ⇀ ∂tη weakly in L2(0, T; H−1
ν (R+; H−1(Ω))), (97)

µn ⇀ µ weakly in L2(0, T; W−β,2(Ω)). (98)

(Note that (97) is due to (67) and the definition of the operator Tr.) Using the above
convergences (91) and (93), as well as the fact that the injection Wβ,2

0 (Ω) ↪→ L2(Ω) is
compact for any β ∈ (0, 1), we draw upon the conclusion of the Aubin–Lions Lemma (see
Lemma A1 in Appendix A) to deduce the following embedding is compact

W := {χ ∈ L2(0, T; Wβ,2
0 (Ω)) : ∂tχ ∈ L2(0, T; H−1(Ω))} ↪→ L2(Ω× (0, T)). (99)

Hence,

un → u strongly in L2(Ω× (0, T)), (100)

and we deduce that un converges to u, almost everywhere in Ω× (0, T). Using assumption
(N1) with (100), we deduce

F′(un)→ F′(u) strongly in L2(0, T; L1(Ω)). (101)

Thus, we now have all the sufficient convergence results to pass to the limit in
Equations (65) and (66) in order to recover (16) and (17), respectively. It remains to re-
cover Equation (67) after we pass to the limit. An integration by parts on the first term in
(67) and then an application of (95) yields, for any ζ ∈ C∞

0 ((0, T); C∞
0 ((0, T); H1(Ω)))

∫ T

0
(∂tη

τ
n , ζ)M−1 dτ = −

∫ T

0
(ητ

n , ∂tζ)M−1 dτ → −
∫ T

0
(ητ , ∂tζ)M−1 dτ. (102)

With this, we have

∂tη
t
n ⇀ ∂tη

t weakly in L2(0, T; H−1
ν (R+; H−1(Ω))) (103)



Fractal Fract. 2022, 6, 505 15 of 28

and that ηt ∈ L∞(0, T; H−1
ν (R+; H−1(Ω))). Furthermore, with the help of (96), we have

−
∫ T

0
(Trητ

n , ζ)M−1 dτ = −
∫ T

0
ν′(s)(ητ

n , ζ)H−1 dτ → −
∫ T

0
ν′(s)(ητ , ζ)H−1 dτ. (104)

By using a density argument (see [37]) and the following distributional equality

−
∫ T

0
(ητ

n , ∂tζ)M−1 dτ −
∫ T

0
ν′(s)(ητ , ζ)H−1(Ω)dτ =

∫ T

0
(∂tη

τ − Trητ , ζ)M−1 dτ, (105)

we also get (67) on account of (95) and (98). This completes Step 3 of the proof.
Step 4: Energy equality. To begin, let u0 ∈ D(AE,β), η0 ∈ M

(0)
−1 and let φ = (u, η)tr be

the corresponding weak solution. Recall from (100), we have, for almost all t ∈ (0, T),

un(t)→ u(t) strongly in L2(Ω) and a.e. in Ω. (106)

Since F is measurable and positive (see (N1) and (N3), respectively), Fatou’s
lemma implies ∫

Ω
F(u(t))dx ≤ lim inf

n→+∞

∫
Ω

F(un(t))dx. (107)

Passing to the limit in (75), and while keeping in mind (91), (94), (95), (97), (98), and
(101), as well as the weak lower-semicontinuity of the norm, we arrive at the integral
inequality which holds for any weak solution

E(t) + 2
∫ t

0

(
α‖∂tu(τ)‖2dτ −

∫ ∞

0
ν′(s)‖ητ(s)‖2

H−1 ds
)

dτ ≤ E(0).

We argue as in the proof of [12] (Corollary 2) to establish the energy equality. Indeed,
take ξ = µ in (51). By (17), we need to treat the dual pairing 〈F′(u), ∂tu〉W−β,2×Wβ,2

0
. It is here

where we employ (41), where F′(u) = G′(u)− cFu and G′ ∈ C1(R) is monotone increasing.
Define the functional G : L2(Ω)→ R by

G(φ) :=

{ ∫
Ω

G(u)dx if G(u) ∈ L1(Ω),

+∞ otherwise.

Now, by [44] (Proposition 2.8, Chapter II), it follows that G is convex, lower-semi-
continuous on L2(Ω), and χ ∈ ∂G(u) if and only if χ = G′(u) almost everywhere in Ω.
Since we have (47), we apply [45] (Proposition 4.2) to find that there holds, for almost all
t ∈ (0, T),

〈∂tu, F′(u)〉
W−β,2×Wβ,2

0
= 〈∂tu, G′(u)〉

W−β,2×Wβ,2
0
− cF〈∂tu, u〉

W−β,2×Wβ,2
0

=
d
dt

{
G(u)− cF

2
‖u‖2

}
=

d
dt

∫
Ω

F(u)dx.

Similar to Step 2 above, take v = µ, ξ = ∂tu, and ζ = ηt (now without the index
n) in (51)–(53), respectively. Using the above result on the dual product with F′(u) and
(47), we are led to the differential identity (74) with E, u, and η in place of En, un, and ηn,
respectively. Integrating the resulting differential identity on (0, t) produces (62) as claimed.
This completes Step 4.

Step 5: (u, η) weak solution to Problem P. Now let us take φ0 = (u0, η0)
tr ∈ HM

β,0 where

F(u0) ∈ L1(Ω). Proceeding exactly as in [12] (page 440) the bounds (78)–(84) and (88)–(90)
hold. Moreover, with the aid of the Aubin–Lions compact embedding (again see Lemma A1
in Appendix A below) we deduce the existence of functions u, η, and µ that satisfy (46), (49),
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(57), and (59). Thus, passing to the limit in the variational formulation for φk = (uk, ηk)
tr,

we find φ = (u, η)tr is a solution corresponding to the initial data φ0 = (u0, η0)
tr ∈ HM

β,0 for

which F(u0) ∈ L1(Ω). This finishes the proof of the theorem.

Before we continue, we make some important remarks.

Remark 7. The continuity property

u ∈ C([0, T]; Wβ−ι,2
0 (Ω)),

for any ι > 0 sufficiently small follows from the conditions in Definition 1 after an application of the
Aubin–Lions Lemma (see Lemma A1 in Appendix A). In addition, the property

η ∈ C([0, T];M(0)
−1)

follows from the density argument in [37]. Thus, we deduce the continuity properties

φ = (u, η) ∈ C([0, T];HM
β,0).

Remark 8. From (62), we see that if there is a t∗ > 0 in which

E(t∗) = E(0),

then, for all t ∈ (0, t∗), ∫ t

0

(
α‖∂tu(τ)‖2 + ‖ητ‖2

L2
−ν′ (R+ ;H−1)

)
dτ = 0. (108)

We deduce ∂tu(t) = 0 for all t ∈ (0, t∗). Additionally, since u(t) = u0 for all t ∈ (0, t∗),
Equation (17) shows

µ(t) = AE,βu0 + F′(u0) ∀t ∈ (0, t∗),

i.e., µ(t) = µ∗ is also stationary. Thus, by the definition of ηt given in (14), we find here that, for
each t ∈ (0, t∗)

ηt(s) = sANµ∗ ∀s ≥ 0.

Therefore, φ = (u, η)tr is a fixed point of the trajectory φ(t) = S(t)φ0, where S is the solution
operator defined below in Corollary 2.

The following result (see [26] (Theorem 3.4)) concerns the existence of strong/regular
solutions which is utilized in the proof of the continuous dependence estimate. Note that
we now employ the added assumption on the nonlinear term.

Theorem 2. Let T > 0, β ∈ (0, 1), and φ0 = (u0, η0)
tr ∈ HM

β+1,β+1 := Wβ+1,2
0 (Ω) ×

L2
ν(R+; Wβ,2

0 (Ω)) be such that F(u0) ∈ L1(Ω) and η0 ∈ D(Tr). Assume α > 0 and that
(K1)–(K4) and (N1)–(N3) hold. Additionally, assume that (N4) holds. Problem P admits at least
one weak solution φ = (u, η) on (0, T) according to Definition (1) with the additional regularity,
for any T > 0,

φ = (u, η) ∈ L∞(0, T;HM
β+1,β+1) ∩W1,∞(0, T;HM

β,0), (109)
√

α∂tu ∈ L2(0, T; H1(Ω)) (110)

∂ttu ∈ L∞(0, T; H−1(Ω)), (111)
√

α∂ttu ∈ L2(Ω× (0, T)), (112)

µ ∈ L∞(0, T; H1(Ω)), (113)

η ∈ L∞(0, T; D(Tr)). (114)
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Proof. The proof relies on the Galerkin approximation scheme developed in the proof of
Theorem 1. We seek φn = (un, ηn) of the form (64) satisfying Problem Pn:

(∂ttun, v) +
∫ ∞

0
ν(s)(∂tη

t
n(s), v)ds = 0 (115)

aE,β(∂tun, ξ) + (F′′(un)∂tu, ξ) + α(∂ttun, ξ) = (∂tµn, ξ) (116)

(∂ttη
t
n, ζ)M−1 − (Tr∂tη

t
n, ζ)M−1 = (∂tµn, ζ)M0 (117)

for every t ∈ (0, T), v ∈ Vn, ξ ∈Wn, and ζ ∈ Mn, and which satisfy the initial conditions

un(0) = ũ0n and η0
n = η̃0n, (118)

where we set
ũ0n := −

∫ ∞

0
ν(s)η0n(s)ds, (119)

and
η̃0n := Trη0n + ANµ0n, (120)

and also
µ0n = −α

∫ ∞

0
ν(s)η0n(s)ds + AE,βu0n + F′(u0n). (121)

It is important to note that when φ0 = (u0, η0) satisfies the assumptions of Theorem 2,
then it is guaranteed that (ũ0, η̃0) ∈ HM

1,0. Indeed, relying on the fact that ‖(u0n, η0n)‖HM
β,0
≤

‖(u0, η0)‖HM
β,0

, we easily obtain the estimate ‖(∂tun(0), ∂tη
0
n)‖HM

β,0
≤ Q(‖(u0, η0)‖HM

β+1,β+1
).

Now, for any fixed n ∈ N, we find a unique local maximal solution φn = (un, ηn) ∈
C2([0, Tn];HM

β+1,2). Next, we integrate (115) and (116) with respect to time on (0, t) and
argue as in the proof of Theorem 1 to find the uniform bounds (78)–(84), (88), and (90). In
order to obtain the required higher-order estimates, let us begin by labeling

ũ(t) = ∂tu(t), η̃t = ∂tη
t, µ̃(t) = ∂tµ(t),

where we are also dropping the index n for the sake of simplicity. Then, (ũ, η̃) solves
the system

〈∂tũ, v〉H−1×H1 +
∫ ∞

0
ν(s)〈η̃t(s), v〉H−1×H1 ds = 0, (122)

aE,β(ũ, ξ) + (F′′(u)ũ, ξ) + α(∂tũ, ξ) = 〈µ, ξ〉
W−β,2×Wβ,2

0
, (123)

(∂tη̃
t, ζ)M−1 − (Tr η̃t, ζ)M−1 = (µ̃, ζ)M0 , (124)

for all v ∈ H1(Ω), ξ ∈Wβ,2
0 (Ω), and ζ ∈ M1, with the initial conditions

ũ(0) = ũ0 and η̃0 = η̃0.

Let us now take v = µ̃, ξ = ∂tũ, and ζ = η̃t in (122)–(124), respectively. Summing the
resulting identities together, we obtain, for all t ∈ (0, T),

1
2

d
dt

{
‖ũ‖2

Wβ,2
0

+ ‖η̃t‖2
M−1

}
−
∫ ∞

0
ν′(s)‖η̃t(s)‖2

H−1 ds + α‖∂tũ‖2 = −(F′′(u)ũ, ∂tũ).
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Here, we apply (K5) as well as (N4) with (83) and the embedding Wβ,2
0 (Ω) ↪→ L2(Ω)

to find

1
2

d
dt

{
‖ũ‖2

Wβ,2
0

+ ‖η̃t‖2
M−1

}
+ λ‖η̃t‖2

M−1
+ α‖∂tũ‖2 ≤ Cα‖ũ‖2 +

α

2
‖∂tũ‖

≤ Cα‖ũ‖2
Wβ,2

0
+

α

2
‖∂tũ‖, (125)

where Cα ∼ α−1 is a positive constant. Integrating (125) over (0, t) produces

‖ũ(t)‖2
Wβ,2

0
+ ‖η̃t‖2

M−1
+
∫ t

0

(
2λ‖η̃τ‖2

M−1
+ α‖∂tũ(τ)‖2

)
dτ

≤ ‖ũ(0)‖2
Wβ,2

0
+ ‖η̃0‖2

M−1
+ Cα

∫ t

0
‖ũ(τ)‖2

Wβ,2
0

dτ, (126)

and an application of Grönwall’s (integral) inequality shows, for all t ≥ 0,

‖(ũ(t), η̃t)‖HM
β,0
≤ Q(‖(ũ0, η̃0)‖HM

β,0
) (127)

and
√

α‖∂tũ(t)‖L2(Ω×(0,T)) ≤ Q(‖(ũ0, η̃0)‖HM
β,0
). (128)

Through (119)–(121), we find ‖(ũ0, η̃0)‖HM
β,0

depends on

∫ ∞

0
ν(s)‖η0(s)‖2

Wβ,2
0

ds, ‖ANµ0‖M−1 and ‖Trη0‖M−1 ,

hence the assumption on the initial data is justified.
Furthermore, we now consider (67) and take ζ = AN µ̄(t) where µ̄ = µ− 〈µ〉, so that,

with (79), (82), and (127), we obtain, for all t ≥ 0 and for every ε > 0,

‖∇µ‖2 = (∂tη
t, µ)M0 − (Trηt, µ)M0 (129)

=
∫ ∞

0
ν(s)(∂tη

t(s), µ(t))ds−
∫ ∞

0
ν′(s)(ηt(s), µ(t))ds (130)

≤ Cε

(
‖∂tη

t‖2
M−1
−
∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds
)
+ ε‖∇µ‖2 (131)

≤ Cε

(
1−

∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds
)
+ ε‖∇µ‖2 (132)

≤ Cε + ε‖∇µ‖2 (133)

where Cε ∼ ε−1. Together (89) and (133) show us, for all t ≥ 0,

‖µ(t)‖H1 ≤ C. (134)

At this point we can reason as is in the proof of Theorem 1 to find that there is a solution
φ = (u, η) ∈W1,∞(0, T;HM

β,0) to Problem P satisfying (111) and (112). Additionally, thanks
to (134), the condition (113) holds. It remains to show that

φ = (u, η) ∈ L∞
(

0, T;
[
Wβ+1,2

0 (Ω)× L2
ν(R+; Wβ,2

0 (Ω))
])

.

First, in light of (127), we multiply (16) by AE,βηt in L2(Ω) which yields

‖ηt‖2
L2

ν(R+ ;Wβ,2
0 (Ω))

= −
∫ ∞

0
ν(s)(A

1
2
E,β∂tu(t), A

1
2
E,βηt(s))ds.
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Hence, η ∈ L∞(0, T; L2
ν(R+; Wβ,2

0 (Ω))). Next, we consider the identity (52) whereby
we may now rely on the regularity properties of ∂tu and µ. We take ξ = AN∂tu to produce

1
2

d
dt
|‖u‖|2

Wβ+1,2
0

+ 〈F′′(u)∇u,∇u〉+ α‖∂tu‖2
H1 = 〈∇µ,∇u〉.

After applying (N1) and integrating the resulting differential inequality with respect
to t over (0, t), we obtain for all t ≥ 0,

|‖u(t)‖|2
Wβ+1,2

0
+ 2

∫ ∞

0
α‖∂tu(τ)‖2

H1 dτ ≤ |‖u(0)‖|2
Wβ+1,2

0
+ Q(‖(u0, η0)‖HM

β,0
).

We now deduce

u ∈ L∞(0, T; Wβ+1,2
0 (Ω)) and

√
α∂tu ∈ L2(0, T; H1(Ω)).

This completes the proof.

The following proposition provides continuous dependence and uniqueness for the
solutions constructed above.

Proposition 2. Let the assumptions of Theorem 1 hold. Additionally, assume (N4) holds. Let
T > 0 and let φi = (ui, ηi)

tr, i = 1, 2, be two solutions to Problem P on (0, T) corresponding to the
initial data φ0i = (u0i, η0i)

tr ∈ HM
β,0 = Wβ,2

0 (Ω)×M(0)
−1, such that F(u0i) ∈ L1(Ω), i = 1, 2.

Then, for each α > 0, there is a positive constant Cα ∼ α−1 such that the following estimate holds,
for any t ∈ (0, T),

‖φ1(t)− φ2(t)‖2
HM

β,0
+
∫ t

0

(
α‖∂tu1(τ)− ∂tu2(τ)‖2 + ‖ητ

1 − ητ
2 ‖2

L2
−ν′ (R+ ;H−1)

)
dτ

≤ eCαt‖φ01 − φ02‖2
HM

β,0
. (135)

Proof. To begin, we assume (u0i, η0i), i = 1, 2, satisfy the assumptions of Theorem 2 (recall,
above we are assuming (N4) holds), and we work with the more regular solutions to obtain
(135). For all t ∈ [0, T], we then set

φ(t) := φ1(t)− φ2(t), u(t) := u1(t)− u2(t), ηt := ηt
1 − ηt

2 and µ := µ1 − µ2

where φi(t) = (ui(t), ηt
i ) is a solution corresponding to (u0i, η0i), i = 1, 2. Then, formally,

φ = (u, η) solves the equations for all v ∈ H1(Ω), ξ ∈Wβ,2
0 (Ω) ∩ Lp(Ω), and ζ ∈ M1:

〈∂tu, v〉H−1×H1 +
∫ ∞

0
ν(s)〈ηt(s), v〉H−1×H1 ds = 0, (136)

aE,β(u, ξ) + 〈F′(u1)− F′(u2), ξ〉
W−β,2×Wβ,2

0
+ α〈∂tu, ξ〉

W−β,2×Wβ,2
0

= 〈µ, ξ〉
W−β,2×Wβ,2

0
, (137)

(∂tη
t, ζ)M−1 − (Trηt, ζ)M−1 = (µ, ζ)M0 (138)

with the initial data

u(0) = u01 − u02, η0 = η01 − η02.

In (136), we choose v = µ and in (137), we choose ξ = ∂tu. Owing to Theorem 2, for
each t ∈ [0, T], these elements are in H1(Ω) and Wβ,2

0 (Ω), respectively, then we sum the
results to obtain

(AE,βu, ∂tu) + (F′(u1)− F′(u2), ∂tu) + α‖∂tu‖2 +
∫ ∞

0
ν(s)(µ, ηt(s))ds = 0. (139)
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Further, multiplying (138) by A−1
N ηt inM0, then adding the obtained relation to (139),

we have

1
2

d
dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1
}+ α‖∂tu‖2 −

∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds + (F′(u1)− F′(u2), ∂tu) = 0. (140)

Using Hölder’s inequality, (N4), Young’s inequality, and the embedding L∞(Ω) ↪→
Wβ,2

0 (Ω), we estimate the remaining product as

|(F′(u1)− F′(u2), ∂tu)| ≤ ‖F′(u1)− F′(u2)‖‖∂tu‖
≤ C‖(1 + |u1|ρ−2 + |u2|ρ−2)u‖‖∂tu‖

≤ C(1 + ‖u1‖
ρ−2
L2(ρ−2) + ‖u2‖

ρ−2
L2(ρ−2))‖u‖L∞‖∂tu‖

≤ Qα(‖(u0i, η0i)‖HM
β,0
)|‖u‖|2

Wβ,2
0

+
α

2
‖∂tu‖2, (141)

where the positive monotone increasing function Qα(·) ∼ α−1 (we remind the reader
‖(u0i, η0i)‖HM

β+1,β+1
≤ Q‖(u0i, η0i)‖HM

β,0
, for i = 1, 2 and the bounds on u1 and u2 follow

from (61) and (62)). With (140) and (141), we obtain the following differential inequality
which holds for almost all t ∈ [0, T]

d
dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1
}+ α‖∂tu‖2 + ‖ηt‖2

L2
−ν′ (R+ ;H−1)

≤ Qα(‖(u0i, η0i)‖HM
β,0
)|‖u‖|2

Wβ,2
0

≤ Qα(‖(u0i, η0i)‖HM
β,0
)

(
|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1

)
. (142)

Applying a Grönwall inequality to (142), we obtain, for all t ∈ [0, T],

|‖u(t)‖|2
Wβ,2

0
+ ‖ηt‖2

M−1
+
∫ t

0

(
α‖∂tu(τ)‖2 + ‖ητ‖2

L2
−ν′ (R+ ;H−1)

)
dτ

≤ eCα

(
|‖u(0)‖|2

Wβ,2
0

+ ‖η0‖2
M−1

)
. (143)

This shows the claim (135) holds for the regular solutions. Since none of the above
constants due to the above estimate actually depend on the assumptions of Theorem 2, then
standard approximation arguments can be employed to obtain (135) for the weak solutions
as well.

Remark 9. It is quite important to remark that when N = 3, the uniqueness for the nonviscous
problem (where α = 0) remains an open problem (indeed, see [36,46,47]).

We now formalize the semidynamical system generated by Problem P.

Corollary 2. Let the assumptions of Theorem 1 be satisfied. Additionally, assume (N4) holds. We
can define a strongly continuous semigroup of solution operators S = (S(t))t≥0, for each α > 0
and β ∈ (0, 1),

S(t) : XM
β,0 → X

M
β,0

by setting, for all t ≥ 0,
S(t)φ0 := φ(t)

where φ(t) = (u(t), ηt) is the unique global weak solution to Problem P. Furthermore, as a
consequence of (135), the semigroup S(t) : XM

β,0 → X
M
β,0 is Lipschitz continuous onXM

β,0, uniformly
in t on compact intervals.
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4. Absorbing Sets and Global Attractors

We now give a dissipation estimate for Problem P from which we deduce the existence
of a bounded absorbing set and an important uniform bound on the solutions of Problem P.
The existence of an absorbing set is also used later to show that the semigroup of solution
operators S admits a compact global attractor in the metric space XM

β,0.

Lemma 1. Let φ0 = (u0, η0)
tr ∈ HM

β,0 = Wβ,2
0 (Ω) ×M(0)

−1 for β ∈ (N
4 , 1), N = 1, 2, 3, be

such that F(u0) ∈ L1(Ω). Assume (K1), (K3)–(K5), and (N1)–(N3) hold. Assume φ = (u, η)tr

is a weak solution to Problem P. There are positive constants κ1 and C, each depending on Ω but
independent of t, α, and φ0, such that, for all t ≥ 0, the following holds

‖φ(t)‖2
HM

β,0
+
∫ t+1

t
α‖∂tu(τ)‖2dτ ≤ Q(‖φ0‖HM

β,0
)e−κ1t + C, (144)

for some monotonically increasing function Q independent of t and α.

Proof. The idea of the proof is from [26]. We give a formal calculation that can be justified
by a suitable Faedo–Galerkin approximation based on the proof of Theorem 1 above. To
begin, define the functional, for all t ≥ 0,

Y(t) := E(t) + εα‖u(t)‖2 − 2ε
∫ ∞

0
ν(s)

(
u(t), A−1

N ηt(s)
)

ds, (145)

where ε ∈ (0, λ) will be chosen sufficiently small later. From (16)–(18), we find

− d
dt

∫ ∞

0
ν(s)(u, A−1

N ηt(s))ds

= ‖∂tu‖2
H−1 −

∫ ∞

0
ν(s)(u, A−1

N ∂tη
t(s))ds

= ‖∂tu‖2
H−1 −

∫ ∞

0
ν′(s)(u, A−1

N ηt(s))ds−
∫ ∞

0
ν(s)(u, µ)ds

= ‖∂tu‖2
H−1 −

∫ ∞

0
ν′(s)(u, A−1

N ηt(s))ds− α

2
d
dt
‖u‖2 − |‖u‖|2

Wβ,2
0
− (F′(u), u). (146)

Differentiating Y with respect to t while keeping in mind (73), (74) (without the index
n), and (146), we find

d
dt
Y + ε0Y − 2

∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds = h(t), (147)

for ε0 ∈ (0, ε) where

h(t) =− 2α‖∂tu(t)‖2 + 2ε‖∂tu(t)‖2
H−1 − 2ε

∫ ∞

0
ν′(s)(u(t), A−1

N ηt(s))ds

− 2ε0(F′(u(t))u(t)− F(u(t)), 1)− 2(ε− ε0)(F′(u(t)), u(t)) + ε0‖ηt‖2
M−1

− (2ε− ε0)|‖u(t)‖|2Wβ,2
0

+ ε0εα‖u(t)‖2 − 2ε0ε
∫ ∞

0
ν(s)(u(t), A−1

N ηt(s))ds + ε0C. (148)

From (42) and (43) (with M = 0), it follows that

− 2ε0(F′(u(t))u(t)− F(u(t)), 1)− 2(ε− ε0)(F′(u(t)), u(t))

≤ −(ε− ε0)(|F(u)|, 1) + ε0C|‖u‖|2
Wβ,2

0
. (149)

Next, using assumption (K4) and the embeddings H−1(Ω) ←↩ L2(Ω) ←↩ Wβ,2
0 (Ω),

we find
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−2ε
∫ ∞

0
ν′(s)(u, A−1

N ηt(s))ds = −2ε
∫ ∞

0
ν′(s)(A−1/2

N u, A−1/2
N ηt(s))ds

≤ −ε
∫ ∞

0
ν′(s)

(
1
ν0
|‖u‖|2

Wβ,2
0

+ Cν0‖ηt(s)‖2
H−1

)
ds

≤ ε|‖u‖|2
Wβ,2

0
− εC

∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds, (150)

and, with (K3) and (87) (without the index n),

−2ε0ε
∫ ∞

0
ν(s)(u, A−1

N ηt(s))ds ≤ ε0εC|‖u‖|2
Wβ,2

0
+ ε0ε‖ηt‖2

M−1
. (151)

Together, (148)–(151) make the following estimate

h ≤− 2α‖∂tu‖2 + 2ε‖∂tu‖2
H−1 − (ε− ε0(1 + C + εαC))|‖u‖|2

Wβ,2
0

+ 2ε0‖ηt‖2
M−1

− εC
∫ ∞

0
ν′(s)‖ηt(s)‖2

H−1 ds + C. (152)

Here, we employ assumption (K5) so that from (147) and (152), we are able to fix
ε ∈ (0, λ) and ε0 ∈ (0, ε) sufficiently small to, in turn, find positive constants ε1, ε2, ε3 so
that there holds

d
dt
Y + ε1Y + 2‖ηt‖2

M−1
+ ε2α‖∂tu‖2 + ε3|‖u‖|2Wβ,2

0
≤ C. (153)

It is important to note that C on the right-hand side of (153) is independent of t and φ0.
One can readily show (see (73), (76)–(77)) that there holds, for all t ≥ 0,

C1‖φ(t)‖2
HM

β,0
− C2 ≤ Y(t) ≤ Q(‖φ0‖HM

β,0
), (154)

for some positive constants C1, C2, and for some monotone nondecreasing function Q
independent of t. Finally, by applying a Grönwall type inequality to (153) (see, e.g., [34]
(Lemma 2.5)), then integrating the result and applying (154) yield the claim (144). This
finishes the proof.

We immediately deduce the existence of a bounded absorbing set from Lemma 1.

Proposition 3. Let the assumptions of Lemma 1 hold. Additionally, assume (N4) holds. Then, there
exists R0 > 0, independent of t and φ0, such that S(t) possesses an absorbing ball BM

β,0(R0) ⊂ HM
β,0,

bounded in HM
β,0. Precisely, for any bounded subset B ⊂ HM

β,0, there exists t0 = t0(B) > 0 such
that S(t)B ⊂ BM

β,0(R0), for all t ≥ t0. Moreover, for every R > 0, there exists C∗ = C∗(R) ≥ 0,

such that, for any φ0 ∈ BM
β,0(R),

sup
t≥0
‖S(t)φ0‖HM

β,0
+
∫ ∞

0
‖∂tu(τ)‖2dτ ≤ C∗, (155)

where BM
β,0(R) denotes the ball inHM

β,0 of radius R, centered at 0.

Throughout the remainder of the article, we simply write BM
β,0 in place of BM

β,0(R0) to
denote the bounded absorbing set admitted by the semigroup of solution operators S(t).

For the rest of this section, our aim is to prove the following.

Theorem 3. Let the assumptions of Lemma 1 hold. Additionally, assume (N4) holds. The dynamical
system (XM

β,0,S(t)) (see Corollary 2) possesses a connected global attractor AM
β,0 inHM

β,0. Precisely:
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1 For each t ≥ 0, S(t)AM
β,0 = AM

β,0;

2 For every nonempty bounded subset B ofHM
β,0,

lim
t→∞

distHM
β,0
(S(t)B,AM

β,0) := lim
t→∞

sup
ζ∈B

inf
ξ∈AM

β,0

‖S(t)ζ − ξ‖HM
β,0

= 0.

Additionally:

3 The global attractor is the unique maximal compact invariant subset inHM
β,0 given by

AM
β,0 := ω(BM

β,0) :=
⋂
s≥0

⋃
t≥s
S(t)BM

β,0

HM
β,0 .

Furthermore:

4 The global attractorAM
β,0 is connected and given by the union of the unstable manifolds connecting

the equilibria of S(t).
5 For each ζ0 = (φ0, θ0)

tr ∈ HM
β,0, the set ω(ζ0) is a connected compact invariant set, consisting

of the fixed points of S(t).

With the existence of a bounded absorbing set BM
β,0 (in Lemma 1), the existence of a

global attractor now depends on the precompactness of the semigroup of solution operators
S . To this end we show there is a t∗ > 0 such that the map S(t∗) is a so-called α-contraction
on BM

β,0; that is, there exist a time t∗ > 0, a constant 0 < κ < 1, and a precompact

pseudometric M∗ on BM
β,0 such that, for all φ01, φ02 ∈ BM

β,0,

‖S(t∗)φ01 − S(t∗)φ02‖HM
β,0
≤ κ‖φ01 − φ02‖HM

β,0
+ M∗(φ01, φ02). (156)

Such a contraction is commonly used in connection with phase-field-type equations as
an alternative to establish the precompactness of a semigroup; for some particular recent
results see [16,48,49].

Lemma 2. Under the assumptions of Proposition 2 where φ01, φ02 ∈ BM
β,0, there are positive

constants κ2, C1, and C2α ∼ α−1, each depending on Ω but independent of t and φ01, φ02, such
that, for all t ≥ 0,

‖φ1(t)− φ2(t)‖2
HM

β,0
≤ C1e−κ2t‖φ1(0)− φ2(0)‖2

HM
β,0

+ C2α

∫ t

0

(
‖∇µ1(τ)−∇µ2(τ)‖2 + ‖u1(τ)− u2(τ)‖2

)
dτ. (157)

Proof. The proof is based on the proof of Proposition 2. We begin by recovering (140) by
multiplying (136) and (137) by µ and ∂tu, respectively, in L2(Ω), and multiplying (138) by
A−1

N ηt inM0, then adding the obtained relations together to find

1
2

d
dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1
}+ α‖∂tu‖2 −

∫ ∞

0
v′(s)‖ηt(s)‖2

H−1 ds + (F′(u1)− F′(u2), ∂tu) = 0. (158)
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Recall φ1 = (u1, η1), φ2 = (u2, η2) are the unique weak solutions corresponding to the
initial data φ01 and φ02, respectively; also, u = u1 − u2 and ηt = ηt

1 − ηt
2 formally satisfy

(136) and (137). Applying Assumption (K5) and the estimate based on (N4),

|(F′(u1)− F′(u2), ∂tu)| ≤ ‖F′(u1)− F′(u2)‖‖∂tu‖
≤ C‖(1 + |u1|ρ−2 + |u2|ρ−2)u‖‖∂tu‖

≤ C(1 + ‖u1‖
ρ−2
L2(ρ−2) + ‖u2‖

ρ−2
L2(ρ−2))‖u‖L∞‖∂tu‖

≤ Qα(‖(u0i, η0i)‖HM
β,0
)|‖u‖|2

Wβ,2
0

+
α

2
‖∂tu‖2 (159)

≤ Qα(‖(u0i, η0i)‖HM
β,0
) +

α

2
‖∂tu‖2, (160)

where the positive monotone increasing function Qα(·) ∼ α−1, and we find the differential
inequality

1
2

d
dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1
}+ α

2
‖∂tu‖2 + λ‖ηt‖2

M−1
≤ Qα(‖(u0i, η0i)‖HM

β,0
). (161)

In addition, we now multiply (137) by u in L2(Ω) to obtain

|‖u‖|2
Wβ,2

0
+ (F′(u1)− F′(u2), u) +

α

2
d
dt
‖u‖2 = (µ, u). (162)

Estimating the first product above using (N1) yields

(F′(u1)− F′(u2), u) ≥ −cF‖u‖2. (163)

We also estimate with Young’s inequality

(µ, u) ≤ 1
2
‖µ‖2 +

1
2
‖u‖2. (164)

Combining (161)–(164) yields

1
2

d
dt

{
|‖u‖|2

Wβ,2
0

+ ‖ηt‖2
M−1

+
α

2
‖u‖2

}
+

α

2
‖∂tu‖2 + |‖u‖|2

Wβ,2
0

+ λ‖ηt‖2
M−1

≤ 1
2
‖µ‖2 + Qα(‖(u0i, η0i)‖HM

β,0
)|‖u‖|2

Wβ,2
0

. (165)

Then, adding α
2‖u‖2 to each side of (165), we find

d
dt
N + cN + α‖∂tu‖2 ≤ ‖µ‖2 + Qα(‖(u0i, η0i)‖HM

β,0
), (166)

where c = min{2, 2λ, α} and

N (t) := |‖u(t)‖|2
Wβ,2

0
+ ‖ηt‖2

M−1
+

α

2
‖u(t)‖2. (167)

Applying Grönwall’s inequality to (166) after omitting the term α‖∂tu‖2, we obtain
the claim (157).

Consequently, we deduce the following precompactness result for the semigroup S .
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Proposition 4. Let the assumptions of Lemma 2 hold. There is t∗ > 0 such that the operator S(t∗)
is a strict contraction up to the precompact pseudometric on BM

β,0, in the sense of (156), where

M∗(φ01, φ02) := C2α

(∫ t∗

0

(
‖∇µ1(τ)−∇µ2(τ)‖2 + ‖u1(τ)− u2(τ)‖2

)
dτ

)1/2
, (168)

with Cα ∼ α−1. Furthermore, S is precompact on BM
β,0.

Proof. Naturally, we follow from the conclusion of Lemma 2. Clearly, there is a t∗ > 0 so
that C1e−κ2t∗/2 < 1. Thus, the operator S(t∗) is a strict contraction up to the pseudometric
M∗ defined by (168). The pseudometric M∗ is precompact thanks to the Aubin–Lions
compact embedding (99). This completes the proof.

Proof of Theorem 3. The precompactness of the solution operators S follows via the
method of precompact pseudometrics (see Proposition 4). With the existence of a bounded
absorbing set BM

β,0 in HM
β,0 (Lemma 1), the existence of a global attractor in HM

β,0 is well-
known and can be found in [50,51] for example. Additional characteristics of the attractor
follow thanks to the gradient structure of Problem P (Remark 8). In particular, the first three
claims in the statement of Theorem 3 are a direct result of the existence of an absorbing
set, a Lyapunov functional E , and the fact that the system (XM

β,0,S(t), E) is a gradient. The
fourth property is a direct result of [51] (Theorem VII.4.1), and the fifth follows from [52]
(Theorem 6.3.2). This concludes the proof.
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Appendix A

The following is reported from [1] (Theorem 2.5).

Theorem A1. Let 0 < β < 1. For K ∈ {E, D}, the following assertions hold:

(a) The operator −AK,β generates a submarkovian semigroup (e−AK,β)t≥0 on L2(Ω) and hence
can be extended to a strongly continuous contraction semigroup on Lp(Ω) for every p ∈
[1, ∞), and to a contraction semigroup on L∞(Ω).

(b) The operator AK,β has a compact resolvent, and hence has a discrete spectrum. The spectrum
of AK,β may be ordered as an increasing sequence of real numbers 0 ≤ λ1 < λ2 < · · · <
λk < · · · that diverges to +∞. Moreover, 0 is not an eigenvalue for AK,β, and if φk is an
eigenfunction associated with the eigenvalue λk, then φk ∈ D(AK,β) ∩ L∞(Ω).

(c) Denoting the generator of the semigroup on Lp(Ω) by AK,p so that AK = AK,2, then the
spectrum of AK,p is independent of p for every p ∈ [1, ∞].

(d) There holds D(AK,β) ⊂ L∞(Ω) provided that N < 4β. Let p ∈ (2, ∞) and assume that
N < 4βp/(p− 2). Then, D(AK,β) ⊂ Lp(Ω).
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Remark A1. From [1] (page 1284, after Equation (2.3))), we know the following embedding
is compact

Wβ,2
0 (Ω) ↪→ Lp(Ω) when 1 ≤ p < ? for ? =


2N

N − 2β
if N > 2β

+∞ if N = 2β.
(A1)

Furthermore,

Wβ,2
0 (Ω) ↪→ C0,h(Ω) with h := β− N

2
if N < 2β and 2 < p < ∞.

The following result is the classical Aubin–Lions Lemma, reported here for the reader’s
convenience (see [53], and, e.g., [54] (Lemma 5.51) or [52] (Theorem 3.1.1)).

Lemma A1. Let X, Y, Z be Banach spaces where Z ←↩ Y ←↩ X with continuous injections, the
second being compact. Then, the following embeddings are compact:

W := {χ ∈ L2(0, T; X), ∂tχ ∈ L2(0, T; Z)} ↪→ L2(0, T; Y),

and
W ′ := {χ ∈ L∞(0, T; X), ∂tχ ∈ L2(0, T; Z)} ↪→ C([0, T]; Y).

Here, we recall the notion of α-contraction and provide the main propositions which
guarantee the existence of a global attractor for the semigroup of solution operators S(t).

Definition A1. Let X be a Banach space and α be a measure of compactness in X (see, e.g., [49]
(Definition A.1)). Let B ⊂ X. A continuous map T : B → B is an α-contraction on B, if there
exists a number q ∈ (0, 1) such that for every subset A ⊂ B, α(T(A)) ≤ qα(A).

Proposition A1. Assume that B ⊂ X is closed and bounded, and that T : B → B is an α-
contraction on B. Define the semigroup generated by the iterations of T, i.e., S := (Tn)n∈N. Then,
the set

ω(B) :=
⋂

n≥0

⋃
m≥n

Tm(B)
X

is compact, invariant, and attracts B.

Proposition A2. Assume that S is a continuous semigroup of operators on X admitting a bounded,
positively invariant absorbing set B, and that there exists t∗ > 0 such that the operator S∗ := S(t∗)
is an α-contraction on B. Let

A∗ :=
⋂

n≥0

⋃
m≥n

Sm∗ (B)
X
= ω∗(B)

be the ω-limit set of B under the map S∗, and set

A :=
⋃

0≤t≤t∗

S(t)A∗.

Assume further that for all t ∈ [0, t∗], the map x → S(t)x is Lipschitz continuous from B to B,
with Lipschitz constant L(t), L : [0, t∗]→ (0,+∞) being a bounded function. Then, A = ω(B),
and this set is the global attractor of S in B.

Theorems 3.1 and 3.2 are motivated by [55] (Sections II.2 and III.2), but appear in the
above form in [49] (Appendix A) and [56] (Sections II.7). We also rely on the following.
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Definition A2. A pseudometric d in X is precompact in X if every bounded sequence has a
subsequence which is a Cauchy sequence relative to d.

Proposition A3. Let B ⊂ X be bounded, let d be a precompact pseudometric in X, and let
T : B→ B be a continuous map. Suppose T satisfies the estimate

‖Tx− Ty‖X ≤ q‖x− y‖X + d(x, y)

for all x, y ∈ B and some q ∈ (0, 1) independent of x and y. Then, T is an α-contraction.
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