A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising
Abstract
:1. Introduction
- For medical imaging, a new fractional-order total variational medical image denoising algorithm is proposed, which combines the amplitude-frequency characteristics of the fractional-order differential operators and the denoising advantages of the TV model, effectively mitigating the “step effect” generated by the TV model when denoising;
- An improved sparrow search algorithm that incorporates a sine search strategy and a diversity variation processing strategy is proposed to avoid the optimization algorithm from falling into local optimal solutions. Additionally, a multi-objective fusion maximization fitness function is proposed to comprehensively evaluate the denoising effect of the optimization model;
- For the feature information of medical images, an optimized fractional-order total variational medical image denoising model based on a fused multi-strategy improved sparrow search algorithm is proposed. The optimization model not only possesses robust adaptivity, but also retains more detailed texture information of medical images while denoising, which can provide more information to help clinicians in diagnosis.
2. Fractional-Order Total Variational Medical Image Denoising
2.1. Total Variational Denoising Model
2.2. Fractional-Order Total Variational Medical Image Denoising Model
3. Fractional-Order Total Variational Model Optimization
3.1. Improve Sparrow Search Algorithm
3.2. Fitness Function
3.3. Steps of the Proposed Denoising Algorithm
Algorithm 1. Pseudocode for ISAFTV algorithm, ISAFTV |
Input: Medical image ; FTV model parameters: , , ; ISSA algorithm parameters: order limit range, , , , number of explorers, and . Output: Model order matrix ; denoised image . 1: Read denoised image information; |
2: Initialize the population; |
3: for to do |
4: Calculate the PSNR and SSIM of the denoised image according to Equations (22) and (23); |
5: Calculate the fitness value for each sparrow; |
6: Sort by fitness value; |
7: Update explorer and predator locations with Equations (16)–(18); |
8: Calculate population aggregation index ; |
9: if then |
10: Perturb of the optimal position according to Equation (20); |
11: end |
12: Obtain the current position; |
13: If the new position is better than the previous one, update the optimal position; |
14: end |
15: Obtain the model order matrix ; 16: for to do 17: Denoising the image according to the fractional order total variational model (14);18: end |
19: Output denoised image . |
4. Simulation Experiments and Results Analysis
4.1. Different Order Comparison Experiment
4.2. Different Model Comparison Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steuwe, A.; Valentin, B.; Bethge, O.T.; Ljimani, A.; Niegisch, G.; Antoch, G.; Aissa, J. Influence of a deep learning noise reduction on the CT values, image noise and characterization of kidney and ureter stones. Diagnostics 2022, 12, 1627. [Google Scholar] [CrossRef] [PubMed]
- Brendlin, A.S.; Schmid, U.; Plajer, D.; Chaika, M.; Mader, M.; Wrazidlo, R.; Männlin, S.; Spogis, J.; Estler, A.; Esser, M.; et al. AI denoising improves image quality and radiological workflows in pediatric ultra-low-dose thorax computed tomography scans. Tomography 2022, 8, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- Darbon, J.; Cunha, A.; Chan, T.F.; Osher, S.; Jensen, G.J. Fast nonlocal filtering applied to electron cryomicroscopy. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008. [Google Scholar]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Mustafi, A.; Ghorai, S.K. A novel blind source separation technique using fractional Fourier transform for denoising medical images. Optik 2013, 124, 265–271. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Duan, J.; Lu, W.; Tench, C.; Gottlob, I.; Proudlock, F.; Samani, N.N.; Bai, L. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed. Signal Process. Control 2016, 24, 120–127. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Xu, J.; Gu, D.; Yang, K. Ultrasonic images denoising based on calculus of variations. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 970–974. [Google Scholar]
- Yan, H.; Zhang, J.X.; Zhang, X.F. Injected infrared and visible image fusion via L1 decomposition model and guided filtering. IEEE Trans. Comput. Imaging 2022, 8, 162–173. [Google Scholar] [CrossRef]
- Zhang, X.F.; He, H.; Zhang, J.X. Multi-focus image fusion based on fractional order derivative and closed image matting. ISA Trans. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W. Adaptive neural network sliding mode control for nonlinear singular fractional order systems with mismatched uncertainties. Fractal Fract. 2020, 4, 50. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, L. Image enhancement based on rough set and fractional order differentiator. Fractal Fract. 2022, 6, 214. [Google Scholar] [CrossRef]
- Wang, D.; Nieto, J.J.; Li, X.; Li, Y. A spatially adaptive edge-preserving denoising method based on fractional-order variational PDEs. IEEE Access 2020, 8, 163115–163128. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Z. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl. Math. Model. 2011, 35, 2516–2528. [Google Scholar]
- Rojas, H.E.; Cortés, C.A. Denoising of measured lightning electric field signals using adaptive filters in the fractional fourier domain. Measurement 2014, 55, 616–626. [Google Scholar] [CrossRef]
- Li, D.; Tian, X.; Jin, Q.; Hirasawa, K. Adaptive fractional-order total variation image restoration with split Bregman iteration. ISA Trans. 2018, 82, 210–222. [Google Scholar] [CrossRef]
- Thanh, D.N.; Hien, N.N.; Prasath, S. Adaptive total variation L1 regularization for salt and pepper image denoising. Optik 2020, 208, 163677. [Google Scholar] [CrossRef]
- Yu, J.; Tan, L.; Zhou, S.; Wang, L.; Wang, C. Image denoising based on adaptive fractional order anisotropic diffusion. KSII Trans. Internet Inf. Syst. (TIIS) 2017, 11, 436–450. [Google Scholar]
- Ullah, A.; Chen, W.; Khan, M.A. A new variational approach for restoring images with multiplicative noise. Comput. Math. Appl. 2016, 71, 2034–2050. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, R.; Ren, J.; Gui, Q. Adaptive fractional image enhancement algorithm based on rough set and particle swarm optimization. Fractal Fract. 2022, 6, 100. [Google Scholar] [CrossRef]
- Asha, C.S.; Lal, S.; Gurupur, V.P.; Saxena, P.P. Multi-modal medical image fusion with adaptive weighted combination of NSST bands using chaotic grey wolf optimization. IEEE Access 2019, 7, 40782–40796. [Google Scholar] [CrossRef]
- Li, K.S.; Tan, Z.P. An improved flower pollination optimizer algorithm for multilevel image thresholding. IEEE Access 2019, 7, 165571–165582. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Fakhry, A.E.; El-Henawy, I.; Qiu, T.; Sangaiah, A.K. Feature and intensity based medical image registration using particle swarm optimization. J. Med. Syst. 2017, 41, 197. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, K.; He, Z.; Yin, Z.; Wang, S. Semi-supervised ensemble classifier with improved sparrow search algorithm and its application in pulmonary nodule detection. Math. Probl. Eng. 2021, 2021, 6622935. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; He, S.; Shen, J. Fractional-order chaotic sparrow search algorithm for enhancement of long distance iris image. Mathematics 2021, 9, 2790. [Google Scholar] [CrossRef]
- Yang, H.; Amari, S. Complexity issues in natural gradient descent method for training multilayer perceptrons. Neural Comput. 1998, 10, 2137–2157. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, X. Adaptive sliding mode observer design for a class of T–S fuzzy descriptor fractional order systems. IEEE Trans. Fuzzy Syst. 2020, 28, 1951–1960. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, J. LMI criteria for admissibility and robust stabilization of singular fractional-order systems possessing poly-topic uncertainties. Fractal Fract. 2020, 4, 58. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y. Admissibility of fractional order descriptor systems based on complex variables: An LMI approach. Fractal Fract. 2020, 4, 8. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, D.; Zhao, T.; Chen, Y. Fractional calculus in image processing: A review. Fract. Calc. Appl. Anal. 2016, 19, 1222–1249. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 < α < 1 case. ISA Trans. 2018, 82, 42–50. [Google Scholar]
- Chen, D.; Chen, Y.; Xue, D. Fractional-order total variation image denoising based on proximity algorithm. Appl. Math. Comput. 2015, 257, 537–545. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Liu, S.; Luo, B.; Miao, S.M.; Liu, K. Multiple hydropower reservoirs operation optimization by adaptive mutation sine cosine algorithm based on neighborhood search and simplex search strategies. J. Hydrol. 2020, 59, 125223. [Google Scholar] [CrossRef]
- Laguna, E.; Barasona, J.A.; Triguero-Ocaña, R.; Mulero-Pázmány, M.; Negro, J.J.; Vicente, J.; Acevedo, P. The relevance of host overcrowding in wildlife epidemiology: A new spatially explicit aggregation index. Ecol. Indic. 2018, 84, 695–700. [Google Scholar] [CrossRef]
- Singh, A.; Sethi, G.; Kalra, G.S. Spatially adaptive image denoising via enhanced noise detection method for grayscale and color images. IEEE Access 2020, 8, 112985–113002. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Unni, V.S.; Ghosh, S.; Chaudhury, K.N. Linearized ADMM and fast nonlocal denoising for efficient plug-and-play restoration. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Anaheim, CA, USA, 26–29 November 2018; pp. 11–15. [Google Scholar]
Order | Vitreous Hemorrhage | Vitreous Mechanization | ||
---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | |
0.2 | 30.2744 | 0.9806 | 32.7779 | 0.9655 |
0.4 | 31.0549 | 0.9904 | 33.5478 | 0.9934 |
0.6 | 31.0656 | 0.9841 | 33.6727 | 0.9838 |
0.8 | 31.6578 | 0.9978 | 34.9359 | 0.9920 |
1.0 | 25.1980 | 0.7818 | 26.6687 | 0.7953 |
1.2 | 31.5042 | 0.9967 | 34.6754 | 0.9943 |
1.4 | 31.4595 | 0.9935 | 34.5923 | 0.9904 |
1.6 | 31.4362 | 0.9941 | 34.1148 | 0.9871 |
1.8 | 31.1416 | 0.9976 | 33.7817 | 0.9715 |
Standard Deviation | 10 | 15 | 20 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Noise image | 28.1391 | 0.6574 | 24.5870 | 0.4819 | 22.1206 | 0.3670 |
TV model | 25.6914 | 0.7989 | 26.1665 | 0.7995 | 25.9783 | 0.7579 |
FTV model | 29.0345 | 0.8836 | 27.8864 | 0.7957 | 26.0211 | 0.6750 |
AFOTV model | 29.7141 | 0.8131 | 27.8282 | 0.8051 | 26.6172 | 0.7236 |
F-DSG-NLM model | 29.7963 | 0.8376 | 29.3433 | 0.8160 | 28.9241 | 0.7897 |
FNM model | 29.8856 | 0.8388 | 29.2419 | 0.8163 | 28.8017 | 0.7898 |
Our model | 30.4862 | 0.8857 | 29.7705 | 0.8331 | 28.9800 | 0.7995 |
Standard Deviation | 10 | 15 | 20 | |||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Noise image | 28.1928 | 0.6497 | 24.6366 | 0.4825 | 22.1240 | 0.3658 |
TV model | 25.9562 | 0.8034 | 26.4000 | 0.8007 | 26.2366 | 0.7586 |
FTV model | 28.9670 | 0.8582 | 27.4736 | 0.7478 | 26.6295 | 0.7266 |
AFOTV model | 29.8894 | 0.8290 | 28.0774 | 0.8212 | 26.9852 | 0.7449 |
F-DSG-NLM model | 32.7222 | 0.8790 | 29.0509 | 0.8594 | 27.3167 | 0.7348 |
FNM model | 32.7744 | 0.8796 | 29.0377 | 0.8595 | 27.2980 | 0.7349 |
Our model | 33.8371 | 0.9532 | 30.7497 | 0.8614 | 27.7744 | 0.7635 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, T.; Yang, F.; Yang, Q. A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising. Fractal Fract. 2022, 6, 508. https://doi.org/10.3390/fractalfract6090508
Zhang Y, Liu T, Yang F, Yang Q. A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising. Fractal and Fractional. 2022; 6(9):508. https://doi.org/10.3390/fractalfract6090508
Chicago/Turabian StyleZhang, Yanzhu, Tingting Liu, Fan Yang, and Qi Yang. 2022. "A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising" Fractal and Fractional 6, no. 9: 508. https://doi.org/10.3390/fractalfract6090508
APA StyleZhang, Y., Liu, T., Yang, F., & Yang, Q. (2022). A Study of Adaptive Fractional-Order Total Variational Medical Image Denoising. Fractal and Fractional, 6(9), 508. https://doi.org/10.3390/fractalfract6090508