Hybridization of Block-Pulse and Taylor Polynomials for Approximating 2D Fractional Volterra Integral Equations
Abstract
:1. Introduction
2. Preliminaries and Notations
- ,
3. Hybrid Functions
3.1. The 2D-HBTs
3.2. Operational Matrix of Fractional Integration of 2D-HBTs
4. Numerical Solution of the 2DFVIEs
5. Convergence Analysis
6. Numerical Experiments
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Milici, C.; Drăgănescu, G.; Machado, J.T. Introduction to Fractional Differential Equations; Springer: Cham, Switzerland, 2018; Volume 25. [Google Scholar]
- Biswas, K.; Bohannan, G.; Caponetto, R.; Lopes, A.M.; Machado, J.A.T. Fractional-Order Devices; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.T.; Bates, J.H. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.; Lopes, A.M. Relative fractional dynamics of stock markets. Nonlinear Dyn. 2016, 86, 1613–1619. [Google Scholar] [CrossRef]
- Ababneh, O. Adaptive synchronization and anti-synchronization of fractional order chaotic optical systems with uncertain parameters. J. Math. Comput. Sci. 2021, 23, 302–314. [Google Scholar] [CrossRef]
- Prasad, R.; Kumar, K.; Dohare, R. Caputo fractional order derivative model of Zika virus transmission dynamics. J. Math. Comput. Sci. 2022, 28, 145–157. [Google Scholar] [CrossRef]
- Aghdam, Y.E.; Mesgarani, H.; Moremedi, G.; Khoshkhahtinat, M. High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis. Alex. Eng. J. 2022, 61, 217–225. [Google Scholar] [CrossRef]
- Rakhshan, S.A.; Effati, S. Fractional optimal control problems with time-varying delay: A new delay fractional Euler–Lagrange equations. J. Frankl. Inst. 2020, 357, 5954–5988. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl. Math. Model. 2021, 100, 107–124. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
- Qiao, L.; Qiu, W.; Xu, D. A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem. Comput. Math. Appl. 2021, 102, 137–145. [Google Scholar] [CrossRef]
- Qiao, L.; Xu, D.; Qiu, W. The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. Appl. Numer. Math. 2022, 172, 359–381. [Google Scholar] [CrossRef]
- Qiao, L.; Guo, J.; Qiu, W. Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type. Comput. Math. Appl. 2022, 123, 89–104. [Google Scholar] [CrossRef]
- Huang, Q.; Qi, R.j.; Qiu, W. The efficient alternating direction implicit Galerkin method for the nonlocal diffusion-wave equation in three dimensions. J. Appl. Math. Comput. 2021, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Huang, Y.; Wei, H. Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis. Comput. Math. Appl. 2017, 73, 1218–1232. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Zhou, Y. Numerical simulation of time fractional Cable equations and convergence analysis. Numer. Methods Partial Differ. Equ. 2018, 34, 1556–1576. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Zhou, Y. Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods. J. Comput. Appl. Math. 2018, 339, 389–404. [Google Scholar] [CrossRef]
- Najafalizadeh, S.; Ezzati, R. Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Appl. Math. Comput. 2016, 280, 46–56. [Google Scholar] [CrossRef]
- Jabari Sabeg, D.; Ezzati, R.; Maleknejad, K. A new operational matrix for solving two-dimensional nonlinear integral equations of fractional order. Cogent Math. 2017, 4, 1347017. [Google Scholar] [CrossRef]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Operational matrices based on hybrid functions for solving general nonlinear two-dimensional fractional integro-differential equations. Comput. Appl. Math. 2020, 39, 103. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hoseingholipour, A. Numerical treatment of singular integral equation in unbounded domain. Int. J. Comput. Math. 2021, 98, 1633–1647. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, V. An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations. J. Appl. Math. Comput. 2022, 1–22. [Google Scholar] [CrossRef]
- Mirzaee, F.; Samadyar, N. Application of hat basis functions for solving two-dimensional stochastic fractional integral equations. Comput. Appl. Math. 2018, 37, 4899–4916. [Google Scholar] [CrossRef]
- Asgari, M.; Ezzati, R. Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl. Math. Comput. 2017, 307, 290–298. [Google Scholar] [CrossRef]
- Rashidinia, J.; Eftekhari, T.; Maleknejad, K. Numerical solutions of two-dimensional nonlinear fractional Volterra and Fredholm integral equations using shifted Jacobi operational matrices via collocation method. J. King Saud Univ. Sci. 2021, 33, 101244. [Google Scholar] [CrossRef]
- Heydari, M.; Shivanian, E.; Azarnavid, B.; Abbasbandy, S. An iterative multistep kernel based method for nonlinear Volterra integral and integro-differential equations of fractional order. J. Comput. Appl. Math. 2019, 361, 97–112. [Google Scholar] [CrossRef]
- Ardabili, J.S.; Talaei, Y. Chelyshkov collocation method for solving the two-dimensional Fredholm–Volterra integral equations. Int. J. Appl. Comput. Math. 2018, 4, 25. [Google Scholar] [CrossRef]
- Hesameddini, E.; Shahbazi, M. Two-dimensional shifted Legendre polynomials operational matrix method for solving the two-dimensional integral equations of fractional order. Appl. Math. Comput. 2018, 322, 40–54. [Google Scholar] [CrossRef]
- Asgari, M.; Ezzati, R.; Jafari, H. Solution of 2D Fractional Order Integral Equations by Bernstein Polynomials Operational Matrices. Nonlinear Dyn. Syst. Theory 2019, 19, 10–20. [Google Scholar]
- Abdollahi, Z.; Mohseni Moghadam, M.; Saeedi, H.; Ebadi, M. A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method. Int. J. Comput. Math. 2022, 99, 1488–1504. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, Q.; Cao, J.Y. A Higher-Order Numerical Scheme for Two-Dimensional Nonlinear Fractional Volterra Integral Equations with Uniform Accuracy. Fractal Fract. 2022, 6, 314. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; He, X. Bivariate barycentric rational interpolation method for two dimensional fractional Volterra integral equations. J. Comput. Appl. Math. 2021, 389, 113339. [Google Scholar] [CrossRef]
- Khan, F.; Omar, M.; Ullah, Z. Discretization method for the numerical solution of 2D Volterra integral equation based on two-dimensional Bernstein polynomial. AIP Adv. 2018, 8, 125209. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.; Trounev, A.; Cattani, C. An efficient method based on framelets for solving fractional Volterra integral equations. Entropy 2020, 22, 824. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.; Nawaz, R.; Akbar, M.; Nisar, K.S.; Baleanu, D. Approximate solutions of nonlinear two-dimensional Volterra integral equations. Math. Methods Appl. Sci. 2021, 44, 5548–5559. [Google Scholar] [CrossRef]
- Fazeli, S.; Hojjati, G.; Kheiri, H. A piecewise approximation for linear two-dimensional volterra integral equation by chebyshev polynomials. Int. J. Nonlinear Sci. 2013, 16, 255–261. [Google Scholar]
- Laib, H.; Boulmerka, A.; Bellour, A.; Birem, F. Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method. J. Comput. Appl. Math. 2022, 417, 114537. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M. Fractional order integral equations of two independent variables. Appl. Math. Comput. 2014, 227, 755–761. [Google Scholar] [CrossRef]
- Mirzaee, F.; Hoseini, A.A. A computational method based on hybrid of block-pulse functions and Taylor series for solving two-dimensional nonlinear integral equations. Alex. Eng. J. 2014, 53, 185–190. [Google Scholar] [CrossRef]
- Maleknejad, K.; Mahmoudi, Y. Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions. Appl. Math. Comput. 2004, 149, 799–806. [Google Scholar] [CrossRef]
2D-HBTs | Ref. [20] | Exact Solution | |
---|---|---|---|
0 | 0.000011 | 0.0011458 | 0 |
0.1 | 0.005072 | −0.011725 | 0.005 |
0.2 | 0.195430 | 0.030901 | 0.02 |
0.3 | 0.043278 | 0.02872 | 0.045 |
0.4 | 0.080007 | 0.0892319 | 0.08 |
0.5 | 0.127394 | 0.99179 | 0.125 |
0.6 | 0.180027 | 0.187449 | 0.18 |
0.7 | 0.244633 | 0.219189 | 0.245 |
0.8 | 0.319782 | 0.329976 | 0.32 |
0.9 | 0.406851 | 0.381779 | 0.405 |
2D-HBTs | Ref. [26] | |||
---|---|---|---|---|
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
0.1 | 0 | 9.8482 |
0.2 | 1.9745 | 8.9765 |
0.3 | 7.6763 | 7.6538 |
0.4 | 5.7461 | 5.7461 |
0.5 | 4.8877 | 3.5534 |
0.6 | 4.5511 | 4.8549 |
0.7 | 1.6695 | 5.9879 |
0.8 | 2.3340 | 2.3340 |
0.9 | 8.4997 | 8.2781 |
2D-HBTs | Ref. [26] | |||
---|---|---|---|---|
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
2D-HBTs | Ref. [26] | |||
---|---|---|---|---|
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabegh, D.J.; Ezzati, R.; Nikan, O.; Lopes, A.M.; Galhano, A.M.S.F. Hybridization of Block-Pulse and Taylor Polynomials for Approximating 2D Fractional Volterra Integral Equations. Fractal Fract. 2022, 6, 511. https://doi.org/10.3390/fractalfract6090511
Sabegh DJ, Ezzati R, Nikan O, Lopes AM, Galhano AMSF. Hybridization of Block-Pulse and Taylor Polynomials for Approximating 2D Fractional Volterra Integral Equations. Fractal and Fractional. 2022; 6(9):511. https://doi.org/10.3390/fractalfract6090511
Chicago/Turabian StyleSabegh, Davood Jabari, Reza Ezzati, Omid Nikan, António M. Lopes, and Alexandra M. S. F. Galhano. 2022. "Hybridization of Block-Pulse and Taylor Polynomials for Approximating 2D Fractional Volterra Integral Equations" Fractal and Fractional 6, no. 9: 511. https://doi.org/10.3390/fractalfract6090511
APA StyleSabegh, D. J., Ezzati, R., Nikan, O., Lopes, A. M., & Galhano, A. M. S. F. (2022). Hybridization of Block-Pulse and Taylor Polynomials for Approximating 2D Fractional Volterra Integral Equations. Fractal and Fractional, 6(9), 511. https://doi.org/10.3390/fractalfract6090511