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W.; Kongson, J. Hermite–Hadamard,

Fejér and Pachpatte-Type Integral

Inequalities for Center-Radius Order

Interval-Valued Preinvex Functions.

Fractal Fract. 2022, 6, 506. https://

doi.org/10.3390/fractalfract6090506

Academic Editors: Carlo Cattani

and Tassos C. Bountis

Received: 15 July 2022

Accepted: 5 September 2022

Published: 10 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Hermite–Hadamard, Fejér and Pachpatte-Type Integral
Inequalities for Center-Radius Order Interval-Valued
Preinvex Functions

Soubhagya Kumar Sahoo 1,2 , Muhammad Amer Latif 3 , Omar Mutab Alsalami 4 , Savin Treanţă 5,6,7 ,
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Abstract: The objective of this manuscript is to establish a link between the concept of inequalities
and Center-Radius order functions, which are intriguing due to their properties and widespread use.
We introduce the notion of the CR (Center-Radius)-order interval-valued preinvex function with
the help of a total order relation between two intervals. Furthermore, we discuss some properties
of this new class of preinvexity and show that the new concept unifies several known concepts in
the literature and also gives rise to some new definitions. By applying these new definitions, we
have amassed many classical and novel special cases that serve as applications of the key findings
of the manuscript. The computations of cr-order intervals depend upon the following concept

B =

〈
Bc,Br

〉
=

〈
B+B

2 , B−B
2

〉
. Then, for the first time, inequalities such as Hermite–Hadamard,

Pachpatte, and Fejér type are established for CR-order in association with the concept of interval-
valued preinvexity. Some numerical examples are given to validate the main results. The results
confirm that this new concept is very useful in connection with various inequalities. A fractional
version of the Hermite–Hadamard inequality is also established to show how the presented results
can be connected to fractional calculus in future developments. Our presented results will moti-
vate further research on inequalities for fractional interval-valued functions, fuzzy interval-valued
functions, and their associated optimization problems.

Keywords: total-order relation; CR-preinvexity; center-radius (CR)-order; interval-valued functions;
Hermite–Hadamard inequality; Fejér inequality

MSC: 26A51; 26A33; 26D10

1. Introduction

Interval analysis is a subset of set-valued analysis, which is the study of sets in the
context of mathematics and general topology. A historical example of interval enclosure
is Archimede’s method, which included calculating the circumference of a circle. The
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interval uncertainty that is present in many mathematical and computational models of
deterministic real-world processes was addressed by this idea. This is a method that studies
interval variables instead of point variables and expresses computation results as intervals,
thereby eliminating errors that lead to erroneous conclusions. One of the initial objectives
of the interval-valued analysis was to consider the error estimations of finite state machines’
numerical solutions. Moore [1] is credited with being the first user of intervals in computer
mathematics, having published the first book on interval analysis in 1966. Following the
publication of this book, several scientists began to research the theory and applications of
interval arithmetic.

There is no doubt that interval analysis is extremely important in both pure and
applied sciences. However, the interval analysis method, which has been used in mathe-
matical models in engineering for over fifty years as one of the approaches to solve interval
uncertain structural systems, is a critical cornerstone. It is worth noting that applications in
robotics [2], scientific computations [3], signal processing [4], optimization [5], automatic
error analysis [6], computer graphics [7], and neural network [8] have all been consid-
ered. We refer interested readers to [9–16] and the bibliographies cited in them for recent
developments in the field of interval-valued mappings.

A real valued function D : K ⊆ R→ R (set of real numbers) is said to be convex if the
following inequality satisfies

D(tp+ (1− t)r) ≤ tD(p) + (1− t)D(r), (1)

for all p, r ∈ K, t ∈ [0, 1].
The generalized convexity of mappings on the other hand is a powerful tool for dealing

with a wide range of challenges in nonlinear analysis and applied analysis, including
numerous problems in mathematical physics. Several generalizations of convex functions
have recently been studied rigorously. The concept of integral inequalities is an interesting
topic of mathematical analytic research. The concept of convexity is well-known in the
theory of inequality. Inequalities and various types of extended convex mappings have
also been considered important in the study of differential and integral equations. Their
significant influence is visible in electrical networks, symmetry analysis, probability theory,
operations research, finance, decision making, numerical analysis, and equilibrium. The
use of several fundamental integral inequalities as a method to encourage the subjective
features of convexity is studied.

Let D : K ⊆ R −→ R be a convex function with p < r and p, r ∈ K. Then, the
Hermite–Hadamard inequality is expressed as follows: (see [17]):

D

(
p+ r

2

)
≤ 1

r− p

∫ r

p
D(x)dx ≤ D(p) +D(r)

2
. (2)

Numerous mathematicians have recently generalized and extended the standard
Hermite–Hadamard inequality under the premise of some interesting new definitions as a
generalization of a convex function. On the other hand, many scholars have contributed to
the development of inequalities and properties associated with generalized convexity in a
variety of directions, as evidenced by the published publications [18–20] and the references
cited therein. As a very practical technique, fractional calculus is an essential cornerstone
in both applied sciences and mathematics. Academics have recommended that many
scholars take into account the applications of fractional calculus to solve many real-life
problems. Several researchers investigated the Hermite–Hadamard-type integral inequali-
ties [21], Hermite–Hadamard–Mercer inequalities [22], Simpson-type inequality [23], and
Ostrowski inequality [24] using the Riemann–Liouville fractional integral operators. In [25],
the Simpson–Mercer integral inequality was studied via the Atangana–Baleanu fractional
operator, in [26], the Hermite–Hadamard inequality, and the Fejér-type integral inequal-
ities were presented via Katugampola-type fractional integral operators. Additionally,
the Hermite–Hadamard inequality and its Mercer counterpart were explored via Caputo–
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Fabrizio fractional integrals [27,28]. The research mentioned above demonstrates the close
connection that exists between integral inequalities and fractional integral operators. In the
past few years, several scientists have connected integral inequalities with interval-valued
functions (IVFs), yielding numerous important results. Costa [29] proposed the Opial-type
inequalities, Chalco-Cano [30] used the generalized Hukuhara derivative to investigate
Ostrowski-type inequalities, and Roman-Flores [31] determined the Minkowski type in-
equalities and Beckenbach’s type inequalities. In the year 2018, Zhao et al. [32] defined
the interval-valued h-convex function and developed the generalization of the H−H in-
equality in the context of interval-valued analysis. An et al. [33] introduced the interval
(h1, h2)-convex function. Recently, Zhao et al. [34] enhanced this notion by introducing
interval-valued coordinated convex functions and establishing corresponding H−H type
inequalities. It was further used to reinforce the H−H and Fejer-type inequalities for
n-polynomial convex interval-valued function [35] and preinvex functions [36,37]. The
concept of interval-valued preinvex functions was recently expanded to interval-valued
coordinated preinvex functions by Lai et al. [38].

However, these results are predicated on the inclusion and interval Lower-Upper (LU)
or Left-Right (LR) order relations, which are partial orders. As a result, determining how to
employ a total order relation to investigate the convexity and inequality of interval-valued
functions is a critical issue. Similarly, we will start to deal with the total interval order
relation i.e., CR-order as proposed by Bhunia et al. [39] throughout this study. The primary
goal of this research is to investigate the CR-h-preinvexity of interval-valued functions in
terms of CR-order. As a result, we begin by introducing the new notion of interval-valued
CR-h-preinvex functions and studying their fundamental features. The definition and basic
features of CR-h-preinvex functions are used in the following chapters to construct several
inequalities for interval-valued functions.

The advantage of the present study is that we introduce a new notion of interval-
valued preinvexity concerning a total order relation, i.e., Center-Radius order, which is
very new in the literature. This article opens a new direction in the field of inequalities
as to how we can incorporate the concepts of CR-interval valued function with integral
inequalities such as Hermite–Hadamard, Pachpatte, and Fejér type. It is here to note that
the concept of CR-order interval-valued analysis is different from the classical interval-
valued analysis. Here, we calculate the intervals using the concept of Center and Radius
given as Bc = B+B

2 and Br = B−B
2 , respectively, where B and B are endpoints of an

interval B.
Motivated by the concepts of interval valued analysis as presented in Section 2, the

above literature about integral inequalities and the concepts of CR-order and CR-convex
function presented by Bhunia and Samanta [39], Rahman et al. [40], Shi et al. [41] and
Liu et al. [42], we define a new notion of CR − h-preinvex function and present related
inequalities using this.

The manuscript is structured as follows: The prerequisite and relevant facts regarding
the related inequalities and the interval-valued analysis are discussed in Section 2. Next,
we introduce a new notion of preinvex function involving Center-Radius order, i.e., CR− h-
preinvex function and discuss its basic properties in Section 3. In Section 4, we derive
some new versions of the Hermite–Hadamard and Pachpatte and Fejér-type inequalities
for CR− h-preinvex function and for the product of two CR− h-preinvex functions. Our
plans and recommendations for researchers are presented in Section 5. A brief conclusion
and potential scopes for further research, which are linked to the results presented in this
paper, are explored in Section 6.

2. Preliminaries

The Center and Radius (CR) preinvex interval-valued functions, the theory of prein-
vexity, and interval-valued integration, all of which are used extensively throughout the
work, are presented in this section.
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Hanson defined the notion of invex functions concerning the bifunction ξ(·, ·) in math-
ematical programming in 1981. Soon after Hanson’s work [43] was published, Ben-Israel
and Mond [44] looked into invex sets and preinvex functions. Preinvexity encompasses
a broader term than convexity. Weir and Mond [45] used the concept of invex sets to
investigate the theory of preinvexity in 1988.

Definition 1. Let p ∈ K ⊂ Rn; then, K is said to be invex at p with respect to ξ : K×K→ Rn, if
for each r ∈ K,

p+ tξ(r, p) ∈ K, t ∈ [0, 1].

Definition 2 (see [45]). Let K 6= ∅ ∈ R be an invex set with respect to ξ : K×K 6= ∅ → R.
Then, the function D : K→ R is said to be preinvex with respect to ξ if

D
(
p+ tξ(r, p)

)
5 tD(r) + (1− t) D(p), (∀p, r ∈ K; t ∈ [0, 1]).

Definition 3 (see [46]). Let K 6= ∅ ∈ R be an invex set with respect to ξ : K×K 6= ∅→ R and
h 6= 0. Then, the function D : K→ R is said to be h-preinvex with respect to ξ if

D
(
p+ tξ(r, p)

)
5 h(t)D(r) + h(1− t) D(p), (∀p, r ∈ K; t ∈ [0, 1]).

Condition C. (see [47]). Let K ⊂ Rn be an open invex subset with respect to ξ : K×K→ R.
For any p, r ∈ K and t ∈ [0, 1],

ξ(r, r+ t ξ(p, r)) = −t ξ(p, r) (3)

and

ξ(p, r+ t ξ(p, r)) = (1− t) ξ(p, r). (4)

In fact, for any p, r ∈ K and t1, t2 ∈ [0, 1], we find from Condition C that

ξ(r+ t2 ξ(p, r), r+ t1 ξ(p, r)) = (t2 − t1)ξ(p, r).

Basic Properties of Interval-Valued Functions

Here, in this subsection, we present some basic arithmetic about interval analysis,
which will be very helpful throughout the paper.

[B] = [B,B] (x ∈ R, B 5 x 5 B; B,B ∈ R)

[C] = [C,C] (x ∈ R, C 5 x 5 C; C,C ∈ R)

[B] + [C] = [B,B] + [C,C] = [B+ C,B+ C]

γB = γ[B,B] =



[
γB, γB

]
(γ > 0)

{0} (γ = 0)[
γB, γB

]
(γ < 0),

where γ ∈ R.
Let RI ,R+

I and R−I be the set of all closed intervals of R, the set of all positive closed
intervals of R and the set of all negative closed intervals of R, respectively. We now discuss
some algebraic properties of interval arithmetic.
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Let B = [B, B̄] ∈ RI , then Bc =
B+B

2 and Br =
B−B

2 are the center and radius of
interval B, respectively. The center-radius form of interval B can be represented as:

B =

〈
Bc,Br

〉
=

〈
B+B

2
,
B−B

2

〉
.

Now, we present the order relation of center and radius of the interval as follows:

Definition 4. The center–radius order relation for B = [B,B] = 〈Bc,Br〉, C = [C,C] =
〈Cc,Cr〉 ∈ RI defined as:

B �cr C⇐⇒
{

Bc < Cc, i f Bc 6= Cc
Br ≤ Cr, i f Bc = Cc

NOTE: For any two intervals B,C ∈ RI , we have either B �cr C or C �cr B.
Here, in this subsection, we present the Riemann integral operator for interval-valued

functions.

Definition 5 (see [48]). Let D : [p, r] be an interval-valued function such that D = [D,D]. Then,
D is Riemann integrable on [p, r] if and only if D and D are Riemann integrable on [p, r], that is,

(IR)
∫ r

p
D(z)dz =

[
(R)

∫ r

p
D(z)dz, (R)

∫ r

p
D(z)dz

]
.

The set of all Riemann integrable interval-valued functions on [p, r] is represented by IR([p,r]).

Shi et al. [41] proved that the integral is order preserving with respect to the CR-order
relations.

Theorem 1. Let D,G : [p, r] be interval-valued functions given by D = [D,D] and G = [G,G]. If
D(z) �CR G(z) for all u ∈ [p, r], then∫ r

p
D(z)dz �CR

∫ r

p
G(z)dz.

Now, we will give an example to validate the above theorem. Figures 1–3 show the
graphical representations of theorem 1.

Example 1. Let D = [z, 2z] and G = [z2, z2 + 2]. Then, for z ∈ [0, 1]

DC =
3z
2

,DR =
z
2

,GC = z2 + 1 and GR = 1.

So, by using the Definition 4, we have D(z) �CR G(z), z ∈ [0, 1].
Since, ∫ 1

0
[z, 2z]dz =

[
1
2

, 1
]

and ∫ 1

0
[z2, z2 + 2]dz =

[
1
3

,
7
3

]
.

Now, again using the Definition 4, we have∫ 1

0
D(z)dz �CR

∫ 1

0
G(z)dz.
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Figure 1. The graph shows the validity of CR-order relations.

0.2 0.4 0.6 0.8 1.0
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2.0

2.5

values

Figure 2. The graph shows the validity of Theorem 1.

0.2 0.4 0.6 0.8 1.0
z

0.5

1.0

1.5

2.0

values

Figure 3. The graph of DC = 3z
2 ,DR = z

2 ,GC = z2 + 1 and GR = 1.

3. The Concept of Interval Valued CR-h-Preinvex function

Definition 6. Let D : [p, r] be non-negative interval-valued functions given by D = [D,D] and
h : [0, 1]→ R+ be a non-negative function. Then, the function D on the invex set K is said to be
interval valued CR− h-preinvex with respect to ξ if

D
(
p+ tξ(r, p)

)
�CR h(t)D(r) + h(1− t) D(p) (∀p, r ∈ K; t ∈ [0, 1]).

Remark 1. If we put h(t) = t, then the Definition 6 reduces to interval valued CR-preinvex
functions.

D
(
p+ tξ(r, p)

)
�CR tD(r) + (1− t) D(p).

Remark 2. If we put h(t) = ts, then the Definition 6 reduces to interval valued CR-s-preinvex
functions.

D
(
p+ tξ(r, p)

)
�CR tsD(r) + (1− t)s D(p).
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Remark 3. If we put h(t) = t(1− t), then the Definition 6 reduces to interval valued CR-tgs-
preinvex functions.

D
(
p+ tξ(r, p)

)
�CR t(1− t)[D(r) +D(p)].

Remark 4. If we put h(t) = 1
t , then the Definition 6 reduces to interval valued CR-Goudunova–

Levin-preinvex functions.

D
(
p+ tξ(r, p)

)
�CR

D(r)

t
+

D(p)

1− t
.

Remark 5. If we choose ξ(r, p) = r− p, then the Definition 6 reduces to interval valued CR-h-
convex functions.

D
(
tr+ (1− t)p

)
�CR h(t)D(r) + h(1− t) D(p).

Remark 6. If we choose h(t) = t, then the Remark 5 reduces to interval valued CR-convex
functions.

D
(
tr+ (1− t)p

)
�CR tD(r) + (1− t) D(p).

Remark 7. If we choose D = D, then Definition 6 reduces to h-preinvex functions.

D
(
p+ tξ(r, p)

)
≤ h(t)D(r) + h(1− t) D(p).

If we choose D = D, and h(t) = t, then the Definition 6 reduces to preinvex functions.

D
(
p+ tξ(r, p)

)
≤ tD(r) + (1− t) D(p).

If we choose D = D, then Remarks 2–4 reduces to s-preinvex, tgs-preinvex, and Goudunova–
Levin-preinvex functions, respectively. In addition, if we choose ξ(r, p) = (r− p), then we have
many convexities, i.e., h-convex function, convex function, s-convex function, tgs-convex function,
Goudunova–Levin convex functions, etc.

The definitions of our manuscript can be extended to fractal sets, and hence, these re-
sults can also be established for functions defined on fractal sets. From the above definition
and remarks, we can conclude that the presented new notion of CR − h-preinvex func-
tions gives rise to some new notions of CR-preinvexities such as CR-h-preinvex function,
CR-s-preinvex function, CR-preinvex functions and CR-convexities such as CR-h-convex
function, CR-s-convex function, and CR-convex function. It also recovers many existing
concepts such as preinvex function, h-preinvex function, s-preinvex function, tgs-preinvex
function, Goudunova–Levin-preinvex functions, h-convex function, convex function, s-
convex function, tgs-convex function, Goudunova–Levin convex functions, and many
more in the literature. This proves the novelty and importance of our results. We believe
these new concepts and results of this paper will guide some innovative research ideas for
scholars/researchers working in the field of inequalities.

Proposition 1. Let D : [p, r] → RI be interval-valued functions given by D = [D,D] =
〈DC ,DR〉. If DC and DR are h-preinvex functions, then D is an interval valued CR− h-preinvex
function.

Proof. Since DC and DR are h-preinvex function, then for each t ∈ [0, 1], we have

DC
(
p+ tξ(r, p)

)
≤ h(t)DC(r) + h(1− t) DC(p)

and
DR

(
p+ tξ(r, p)

)
≤ h(t)DR(r) + h(1− t) DR(p).
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If DC
(
p+ tξ(r, p)

)
6= h(t)DC(r) + h(1− t) DC(p), then

DC
(
p+ tξ(r, p)

)
< h(t)DC(r) + h(1− t) DC(p).

This implies

DC
(
p+ tξ(r, p)

)
�CR h(t)DC(r) + h(1− t) DC(p).

Otherwise, DR
(
p+ tξ(r, p)

)
≤ h(t)DR(r) + h(1− t) DR(p) implies

DR
(
p+ tξ(r, p)

)
�CR h(t)DR(r) + h(1− t) DR(p).

Now, from Definition 4, we can clearly see that

D
(
p+ tξ(r, p)

)
�CR h(t)D(r) + h(1− t) D(p).

This proves that if DC and DR are h-preinvex functions, then D is interval valued
CR− h-preinvex functions.

4. Application of CR-Preinvexity to Inequalities

In this section, we will discuss the application of the new concept i.e., CR− h-preinvex
functions to present some Hermite–Hadamard, Pachppate and Fejér-type inequalities.

Theorem 2. Suppose that D : [p, p+ ξ(r, p)] −→ R is an interval-valued function which is
given by

D(z) =
[
D(z), D(z)

]
,

for all z ∈ [p, r]. If D : [p, p+ ξ(r, p)] −→ R is CR− h-preinvex function and satisfies Condition
C. Then, for h( 1

2 ) > 0, the following inequalities hold true:

1

2h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�CR

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz �CR [D(p) +D(r)]

∫ 1

0
h(t)dt.

Proof. From the definition of CR− h-preinvex functions and employing the Condition C,
we have

D

(
x +

1
2

ξ(y, x)
)
�CR h

(
1
2

)
[D(x) +D(y)].

Choosing x = p+ tξ(r, p) and y = p+ (1− t)ξ(r, p). It is seen that

D

(
p+ tξ(r, p) +

1
2

ξ(p+ (1− t)ξ(r, p), p+ tξ(r, p))
)

�CR h

(
1
2

)
[D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))].

This implies

1

h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�CR [D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))]. (5)
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Integrating both sides of the above inequality (17) over the closed inteval [0, 1],
we obtain

1

h
(

1
2

)D(p+ 1
2

ξ(r, p)
)

�CR
[∫ 1

0
D(p+ tξ(r, p))dt+

∫ 1

0
D(p+ (1− t)ξ(r, p))dt

]
=

[ ∫ 1

0
(D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)))dt,∫ 1

0

(
D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))

)
dt
]

=

[
2

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz,

2
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz

]
=

2
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz.

From the above developments, we can conclude that

1

2h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�CR

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz. (6)

This completes the proof of the first inequality. Next, to prove the second inequality,
from the definition of CR− h-preinvex functions, we have

D
(
p+ tξ(r, p)

)
�CR h(t)D(r) + h(1− t) D(p).

Integrating the above inequality over [0, 1], we have∫ 1

0
D
(
p+ tξ(r, p)

)
dt �CR D(r)

∫ 1

0
h(t)dt+D(p)

∫ 1

0
h(1− t)dt.

This implies,

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz �CR [D(p) +D(r)]

∫ 1

0
[h(t) + h(1− t)]dt

= [D(p) +D(r)]
∫ 1

0
h(t)dt. (7)

Consequently, from Equations (18) and (19), we conclude the desired result, i.e.,

1

2h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�CR

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz �CR [D(p) +D(r)]

∫ 1

0
h(t)dt.

This completes the proof.

Remark 8. If D = D, then it is clearly see that Theorem 2 yields the following result for the
h-preinvex function.

1

2h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
≤ 1

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz ≤ [D(p) +D(r)]

∫ 1

0
h(t)dt.



Fractal Fract. 2022, 6, 506 10 of 24

Remark 9. When we choose ξ(r, p) = r − p, Theorem 2 yields results for CR − h-convex
functions, i.e.,

1

2h
(

1
2

)D(p+ r

2

)
�CR

1
r− p

∫ r

p
D(z)dz �CR [D(p) +D(r)]

∫ 1

0
h(t)dt.

Remark 10. If we choose h(t) = t in Theorem 2, we have new results for CR-preinvex functions

D

(
p+

1
2

ξ(r, p)
)
�CR

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz �CR

D(p) +D(r)

2
.

Remark 11. If we choose h(t) = t and ξ(r, p) = r− p in Theorem 2, we have new results for
CR-convex functions

D

(
p+ r

2

)
�CR

1
r− p

∫ r

p
D(z)dz �CR

D(p) +D(r)

2
.

Example 2. Let D(z) = [2− z
1
2 , 3(2− z

1
2 )], ξ(r, p) = r− p, p = 0 and r = 2. Then, for

h(t) = t, we have

1

2h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
≈ [1, 3].

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)dz ≈ [1.06, 3.17].

[D(p) +D(r)]
∫ 1

0
h(t)dt ≈ [1.29, 3.88].

Thus,

[1, 3] �CR [1.06, 3.17] �CR [1.29, 3.88].

This eventually validates the accuracy of Theorem 2.

Theorem 3. Suppose that D,G : [p, p+ ξ(r, p)] −→ R is an interval-valued function given by

D(z) =
[
D(z), D(z)

]
and G(z) =

[
G(z), G(z)

]
for all z ∈ [p, r] and D,G ∈ IR([p,r]). If D : [p, p+ ξ(r, p)] −→ R is a CR − h1-preinvex
function and G : [p, p+ ξ(r, p)] −→ R is a CR − h2-preinvex function. Then, the following
inequalities hold true:

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

�CRM(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt, (8)

where
M(p, r) = D(p)G(p) +D(r)G(r)

and
N (p, r) = D(p)G(r) +D(r)G(p).

Proof. Since D is interval-valued CR − h1-preinvex functions and G is interval-valued
CR− h2-preinvex functions, we have

D
(
p+ tξ(r, p)

)
�CR h1(t)D(r) + h1(1− t) D(p)
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and
G
(
p+ tξ(r, p)

)
�CR h2(t)G(r) + h2(1− t) G(p).

Multiplying both the above inequalities, it is readily seen that

D
(
p+ tξ(r, p)

)
· G
(
p+ tξ(r, p)

)
�CR [h1(t)D(r) + h1(1− t) D(p)] · [h2(t)G(r) + h2(1− t) G(p)]

= h1(t)h2(t)[D(r)G(r)] + h1(1− t)h2(1− t)[D(p)G(p)]

+ h1(t)h2(1− t)[D(r)G(p)] + h1(1− t)h2(t)[D(p)G(r)]. (9)

Integrating both sides of the above inequality (9) over the closed interval [0, 1], we
find that ∫ 1

0
D
(
p+ tξ(r, p)

)
· G
(
p+ tξ(r, p)

)
dt

�CR [D(r)G(r)]
∫ 1

0
h1(t)h2(t)dt+ [D(p)G(p)]

∫ 1

0
h1(1− t)h2(1− t)dt

+ [D(r)G(p)]
∫ 1

0
h1(t)h2(1− t)dt+ [D(p)G(r)]

∫ 1

0
h1(1− t)h2(t)dt.

By using Definition 5, we thus obtain

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

�CR [D(p)G(p) +D(r)G(r)]
∫ 1

0
h1(1− t)h2(1− t)dt

+ [D(p)G(r) +D(r)G(p)]
∫ 1

0
h1(1− t)h2(t)dt

=M(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt.

Finally, we are led to the desired result as asserted by Theorem 3.

Remark 12. If D = D, then it is clearly seen that Theorem 3 yields the result for the h-preinvex
function.

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

≤M(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt.

Remark 13. When we choose ξ(r, p) = r− p, Theorem 3 yields a result for the CR− h-convex
function:

1
r− p

∫ r

p
D(z)G(z)dz

�CRM(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt.

Remark 14. When we choose h1(t) = h2(t) = t, Theorem 3 yields a result for the CR-preinvex
function:

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz �CR

M(p, r)
3

+
N (p, r)

6
.
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Remark 15. When we choose h1(t) = h2(t) = t and ξ(r, p) = r− p, then Theorem 3 yields the
following result for the CR-convex function:

1
r− p

∫ r

p
D(z)G(z)dz �CR

M(p, r)
3

+
N (p, r)

6
.

Example 3. Let D(z) = [2− z
1
2 , 3(2− z

1
2 )], G(z) = [ez − z, ez + z], ξ(r, p) = r− p, p = 0

and r = 2. Then, for h1(t) = h2(t) = t, we have

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz ≈

[
3.935

2
,

22.228
2

]
.

M(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt ≈

[
27.364

6
,

97.404
6

]
.

Thus, it can be easily seen that[
3.935

2
,

22.228
2

]
�CR

[
27.364

6
,

97.404
6

]
.

This eventually validates the accuracy of Theorem 3.

Theorem 4. Suppose that D,G : [p, p+ ξ(r, p)] −→ R is an interval-valued function given by

D(z) =
[
D(z), D(z)

]
and G(z) =

[
G(z), G(z)

]
for all z ∈ [p, r] and D,G ∈ IR([p,r]). If D : [p, p+ ξ(r, p)] −→ R is a CR − h1-preinvex
function and G : [p, p+ ξ(r, p)] −→ R is CR − h2-is a preinvex function. Then, the following
inequalities hold true:

1

2h1

(
1
2

)
h2

(
1
2

)D(p+ 1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)

�CR
1

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

+M(p, r)
∫ 1

0
h1(1− t)h2(t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(1− t)dt,

whereM(p, r) and N (p, r) are the same as defined in earlier theorems.

Proof. From the definition of CR− h-preinvex functions and employing the condition C,
we have

1

h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�CR [D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))].

Since D and G are interval-valued CR− h1-preinvex function and CR− h2-preinvex
functions, respectively, then using Condition C, we have

D

(
p+

1
2

ξ(r, p)
)
= D

(
p+ tξ(r, p) +

1
2

ξ(p+ (1− t)ξ(r, p), p+ tξ(r, p))
)

�CR h1

(
1
2

)
[D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))]. (10)



Fractal Fract. 2022, 6, 506 13 of 24

Similarly,

G

(
p+

1
2

ξ(r, p)
)
= G

(
p+ tξ(r, p) +

1
2

ξ(p+ (1− t)ξ(r, p), p+ tξ(r, p))
)

�CR h2

(
1
2

)
[G(p+ tξ(r, p)) + G(p+ (1− t)ξ(r, p))]. (11)

Now, multiplying the Equations (10) and (11) side by side, we obtain

D

(
p+

1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)

�CR h1

(
1
2

)
[D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))] · h2

(
1
2

)
[G(p+ tξ(r, p)) + G(p+ (1− t)ξ(r, p))]

= h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

+D(p+ tξ(r, p)) · G(p+ (1− t)ξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ tξ(r, p)),

D(p+ tξ(r, p)) · G(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

+D(p+ tξ(r, p)) · G(p+ (1− t)ξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ tξ(r, p))
]

= h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ tξ(r, p)),D(p+ tξ(r, p)) · G(p+ tξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p)),D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ (1− t)ξ(r, p)),D(p+ tξ(r, p)) · G(p+ (1− t)ξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
D(p+ (1− t)ξ(r, p)) · G(p+ tξ(r, p)),D(p+ (1− t)ξ(r, p)) · G(p+ tξ(r, p))

]
= h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ (1− t)ξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ tξ(r, p))

]
�CR h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
(h1(t)D(r) + h1(1− t) D(p)) · (h2(t)G(p) + h2(1− t) G(r))

+ (h1(t)D(p) + h1(1− t) D(r)) · h2(t)G(r) + h2(1− t) G(p)

]
= h1

(
1
2

)
h2

(
1
2

)[
D(p+ tξ(r, p)) · G(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)) · G(p+ (1− t)ξ(r, p))

]
+ h1

(
1
2

)
h2

(
1
2

)[
M(p, r)[h1(1− t)h2(t) + h1(t)h2(1− t)] +N (p, r)[h1(t)h2(t) + h1(1− t)h2(1− t)]

]
.
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Upon integration over [0, 1], we have

D

(
p+

1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)

�CR 2h1

(
1
2

)
h2

(
1
2

){
1

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

+M(p, r)
∫ 1

0
h1(1− t)h2(t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(1− t)dt

}
.

This readily gives,

1

2h1

(
1
2

)
h2

(
1
2

)D(p+ 1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)
�CR

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

+M(p, r)
∫ 1

0
h1(1− t)h2(t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(1− t)dt.

This completes the proof of the desired result.

Remark 16. If D = D, then it is clearly seen that Theorem 4 yields a result for the h-preinvex
function.

1

2h1

(
1
2

)
h2

(
1
2

)D(p+ 1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)

≤ 1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz +M(p, r)

∫ 1

0
h1(1− t)h2(t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(1− t)dt.

Remark 17. When we choose ξ(r, p) = r− p, Theorem 4 yields a result for the CR− h-convex
function:

1

2h1

(
1
2

)
h2

(
1
2

)D(p+ r

2

)
· G
(
p+ r

2

)

�CR
1

r− p

∫ r

p
D(z)G(z)dz +M(p, r)

∫ 1

0
h1(1− t)h2(t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(1− t)dt.

Remark 18. If h1(t) = h2(t) = t, then it is clearly seen that Theorem 4 yields a result for the
�CR-preinvex function.

2D
(
p+

1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)

�CR
1

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz +

M(p, r)
6

+
N (p, r)

3
.

Remark 19. If h1(t) = h2(t) = t and ξ(r, p) = r− p, then it is clearly seen that, Theorem 4 yields
result for �CR-convex function.

2D
(
p+ r

2

)
· G
(
p+ r

2

)
�CR

1
r− p

∫ r

p
D(z)G(z)dz +

M(p, r)
6

+
N (p, r)

3
.
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Example 4. Let D(z) = [2− z
1
2 , 3(2− z

1
2 )],G(z) = [ez − z, ez + z], ξ(r, p) = r− p, p = 0 and

r = 2. Then, for h1(t) = h2(t) = t, we have

1

2h1

(
1
2

)
h2

(
1
2

)D(p+ 1
2

ξ(r, p)
)
· G
(
p+

1
2

ξ(r, p)
)
≈ [3.44, 22.31].

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)G(z)dz

+M(p, r)
∫ 1

0
h1(1− t)h2(1− t)dt+N (p, r)

∫ 1

0
h1(1− t)h2(t)dt ≈ [7.0855, 33.7531].

Thus, it can be easily seen that

[3.44, 22.31] �CR [7.0855, 33.7531].

This eventually validates the accuracy of Theorem 4.

Theorem 5. (Second Hermite–Hadamard-Fejér inequality for CR− h-preinvex function).
Suppose that D : [p, p+ ξ(r, p)] −→ R is an interval-valued function which is given by

D(z) =
[
D(z), D(z)

]
,

for all z ∈ [p, r]. If D : [p, p+ ξ(r, p)] −→ R is a CR − h-preinvex function and P : [p, p+
ξ(r, p)] −→ R, P > 0 is symmetric with respect to p+ 1

2 ξ(r, p). Then, the following inequalities
hold true:

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz �CR [D(p) +D(r)]

∫ 1

0
h(t)P(p+ tξ(r, p))dt.

Proof. Since D is interval-valued CR − h-preinvex functions and P is symmetric with
respect to p+ 1

2 ξ(r, p), we have

D
(
p+ tξ(r, p)

)
· P
(
p+ tξ(r, p)

)
�CR [h(t)D(r) + h(1− t) D(p)] · P

(
p+ tξ(r, p)

)
and

D
(
p+ (1− t)ξ(r, p)

)
· P
(
p+ (1− t)ξ(r, p)

)
�CR [h(t)D(p) + h(1− t) D(r)] · P

(
p+ (1− t)ξ(r, p)

)
.

Adding both the above inequalities and then integrating over [0, 1], it is readily
seen that

∫ 1

0
D
(
p+ tξ(r, p)

)
· P
(
p+ tξ(r, p)

)
dt+

∫ 1

0
D
(
p+ (1− t)ξ(r, p)

)
· P
(
p+ (1− t)ξ(r, p)

)
dt

�CR
∫ 1

0

[
D(p)

(
h(1− t)P(p+ tξ(r, p)) + h(t)P(p+ (1− t)ξ(r, p))

)
+D(r)

(
h(t)P(p+ tξ(r, p)) + h(1− t)P(p+ (1− t)ξ(r, p))

)]
dt

= 2D(p)
∫ 1

0
h(t)P(p+ (1− t)ξ(r, p))dt+ 2D(r)

∫ 1

0
h(t)P(p+ tξ(r, p))dt.

Now, using the symmetry property of P , we have

= 2[D(p) +D(r)]
∫ 1

0
h(t)P(p+ tξ(r, p))dt. (12)

Since,
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∫ 1

0
D
(
p+ tξ(r, p)

)
· P
(
p+ tξ(r, p)

)
dt+

∫ 1

0
D
(
p+ (1− t)ξ(r, p)

)
· P
(
p+ (1− t)ξ(r, p)

)
dt

=
2

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz. (13)

The proof of Theorem 5 readily follows from the above two developments (12)
and (13).

Remark 20. If D = D, then it is clearly seen that Theorem 5 yields a result for the h-preinvex
function.

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz ≤ [D(p) +D(r)]

∫ 1

0
h(t)P(p+ tξ(r, p))dt.

Remark 21. If h(t) = t, then it is clearly seen that Theorem 5 yields a result for the �CR-preinvex
function.

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz �CR [D(p) +D(r)]

∫ 1

0
tP(p+ tξ(r, p))dt.

Remark 22. If ξ(r, p) = r − p, then it is clearly seen that Theorem 5 yields a result for the
�CR −h-convex function.

1
r− p

∫ r

p
D(z)P(z)dz �CR [D(p) +D(r)]

∫ 1

0
h(t)P((1− t)p+ tr)dt.

Remark 23. If h(t) = t and ξ(r, p) = r− p, then it is clearly seen that Theorem 5 yields a result
for the �CR-convex function.

1
r− p

∫ r

p
D(z)P(z)dz �CR [D(p) +D(r)]

∫ 1

0
tP((1− t)p+ tr)dt.

Example 5. Let D(z) = [2− z
1
2 , 3(2− z

1
2 )], ξ(r, p) = r− p, p = 0 and r = 2. Then, for

h(t) = t and symmetric function P(z) = z for z ∈ [0, 1] and P(z) = −z + 2 for z ∈ [1, 2],
we have

1
ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz

=
1
2

∫ 2

0
D(z)P(z)dz

=
1
2

∫ 1

0

[(
2− z

1
2

)
z, 3z

(
2− z

1
2

)]
dz

+
1
2

∫ 2

1

[(
2− z

1
2

)
(−z + 2), 3(−z + 2)

(
2− z

1
2

)]
dz

≈ [0.512419, 1.53726].
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[D(p) +D(r)]
∫ 1

0
h(t)P(p+ tξ(r, p))dt

=
(
[2, 6] +

[
2− 2

1
2 , 3
(

2− 2
1
2

)]) ∫ 1

0
tP(2t)dt

=
[
4− 2

1
2 , 6 + 3

(
2− 2

1
2

)](∫ 1
2

0
2t2dt+

∫ 1

1
2

t(−2t+ 2)dt

)
≈ [0.646447, 1.93934].

Thus, it can be easily seen that

[0.512419, 1.53726] �CR [0.646447, 1.93934].

This eventually validates the accuracy of Theorem 5.

Theorem 6. (First Hermite–Hadamard-Fejér inequality for CR− h-preinvex function).
Suppose that D : [p, p+ ξ(r, p)] −→ R is an interval-valued function which is given by

D(z) =
[
D(z), D(z)

]
for all z ∈ [p, r]. If D : [p, p+ ξ(r, p)] −→ R is CR − h-preinvex function and P : [p, p+
ξ(r, p)] −→ R,P > 0 is symmetric with respect to p+ 1

2 ξ(r, p). Then, assuming
∫ p+ξ(r,p)
p P(z)dz >

0, the following inequalities hold true:

D

(
p+

1
2

ξ(r, p)
)
�CR

2h
(

1
2

)
∫ p+ξ(r,p)
p P(z)dz

∫ p+ξ(r,p)

p
D(z)P(z)dz.

Proof. Since D is an interval-valued CR− h-preinvex function and with the help of Condi-
tion C, we have

D

(
p+

1
2

ξ(r, p)
)
�CR h

(
1
2

)
[D(p+ tξ(r, p))dt+D(p+ (1− t)ξ(r, p))dt].

Multiplying the above inequality by P
(
p+ tξ(r, p)

)
= P

(
p+ (1− t)ξ(r, p)

)
and then

integrating over [0, 1], it is readily seen that

D

(
p+

1
2

ξ(r, p)
) ∫ 1

0
P
(
p+ tξ(r, p)

)
dt

�CR h

(
1
2

)[ ∫ 1

0
D
(
p+ tξ(r, p)

)
· P
(
p+ tξ(r, p)

)
dt

+
∫ 1

0
D
(
p+ (1− t)ξ(r, p)

)
· P
(
p+ (1− t)ξ(r, p)

)
dt
]

. (14)

Since,

∫ 1

0
D
(
p+ tξ(r, p)

)
· P
(
p+ tξ(r, p)

)
dt =

∫ 1

0
D
(
p+ (1− t)ξ(r, p)

)
· P
(
p+ (1− t)ξ(r, p)

)
dt

=
1

ξ(r, p)

∫ p+ξ(r,p)

p
D(z)P(z)dz (15)

and ∫ 1

0
P
(
p+ tξ(r, p)

)
dt =

1
ξ(r, p)

∫ p+ξ(r,p)

p
P(z)dz. (16)
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Using (15) and (16) in (14), we have

D

(
p+

1
2

ξ(r, p)
)
�CR

2h
(

1
2

)
∫ p+ξ(r,p)
p P(z)dz

∫ p+ξ(r,p)

p
D(z)P(z)dz.

This concludes the proof of the desired Theorem 6.

Remark 24. If D = D, then it is clearly seen that Theorem 6 yields a result for the h-preinvex
function.

D

(
p+

1
2

ξ(r, p)
)
≤

2h
(

1
2

)
∫ p+ξ(r,p)
p P(z)dz

∫ p+ξ(r,p)

p
D(z)P(z)dz.

Remark 25. If h(t) = t, then it is clearly seen that Theorem 6 yields a result for the �CR-preinvex
function.

D

(
p+

1
2

ξ(r, p)
)
�CR

1∫ p+ξ(r,p)
p P(z)dz

∫ p+ξ(r,p)

p
D(z)P(z)dz.

Remark 26. If ξ(r, p) = r − p, then it is clearly seen that Theorem 6 yields a result for the
�CR −h-convex function.

D

(
p+ r

2

)
�CR

2h
(

1
2

)
∫ r
p P(z)dz

∫ r

p
D(z)P(z)dz.

Remark 27. If h(t) = t and ξ(r, p) = r− p, then it is clearly seen that Theorem 6 yields a result
for the �CR-convex function.

D

(
p+ r

2

)
�CR

1∫ r
p P(z)dz

∫ r

p
D(z)P(z)dz.

Remark 28. Combining Theorems 5 and 6 for P(z) = 1, we have Theorem 2.

Example 6. Let D(z) = [2− z
1
2 , 3(2− z

1
2 )], ξ(r, p) = r− p, p = 0 and r = 2. Then, for

h(t) = t and symmetric function P(z) = z for z ∈ [0, 1] and P(z) = −z + 2 for z ∈ [1, 2],
we have

D

(
p+

1
2

ξ(r, p)
)
= D(1) = [2− 1, 3(2− 1)] = [1, 3].

2h
(

1
2

)
∫ p+ξ(r,p)
p P(z)dz

∫ p+ξ(r,p)

p
D(z)P(z)dz

=
1∫ 2

0 P(z)dz

∫ 2

0

[
2− z

1
2 , 3(2− z

1
2 )
]
P(z)dz

=
∫ 1

0

[
z
(

2− z
1
2

)
, 3z(2− z

1
2 )
]
dz+

∫ 2

1

[
(−z + 2)

(
2− z

1
2

)
, 3(−z + 2)(2− z

1
2 )
]
P(z)dz

≈ [1.02484, 3.07452].
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Thus, it can be easily seen that

[1, 3] �CR [1.02484, 3.07452].

This eventually validates the accuracy of Theorem 6.

5. Future Recommendations Associated with Fractional Integral Operators

In this section, we will provide the connection between our results and fractional
inetgral inequalities, which will bring researchers working in fractional calculus into play.
Before discussing the key conclusions, we will go over the definitions of the k-Riemann–
Liouville fractional operators given as follows:

Definition 7 (see [49] for details). Let k > 0 and D ∈ L[p, r] be the set of all Lebesgue
measurable functions on [p, r]. Then, for the order α > 0, the left and right k-Riemann–Liouville
(R-L) fractional integrals are defined as follows:

Iα,k
p+

D(x) :=
1

kΓk(α)

∫ x

p
(x− z)

α
k−1 D(z)dz (0 5 p < x < r)

and
Iα,k
r−D(x) :=

1
kΓ(α)

∫ r

x
(z− x)

α
k−1 D(z)dz (0 5 r < x < r),

respectively, where Γk(α) =
∫ ∞

0 µα−1exp
(
− µk

k

)
dµ is the k-gamma function given in [50].

Corollary 1. Let D : [p, r] be an interval-valued function such that D = [D,D] with D,D ∈
R[p,r]. Then

Iα,k
p+

D(x) =
[
Iα
p+D(x), Iα

p+D(x)
]

and
Iα,k
r−D(x) =

[
Iα
r−D(x), Iα

r−D(x)
]
.

Theorem 7. Suppose that D : [p, p+ ξ(r, p)] −→ R is an interval-valued function which is
given by

D(z) =
[
D(z), D(z)

]
,

for all z ∈ [p, r]. If D : [r+ ξ(p, r), r] −→ R is cr− h-preinvex function and satisfies Condition
C. Then, for h( 1

2 ) > 0, the following fractional inequalities hold true for α > 0:

1

αh
(

1
2

)D(p+ 1
2

ξ(r, p)
)

�cr
Γk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
�cr

[D(p) +D(p+ ξ(r, p))]
k

∫ 1

0
t

α
k−1[h(t) + h(1− t)]dt.

Proof. From the definition of cr− h-preinvex functions and employing the Condition C,
we have

D

(
x +

1
2

ξ(y, x)
)
�cr h

(
1
2

)
[D(x) +D(y)].



Fractal Fract. 2022, 6, 506 20 of 24

Choosing x = p+ tξ(r, p) and y = p+ (1− t)ξ(r, p). It is seen that

D

(
p+ tξ(r, p) +

1
2

ξ(p+ (1− t)ξ(r, p), p+ tξ(r, p))
)

�cr h

(
1
2

)
[D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))].

which implies,

1

h
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�cr [D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))]. (17)

Multiplying both sides of the above inequality (17) by t
α
k−1 and then integrating over

the closed inteval [0, 1], we obtain

1

h
(

1
2

)D(p+ 1
2

ξ(r, p)
) ∫ 1

0
t

α
k−1dt

�cr

[∫ 1

0
t

α
k−1D(p+ tξ(r, p))dt+

∫ 1

0
t

α
k−1D(p+ (1− t)ξ(r, p))dt

]
=

[ ∫ 1

0
t

α
k−1(D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p)))dt,∫ 1

0
t

α
k−1(D(p+ tξ(r, p)) +D(p+ (1− t)ξ(r, p))

)
dt
]

=

[ ∫ p+ξ(r,p)

p

(
z− p

ξ(r, p)

) α
k−1

D(z)
dz

ξ(r, p)
+
∫ p+ξ(r,p)

p

(
p+ ξ(r, p)− z

ξ(r, p)

) α
k−1

D(z)
dz

ξ(r, p)
,

∫ p+ξ(r,p)

p

(
z− p

ξ(r, p)

) α
k−1

D(z)
dz

ξ(r, p)
+
∫ p+ξ(r,p)

p

(
p+ ξ(r, p)− z

ξ(r, p)

) α
k−1

D(z)
dz

ξ(r, p)

]
=

[
kΓk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
,

kΓk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]]
=

kΓk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
From the above developments, we can conclude that

1

αh
(

1
2

)D(p+ 1
2

ξ(r, p)
)
�cr

Γk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
. (18)

This completes the proof of the first inequality. Next, to prove the second inequality,
from the definition of cr− h-preinvex functions, we have

D
(
p+ tξ(r, p)

)
�cr h(t)D(r) + h(1− t) D(p).

and
D
(
p+ (1− t)ξ(r, p)

)
�cr h(t)D(p) + h(1− t) D(r).
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Adding the above two inequalities and multiplying by t
α
k−1, then integrating over the

closed inteval [0, 1], we have

∫ 1

0
t

α
k−1D

(
p+ tξ(r, p)

)
dt+

∫ 1

0
t

α
k−1D

(
p+ (1− t)ξ(r, p)

)
dt

�cr [D(p) +D(p+ ξ(r, p))]
∫ 1

0
t

α
k−1[h(t) + h(1− t)]dt

This implies,

Γk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
�cr

[D(p) +D(p+ ξ(r, p))]
k

∫ 1

0
t

α
k−1[h(t) + h(1− t)]dt (19)

Consequently, from Equations (18) and (19), we conclude the desired result, i.e.,

1

αh
(

1
2

)D(p+ 1
2

ξ(r, p)
)

�cr
Γk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
�cr

[D(p) +D(p+ ξ(r, p))]
k

∫ 1

0
t

α
k−1[h(t) + h(1− t)]dt.

This completes the proof.

Remark 29. If we choose α = k = 1 in the above Theorem 7, then we recover the classical inequality
for preinvex function as given in Theorem 2.

Note: This shows the connection of our results with fractional integral inequalities.
In the future, researchers are encouraged to establish such results for different types of
fractional operators.

Remark 30. If D = D, then it is clearly seen that Theorem 2 yields the following result for the
h-preinvex function.

1

αh
(

1
2

)D(p+ 1
2

ξ(r, p)
)

≤ Γk(α)

(ξ(r, p))
α
k

[
Iα,k
(p+ξ(r,p))−D(p) + Iα,k

p+
D(p+ ξ(r, p))

]
≤ [D(p) +D(p+ ξ(r, p))]

k

∫ 1

0
t

α
k−1[h(t) + h(1− t)]dt.

In the future, this new concept can be incorporated to present different inequalities
such as Hermite–Hadamard, Ostrowski, Hadamard–Mercer, Simpson, Fejér, and Bullen
type. The above-mentioned inequalities can be proved for various interval-valued CR
convexities such as:

• CR-h convex function.
• CR-(h1, h2) convex function.
• CR Godunova–Levin Functions.
• CR-Harmonic convex function.
• CR-Harmonially-h convex function.
• CR-Harmonically-(h1, h2) convex function.
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• CR-Harmonically Godunova–Levin Functions.
• CR-Harmonically (h1, h2)-Godunova–Levin Functions.

We intend to also generalize these results in connection with fractional calculus, quan-
tum calculus, coordinated interval-valued functions, etc. As these are the hot topics of re-
search in the field of integral inequalities, they will attract many mathematicians to explore
the incorporation of CR-order interval-valued analysis with the above-mentioned concepts.

6. Conclusions

Any integral inequality can be a very effective tool for applications. In particular, using
integral operators as a predictive tool, inequalities can be crucial for measuring, computing
errors, and defining such processes. Incorporating the uncertainty into the prediction
procedures, the C-R (Center-Radius) interval-valued functions might be a useful substitute.
Using the integral operator and the center-radius order on the space of the real and compact
intervals as a foundation, we demonstrate the Hermite–Hadamard, the Pachpatte, and
the Hadamard-Fejér types of inequalities. By doing this, we contribute to the set-valued
context’s generalization of numerous classical integral inequalities. Additionally, examples
and graphical presentations are provided to clarify the outcomes attained.
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22. Öğülmüs, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436.

[CrossRef]
23. Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann—Liouville integrals.

Filomat 2017, 31, 4415–4420. [CrossRef]
24. Dragomir, S.S. Ostrowski type inequalities for Riemann—Liouville fractional integrals of absolutely continuous functions in

terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49.
25. Tariq, M.; Ahmad, H.; Sahoo, S.K.; Kashuri, A.; Nofal, T.A.; Hsu, C.H. Inequalities of Simpson-Mercer-type including Atangana-

Baleanu fractional operators and their applications. AIMS Math. 2022, 7, 15159–15181. [CrossRef]
26. Chen, H.; Katugampola, U.N. Hermite—Hadamard and Hermite—Hadamard—Fejér type inequalities for generalized fractional

integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [CrossRef]
27. Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and

related inequalities. J. Inequl. Appl. 2020, 2020, 172. [CrossRef]
28. Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions

pertaining to Caputo-Fabrizio operator. Fractal Fract. 2022, 6, 171. [CrossRef]
29. Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Set. Syst. 2019, 358,

48–63. [CrossRef]
30. Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for

interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [CrossRef]
31. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math.

2018, 37, 1306–1318. [CrossRef]
32. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions.

J. Inequal. Appl. 2018, 2018, 302. [CrossRef]
33. An, Y.R.; Ye, G.J.; Zhao, D.F.; Liu, W. Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions. Mathematics

2019, 7, 436. [CrossRef]
34. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex

functions. Adv. Differ. Equ. 2020, 2020, 570. [CrossRef]
35. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-

valued functions. Adv. Differ. Equ. 2020, 2020, 507. [CrossRef]
36. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via

Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 98. [CrossRef]
37. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for

interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intel. Syst. 2022, 15, 8. [CrossRef]
38. Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions.

Mathematics 2022, 10, 264. [CrossRef]
39. Bhunia, A.; Samanta, S. A study of interval metric and its application in multi-objective optimization with interval objectives.

Comput. Ind. Eng. 2014, 74, 169–178. [CrossRef]
40. Rahman, M.; Shaikh, A.; Bhunia, A. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained

optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [CrossRef]
41. Shi, F.; Ye, G.; Liu, W.; Zhao, D. cr-h-convexity and some inequalities for cr-h-convex function. Filomat 2022, submitted.
42. Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics 2022,

10, 2089. [CrossRef]
43. Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [CrossRef]
44. Ben-Isreal, A.; Mond, B. What is invexity? J. Austral. Math. Soc. Ser. B 1986, 28, 1–9. [CrossRef]
45. Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [CrossRef]

http://dx.doi.org/10.3390/math10010074
http://dx.doi.org/10.1016/j.ins.2017.08.055
http://dx.doi.org/10.1515/dema-2013-0483
http://dx.doi.org/10.2298/FIL1407463N
http://dx.doi.org/10.1186/1029-242X-2012-247
http://dx.doi.org/10.1016/j.mcm.2011.12.048
http://dx.doi.org/10.2298/FIL2107425O
http://dx.doi.org/10.2298/FIL1714415S
http://dx.doi.org/10.3934/math.2022831
http://dx.doi.org/10.1016/j.jmaa.2016.09.018
http://dx.doi.org/10.1186/s13660-020-02438-1
http://dx.doi.org/10.3390/fractalfract6030171
http://dx.doi.org/10.1016/j.fss.2018.04.012
http://dx.doi.org/10.1007/s00500-014-1483-6
http://dx.doi.org/10.1007/s40314-016-0396-7
http://dx.doi.org/10.1186/s13660-018-1896-3
http://dx.doi.org/10.3390/math7050436
http://dx.doi.org/10.1186/s13662-020-03028-7
http://dx.doi.org/10.1186/s13662-020-02977-3
http://dx.doi.org/10.1186/s13660-021-02623-w
http://dx.doi.org/10.1007/s44196-021-00061-6
http://dx.doi.org/10.3390/math10020264
http://dx.doi.org/10.1016/j.cie.2014.05.014
http://dx.doi.org/10.1016/j.cie.2020.106634
http://dx.doi.org/10.3390/math10122089
http://dx.doi.org/10.1016/0022-247X(81)90123-2
http://dx.doi.org/10.1017/S0334270000005142
http://dx.doi.org/10.1016/0022-247X(88)90113-8


Fractal Fract. 2022, 6, 506 24 of 24

46. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [CrossRef]
47. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [CrossRef]
48. Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [CrossRef]
49. Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94.
50. Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192.

http://dx.doi.org/10.1016/j.amc.2014.02.030
http://dx.doi.org/10.1006/jmaa.1995.1057
http://dx.doi.org/10.1007/BF02265313

	Introduction
	Preliminaries
	The Concept of Interval Valued CR-h-Preinvex function
	Application of CR-Preinvexity to Inequalities
	Future Recommendations Associated with Fractional Integral Operators
	Conclusions
	References

