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Abstract: The issue of adaptive finite-time cluster synchronization corresponding to neutral-type
coupled complex-valued neural networks with mixed delays is examined in this research. A neutral-
type coupled complex-valued neural network with mixed delays is more general than that of a
traditional neural network, since it considers distributed delays, state delays and coupling delays. In
this research, a new adaptive control technique is developed to synchronize neutral-type coupled
complex-valued neural networks with mixed delays in finite time. To stabilize the resulting closed-
loop system, the Lyapunov stability argument is leveraged to infer the necessary requirements on the
control factors. The effectiveness of the proposed method is illustrated through simulation studies.

Keywords: complex-valued neural networks; time-varying delay; mixed delays; cluster synchronization;
finite-time synchronization; Lyapunov stability theory

1. Introduction

Due to sub-network contact and cooperation, coupled neural networks (CNNs) are
likelier than conventional neural networks (NNs) [1] to exhibit more complicated dynami-
cal features, as explained in [2–5]. In view of the potential of CNNs in various fields such as
electrical grid, image processing, compression coding, and medical science, there has been
an increase in interest in research relating to CNNs over the years [6–9]. Although complex-
valued signals are common in real-world applications, coupled real-valued neural networks
(CRVNNs) [2,3] are unable to handle these signals. In order to deal with complex-valued
inputs, coupled complex-valued neural networks (CCVNNs) are introduced, leading to
a more efficient model by incorporating complex variables as network elements [10–13].
Compared with CRVNNs, CCVNNs can address important practical problems. As an
example, an orthogonal decision boundary and complex signal in a neuron offer effective
solutions to tackle the XOR and symmetry detection challenges, as presented in [14,15]. As
presented in [16], CCVNNs can accurately represent optical wave fields of phase-conjugate
resonators, since their complex-valued signals with respect to the underlying phase and
amplitude characteristics can be interpreted conveniently. Additionally, CCVNNs provide
a variety of benefits, such as increased learning speed and dependability, as well as ef-
ficient computational capabilities. Therefore, CCVNNs have gained importance in real
world applications.

In the control field, synchronization has recently attracted a lot of attention, and its
application areas, which include biology, medicine, chemistry, electronics, secure communi-
cation and information science, have overgrown. Until now, synchronization of dynamical

Fractal Fract. 2022, 6, 515. https://doi.org/10.3390/fractalfract6090515 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6090515
https://doi.org/10.3390/fractalfract6090515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-1384-4099
https://orcid.org/0000-0002-3562-9584
https://orcid.org/0000-0002-6319-0214
https://orcid.org/0000-0003-3691-1343
https://doi.org/10.3390/fractalfract6090515
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6090515?type=check_update&version=3


Fractal Fract. 2022, 6, 515 2 of 19

networks has been a significant source of concern, with numerous valuable results reported.
For instance, the authors of [5] investigated the global exponential synchronization problem
of quaternion-valued coupled neural networks with impulses. An array of memristive
neural networks with the inertial term, linear coupling and time-varying delay are con-
sidered for the synchronization problem in [9]. The finite-time synchronization problem
for delayed neutral-type and uncertain neural networks was investigated in [17] and [18],
respectively. A review of the literature reveals a variety of synchronization studies, in-
cluding lag synchronization, complete synchronization, anti-synchronization, and more;
see [17–19]. Due to many uses in image encryption, image protection and secure communi-
cation, the synchronization issue in CNNs has drawn the most attention. The phenomenon
of cluster synchronization (CS) describes how all elements in a network are separated into
various clusters. While the elements in the same cluster are completely synchronized, those
from separate clusters are desynchronized. Because CS is a widespread phenomenon that
can be discovered in a wide range of natural and man-made systems, and it has wide
applications in different complex networks, including cellular and metabolic networks,
social networks, electrical power grid networks, food webs, biological NNs, telephone
cell graphs and the World Wide Web, to name a few, many related research studies have
been conducted [20–22]. Liu et al. [23] considered a fractional-order linearly coupled sys-
tem consisting of N NNs. They derived different adequate conditions to determine the
synchronization issue of the addressed model. Yang et al. [24] discussed the CS issue of
fractional-order networks with complex variables, along with nonlinear coupling in finite
time based on the decomposition method. They computed the settling time efficiently using
certain important aspects of the Mittag-Leffler functions and fractional Caputo derivatives.
Zhang et al. [20] explored the CS issue of delayed CNNs with fixed and switching coupling
topology by employing Lyapunov theory and differential inequalities method. While CS of
complex networks has been studied widely, the investigation of CS with complex values
in complex networks is yet to attract attention, despite its potential use. In [24], CS of
complex variable dynamical complex network was examined, but on complex variable
networks without time delays. Therefore, CS of complex variables in complex networks in
finite time requires further investigation.

Recently the dynamical study of neural networks attracted a lot of attention; see [25–31].
The work mentioned above [5,9] focuses on the infinite-time synchronization of the drive-
response system. Finite-time stability has entered the field of vision of researchers [17,18,23]
to make the error between systems tend to zero quickly. Contrarily, from an engineering
and application perspective, the convergence rate is critical in determining how well the
suggested control algorithm performs and how successful it is. Therefore, the finite-time
control approach has received a lot of attention [23,24,32,33]. Practically speaking, the
finite-time CS of CCVNNs is trackable. With the aid of suitable controllers, finite-time
CS refers to the capability of the controlled systems to establish synchronization in a
predetermined amount of time. Compared with asymptotic synchronization, finite time
synchronization in some cases not only accelerates synchronization, which happens when
time approaches infinity, but also offers the benefit of low interruption and tenacity in the
presence of uncertainty. Therefore, it is beneficial to look into CS of CCVNNs in finite
time. To this end, Yu et al. [32] studied the finite-time CS problem for a coupled dynamical
system without delays. He et al. [34] investigated adaptive CS in finite time for neutral-type
CNNs with mixed delays. The finite-time CS problem for a coupled fuzzy cellular NNs was
investigated in [35]. To the authors’ knowledge, no many results on CS of CCVNNs in finite
time exist, and the conclusions are based on the assumption that the parameters of complex
networks are available in the actual world. Furthermore, it is well understood that time
delays are unavoidable in NNs, which can cause oscillation or asynchronization. As a result,
it is essential to study how time delays affect CNNs. Motivated by the aforementioned
aspects, the key objective of this article is to study improved finite-time CS of CCVNNs
with mixed time delays. To address adaptive CS of CCVNNs, some useful criteria are
derived. Specifically, the the important contributions of this article can be summarized as
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follows: (1) some adequate conditions are obtained to determining CCVNNs with systems
adaptive finite-time CS. The major benefit of the adequate conditions such as linear matrix
inequalities (LMIs) is that they are non-singular. (2) Unlike recent CS results work on
CVNNs in finite time with nonlinear coupling and no time delay [24], the techniques
presented here are applicable to CVNNs with both mixed and time-variable delays.

2. Model Description and Preliminaries
2.1. Preliminaries

Graph Theory: Let G = (V , E , G) be a graph with a set of nodes V = {1, . . . , V}
(V > 2), E ⊆ V × V , and coupling matrix J =

[
ij
]

V×V ∈ RV×V with ii = −∑V
j=1,j 6=i ij for

i = 1, . . . , V, where ij > 0 if there is an interaction between nodes i and j, or else ij = 0.
Denote {C1, C2, . . . , CM} with Ck = {lk−1 + 1, lk−1 + 2, . . . , lk} as a set of partitions of nodes
V with non-empty subset M, such that (2 ≤ M < V). In addition, several notations of
graph partition are introduced. F = {F1, . . . , Fm} is the partition of the given vertex set V ,
if the following conditions are satisfied for p 6= m, p, n = 1, 2, . . . m

(i) Fm
n=1Fn = F.

(ii) Fn 6= ∅.
(iii) Fp ∪ Fm = ∅.

Then , F1 = {1, 2, . . . , q1}, F2 = {q1 + 1, . . . , q1 + q2}, . . . , Fn = {1+∑n
i=1 qi−1, . . . , ∑n

i=1
qi}, . . . , Fm = {q1 + . . . + qm−1 + 1, . . . , q1 + . . . + qm}, q1 + q2 + . . . + qm = N, 1 ≤ m ≤ N.

The following are some useful lemmas:

Lemma 1. For any two n-dimensional vectors Λ1, Λ2 and any matrix H > 0 ∈ Rn×n, and any
scalar θ > 0, the following inequality always holds:

2ΛT
1 Λ2 ≤ θΛT

1 HΛ1 + θ−1ΛT
2 H−1Λ2.

Lemma 2. Suppose that a continuous V(t) is a positive–definite function, and it satisfies

V̇(t) ≤ −αVβ(t), ∀t ≥ t0,V(t0) ≥ 0.

Here, α ∈ R+, 0 < β < 1. Then, the following inequality is satisfied for V(t):

V1−β(t) ≤ V1−β(t0)− α(1− β)(t− t0), t0 ≤ t ≤ T.

where T denotes the settling time. It follows from V(t) ≡ 0, ∀t ≥ T,T = t0 +
V1−γ(t0)
β(1−γ)

.

Lemma 3. For any chosen matrix D ∈ Rn×n > 0 that is positive–definite, scalar δ ∈ R+, and
any function ϕ : [0, δ]→ Rn, the following inequality exists:(∫ δ

0
ϕ(s)ds

)T

D
(∫ δ

0
ϕ(s)ds

)
≤ δ

∫ δ

0
ϕT(s)Dϕ(s)ds. (1)

Lemma 4. For any N-dimensional type vectors c1, c2, . . . , cN and positive real numbers x, y, such
that x > y > 0, then the following condition is true

N

∑
i=1
||ci||y ≥

(
N

∑
i=1
||ci||x

) x
y

.

Remark 1. Recently, there has been an increase in the number of studies concerning the NN
synchronization problem. The analyzed NN models are classified into two types: with time de-
lays [36,37] and without time delays [38–40]. Note that the evaluation of model states in delayed
NNs is dependent on both the current and prior states, compared with that in NNs without time
delays. This makes the investigation on delayed NNs more practical in real-world applications, but
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with more complex theoretical analyses. One of the most important and complex areas is the analysis
of NNs with mixed delays. They include the mixture of state delays, coupling delays and distributed
delays [41–43]. Furthermore, as a subset of delayed NNs, neutral-type CNNs have been employed
in mechatronics and communication areas.

2.2. Model Formulation

Consider the CCVNNs with mixed delays consisting of N nodes, as follows:
dφi(t)

dt = Eφ̇i(t− σ(t))− Dξi(t) + A f̂ (φi(t)) + Bk̂(φi(t− τ(t))) + C
∫ t

t−τ ĥ(φi(ζ))dζ

+∑N
j=1 lijΓφj(t− τ(t)) + ui(t), t > 0,

φi(s) = ϑi(s), s ∈ [−τ, 0], i = 1, 2, . . . , N,

(2)

where φi(t) = (φi1(t), φi2(t), . . . , φin(t))T and ui(t) are the state and the controller input of
the ith subnetwork with n neurons, respectively; f̂ (φi(t)) = ( f̂1(ξi1(t)), f̂2(φi2(t)), . . . ,
f̂n(φin(t)))T , k̂(φi(t− τ(t))) = (k̂1(φi1(t− τ(t))), k̂2(φi2(t− τ(t))), . . . , k̂n(φin(t− τ(t))))T ,
ĥ(φi(ζ)) = (ĥ1(φi1(ζ)), ĥ2(φi2(ζ)), . . . , ĥn(φin(ζ)))

T , are the complex-valued neuron acti-
vation functions; D = diag(d1, d2, . . . , dn)T ∈ Rn with dk > 0(k = 1, 2, . . . , n) is the
self-feedback connection between neurons of the ith subnetwork; A = (apq) ∈ Cn×n, B =
(bpq) ∈ Cn×n, C = (cpq) ∈ Cn×n denote the connection, delayed connection and distributed
delayed connection weight matrices, respectively, p, q = 1, 2 . . . , n; σ(t), τ(t), τ are the
neutral-type time delay, coupling delay and distributed delay, respectively, and they satisfy
τ = sup

t≥t0

{σ(t), τ(t)}, t ≥ t0, τ ∈ R+; L = (lij)N×N denotes the configuration coupling terms

of the outer coupling, which satisfies lij = −qij, lii = −∑N
j=1,j 6=i qij; Γ = diag{δ1, δ2, . . . , δn}

is the positive diagonal inner coupling matrix; ui(t) = (ui1, ui2, . . . , uin)
t denotes the control

input to be designed later, for all t ≥ 0, i, j = 1, 2, . . . , N.
The following assumption is necessary throughout this study:

Assumption 1. We can decompose the nonlinear continuous activation functions f̂ (φ), ĥ(φ) and
k̂(φ(t− τ(t))) into real and imaginary parts, namely:

f̂ (φ) = f̂ R
(

φR, φI
)
+ i f̂ I

(
φR, φI

)
, k̂(φ) = k̂R

(
φR, φI

)
+ ik̂I

(
φR, φI

)
where f̂ R, f̂ I , k̂R, k̂I and ĥR, ĥI are real and imaginary parts of f̂ (φ), ĥ(φ) and k̂(φ(t− τ(t))), and
all are real-valued continuous functions.

Assumption 2. For any vectors φ1(t), φ2(t) ∈ R, it is assumed that the real and imaginary parts
of the complex-valued activation function f̂q(·) are able to satisfy

| f̂ R
q (φ1(t))| ≤LR

q , | f̂ I
q (φ1(t))| ≤ LI

q,

| f̂ R
q (φ1(t))− f̂ R

q (φ2(t))| ≤KR
q |φ1(t)− φ2(t)|, | f̂ I

q (φ1(t))− f̂ I
q (φ2(t))| ≤ K I

q|φ1(t)− φ2(t)|,

where f̂ R
q (·), f̂ I

q (·) are the real and imaginary parts of f̂q(·), and LR
q , LI

q, KR
q , K I

q are positive con-
stants.

Remark 2. A complex number’s real and imaginary components also exhibit some statistical
correlation. It makes more sense to use a complex-valued model rather than a real-valued model
when we are aware of how crucial phase and magnitude are to our learning purpose. Complex
numbers are used in neural networks for two fundamental reasons.

(a) In many applications, such as wireless communications or audio processing, where complex
numbers occur naturally or intentionally, there is a correlation between the real and imaginary
parts of the complex signal. For instance, the Fourier transform is a linear transformation that
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multiplies the magnitude of the signal in the frequency domain by multiplying the signal’s
magnitude by a scalar in the time domain. The circular rotation of a signal in the time domain
corresponds to a phase change in the frequency domain. This means a complex number’s real
and imaginary parts are statistically correlated during the phase change.

(b) Suppose the relevance of the magnitude and phase to the learning objective is known a priori.
In that case, it makes more sense to use a complex-valued model because it imposes more
constraints on the complex-valued model than a real-valued model would.

Assumption 3. There exists any positive constant δ that satisfies the following condition:

τ̇(t) ≤ δ < 1, ∀t ≥ 0.

Assumption 4. Assume that elements of the outer coupling matrixL = (lij)N×N satisfy
lmx
∑

j=lmi

lij =

0, lmi = 1 +
h
∑

i=1
ri−1, lmx =

h
∑

i=1
ri, i, j = 1, 2, . . . , N.

By assuming that system (2) is the response system, we can provide the accompanying
driving system as follows:

dψh(t)
dt = Eψ̇h(t− σ(t))− Dψh(t) + A f̂ (ψh(t)) + Bk̂(ψh(t− τ(t)))

+C
∫ t

t−τ ĥ(ψh(ζ))dζ, t > 0,

ψh(s) = ϕh(s), s ∈ [−τ, 0], h = 1, 2, . . . , g,

(3)

where ψg(t) = (ψg1(t), ψg2(t), . . . , ψgn(t))T denotes the state vector of the drive system (3),
and D, A, B, C and E are the feedback, interconnection, delayed interconnection and neutral
delayed interconnection matrices, respectively. In addition, σ(t), τ(t), respectively, denote
the neutral time delay and time varying delay. There is no consensus in between two
clusters of distinct dimensions. Therefore, the delays considered in (2) and (3) are identical.

Definition 1. The neutral-type CVCNNs with cluster partition Ω can realize finite-time CS, if
there exists a settling time ts > 0, such that

lim
t→ts
‖φi(t)− ψi(t)‖ = 0, t ≥ ts, i ∈ Ωh, h = 1, 2, . . . , g.

Remark 3. Finite-time control has received a lot of attention from an engineering application
perspective. The convergence rate is a crucial variable to consider when evaluating the effectiveness
and performance of the proposed control method [33,35]. For instance, the finite-time CS problem
in complex dynamical networks’ has been addressed in [33]. However, not many studies focus on
adaptive finite-time control methods for tackling the CS problem of neutral type CVCNNs with
mixed delays. In the following section, a new finite-time adaptive control scheme is presented to
address the this issue.

3. Main Results

The main outcome of this article is discussed in this section. To begin with, the coupling
term ∑N

j=1 lijΓxj
(
t− τij(t)

)
meets Assumption 4 Moreover, the set Ω =

{
Ω1, Ω2, . . . , Ωg

}
is a partition of the edge set ∆ = {1, 2, . . . , N}, if Ωg

h=1Ωq = Ω, Ωh 6= ∅, and Ωu ∩Ωv = ∅
for u 6= v, u, h = 1, 2, ., g. Then, Ω1 = {1, 2, . . . , θ1}, Ω2 = {θ1 + 1, . . . , θ1 + θ2}, . . ., Ωh =
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{
1 + ∑h

i=1 θi−1, . . . , ∑h
i=1 θi

}
, . . . , Ωg =

{
θ1 + . . . + θg−1

+1, . . . , θ1 + . . . + θg
}

, θ1 + θ2 + . . . + θg = N, 1 ≤ g ≤ N.

N

∑
j=1

lijΓφj(t− τ(t)) =
g

∑
h=1

∑
j∈Ωh

lijΓφj(t− τ(t))

=
g

∑
h=1

∑
j∈Ωh

lijΓξ j(t− τ(t)) +
g

∑
h=1

∑
j∈Ωh

lijΓψh(t− τ(t))

=
g

∑
h=1

∑
j∈Ωh

lijΓξ j(t− τ(t))

Thus, we consider the following error dynamics for systems (2) and (3)


ξ̇i(t) = Eξ̇i(t− τ(t))− Dξi(t) + A f̂ (ξi(t)) + Bk̂(ξi(t− τ(t))) + C

∫ t
t−τ ĥ(ξi(ζ))dζ

+∑N
j=1 lijΓξ j(t− τ(t)) + ui(t),

ξi(s) = ϑi(s)− ϕh(s), s ∈ [−τ, 0], i = 1, 2, . . . , N,

(4)

where f̂ (ξi(t)) = f (φi(t))− f (ψh(t)), k̂(ξi(t− τ(t))) = k̂(φi(t− τ(t)))− k̂(ψh(t− τ(t))),∫ t
t−τ ĥ(ξi(ζ))dζ =

∫ t
t−τ

[
ĥ(φi(ζ))− ĥ(ψh(ζ))

]
dζ, t ≥ 0, i ∈ ∆. Complex-valued system (4)

can be divided into its real and imaginary parts by utilizing Assumption 1, as follows:

ξ̇R
i (t) = ER ξ̇R

i (t− τ(t)) + EI ξ̇ I
i (t− τ(t))− DRξR

i (t) + AR f̂ R(ξi(t))− AI f̂ I(ξi(t))

+BRK̂R(ξi(t− τ(t)))− BI K̂ I(ξi(t− τ(t))) + CR ∫ t
t−τ ĥR(ξi(ζ))dζ

−CI ∫ t
t−τ ĥI(ξi(ζ))dζ + ∑N

j=1 lijΓξR(t− τ(t) + uR(t),

ξ̇ I
i (t) = EI ξ̇R

i (t− τ(t)) + ER ξ̇ I
i (t− τ(t))− DRξ I

i (t) + AR f̂ I(ξi(t)) + AI f̂ R(ξi(t))

+BRK̂ I(ξ(t− τ(t))) + BI K̂R(ξ(t− τ(t))) + CR ∫ t
t−τ ĥI(ξi(ζ))dζ

+CI ∫ t
t−τ ĥR(ξi(ζ))dζ + ∑N

j=1 lijΓξ I(t− τ(t) + uI(t),

ξR
i (s) = ϑR

i (s)− ϕR
h (s), ξ I

i (s) = ϑI
i (s)− ϕI

h(s), s ∈ [−τ, 0], i = 1, 2, . . . , N,

(5)

where, ξR
i (t) = (ξR

i1(t), ξR
i2(t), . . . , ξR

in(t))
T , ξ I

i (t) = (ξ I
i1(t), ξ I

i2(t), . . . , ξ I
in(t))

T , E = ER +
iEI = (eR

pq)n×n + i(eI
pq)n×n, A = AR + iAI = (aR

pq)n×n + i(aI
pq)n×n, B = BR + iBI =

(bR
pq)n×n + i(bI

pq)n×n, C = CR + iCI = (cR
pq)n×n + i(cI

pq)n×n, u(t) = uR(t) + iuI(t). The
finite-time CS problem of (2) and (3) is solved when the states of system (5) is finite-
time stable.

To design an improved finite-time adaptive controller for CS, the error system (5) can
be used, as follows:
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uR
i (t) =πR

i (t)ξ
R
i (t), uI

i (t) = π I
i (t)ξ

I
i (t),

π̇R
i (t) =− ϑT(ς, πR

i (t))
(

ξRT

i ER ξ̇i(t− τ(t)) + πR
i (t)ξ

RT
(t)ξR(t) + ξRT

(t)vRξR
i (t)

+
N

∑
j=1

ξRT
(t)lij∆ξR

j (t− τ(t))

)
− ϑ̃R(ς̃, ϑR(ς, πR

i (t)))
(
||ξR

i (t)|| − ς̃
√

ςsign(πR
i (t))

+

(∫ t

t−τ(t)
ξR(θ)PξR(θ)dθ

)0.5
+ ξR

h

(∫ 0

−τ

∫ t

t+s
ξRT

i (ζ)ξR
i (ζ)dζds

)0.5
)

,

π̇ I
i (t) =− ϑI(ς, π I

i (t))
(

ξ IT

i EI ξ̇ I
i (t− τ(t)) + π I

i (t)ξ
IT
(t)ξ I(t) + ξ IT

(t)v Iξ I
i (t)

+
N

∑
j=1

ξ IT
(t)lij∆ξ I

j (t− τ(t))

)
− ϑ̃I(ς̃, ϑI(ς, π I

i (t)))
(
||ξ I

i (t)|| − ς̃
√

ςsign(π I
i (t))

+

(∫ t

t−τ(t)
ξ I(θ)P1ξ I(θ)dθ

)0.5
+ ξ I

h

(∫ 0

−τ

∫ t

t+s
ξ IT

i (ζ)ξ I
i (ζ)dζds

)0.5
)

, (6)

where φ, P and P1 are positive–definite matrices, ς and ς̃ are positive constants. ϑR(ς̃, πR
i (t))

= ς̃

πR
i (t)

, πR
i (t) < 0 ϑ̃(ς, ϑ(ς, πR

i (t))) = ςϑR(ς̃, πR
i (t)), i, j ∈ V ϑI(ς̃, π I

i (t)) =
ς̃

π I
i (t)

, π I
i (t) <

0 ϑ̃(ς, ϑ(ς, π I
i (t))) = ςϑI(ς̃, π I

i (t)), i, j ∈ V .

Remark 4. Complex-valued neural networks have proven useful in domains where the representa-
tion of data is complex by nature or design. Most CVNN research has focused on shallow designs
and specific signal processing tasks, such as channel equalization. One reason for this is the diffi-
culties associated with training. This is due to the limitation that the complex-valued activation is
not complex differentiable and bounded at the same time [44,45]. Several studies have suggested
that the condition that a complex-valued activation must be simultaneously bounded and complex
differentiable need not be satisfied, and propose activations that are differentiable independently of
the real and imaginary components. This remains an open area of research.

Theorem 1. On the ground that Assumptions 1–4 are true, using adaptive control (6) for sys-
tem (2), we can prove the existence of positive–diagonal matrix φ and symmetric matrices P, P1,
such that

−λmin(DR) +
1
2

λmax(AR ART
)− 1

2
λmin(AI AIT

) +
1
2

λmax(BRBRT
)− 1

2
λmin(BI BIT

)

+
1
2

λmax(CRCRT
)− 1

2
λmin(CICIT

) +
1
2

λmax(P) +
τξ I2

h
2

< λmin(φ), (7)

−λmin(DI) +
1
2

λmax(AR ART
) +

1
2

λmax(AI AIT
) +

1
2

λmax(BRBRT
) +

1
2

λmax(BI BIT
)

+
1
2

λmax(CRCRT
) +

1
2

λmax(CICIT
) +

1
2

λmax(P1) +
τξ I2

h
2

< λmin(φ), (8)

1
2

ξR2

k −
1
2
(1− τ̄P) < 0,

1
2

ξ I2

k −
1
2
(1− τ̄P1) < 0 (9)

then CS can be obtained in finite time.

Proof. A Lyapunov functional candidate is considered, as follows:

V(t) = V1(t) + V2(t) + V3(t) + V4(t) (10)
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where,

V1(t) =
1
2

N

∑
i=1

ξRT

i (t)ξR
i (t) +

1
2

N

∑
i=1

ξ IT

i (t)ξ I
i (t),

V2(t) =
1
2

N

∑
i=1

∫ t

t−τ̂(t)
ξRT

i (θ)PξR
i (θ)dθ +

1
2

N

∑
i=1

∫ t

t−τ̂(t)
ξ IT

i (t)P1ξ I
i (t)dθ,

V3(t) =
1
2

N

∑
i=1

∫ 0

−τ(t)

∫ t

t+s
ξRT

i (ζ)ξT
h ξhξi(ζ)dζds +

1
2

N

∑
i=1

∫ 0

−τ(t)

∫ t

t+s
ξ IT

i (ζ)ξT
h ξhξi(ζ)dζds,

V4(t) =
N

∑
i=1

1
2ω

πR2

i (t) +
N

∑
i=1

1
2ω

π I2

i (t).

Differentiating V1(t) along the state trajectories of model (5) yields:

V̇1(t) =
N

∑
i=1

ξRT

i (t)ξ̇R
i (t) +

N

∑
i=1

ξ IT

i (t)ξ̇ I
i (t),

=
N

∑
i=1

ξRT

i (t)

[
ER ξ̇R

i (t− τ(t))− EI ξ̇ I
i (t− τ(t))− DRξR

i (t) + AR f̂ R(ξi(t))

− AI f̂ I(ξi(t)) + BRK̂R(ξi(t− τ(t)))− BI K̂ I(ξi(t− τ(t))) + CR
∫ t

t−τ
ĥR(ξi(ζ))dζ

− CI
∫ t

t−τ
ĥI(ξi(ζ))dζ +

N

∑
j=1

lijΓξR
i (t− τ(t)) + uR(t)

]

+
N

∑
i=1

ξ IT

i (t)

[
EIξR

i (t− τ(t)) + ERξ I
i (t− τ(t))− DRξ I

i (t) + ARr f̂ I(ξi(t))

+ AI f̂ R(ξi(t)) + BR k̂I(ξi(t− τ(t))) + BI K̂R(ξi(t− τ(t))) + CR
∫ t

t−τ
ĥI(ξi(ζ))dζ

+ CI
∫ t

t−τ
hR(ξi(ζ))dζ +

N

∑
j=1

lijΓξ I
i (t− τ(t)) + uI(t)

]
(11)

The following inequalities can be deduced from Lemma 1 and Assumption 2:
∑N

i=1 ξRT

i (t)AR f̂ R(ξR
i (t)

)
≤ 1

2

{
∑N

i=1 ξRT

i (t)AR ART
ξR

i (t) + ∑N
i=1 ξRT

i (t)ξR2

f ξR
i (t)

}
,

∑N
i=1 ξRT

i (t)AI f̂ I(ξ I
i (t)

)
≤ 1

2

{
∑N

i=1 ξRT

i (t)AI AIT
ξR

i (t) + ∑N
i=1 ξ IT

i ξ I2

f ξ2
i (t)

}
,
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∑N

i=1 ξ IT

i (t)AR f̂ I(ξi(t)) ≤ 1
2

{
∑N

i=1 ξ IT

i (t)AR A2RT
ξ I

i (t) + ∑N
i=1 ξ IT

i (t)ξ I2

f ξ I
i (t)

}
,

∑N
i=1 ξ IT

i (t)AI f̂ R(ξi(t)) ≤ 1
2

{
∑N

i=1 ξ IT

i (t)AI AIT
ξ I

i (t) + ∑N
i=1 ξRT

i (t)ξR2

f ξR
i (t)

}
,

(12)



∑N
i=1 ξRT

i (t)BRK̂R(ξi(t− τ(t))) ≤ 1
2

{
∑N

i=1 ξRT

i (t)BRBRT
ξR

i (t)

+∑N
i=1 ξRT

i (t− τ(t))ξR2

k ξR
i (t− τ(t))

}
,

∑N
i=1 ξR

i (t)BI K̂ I(ξ(t− τ(t))) ≤ 1
2

{
∑N

i=1 ξRT

i (t)BI BIT
ξR

i (t)

+∑N
i=1 ξ IT

i (t− τ(t))ξ I2

K ξ I
i (t− τ(t))

}
,

∑N
i=1 ξ IT

i (t)BRK̂ Iξi(t− τ(t)) ≤ 1
2

{
∑N

i=1 ξT
i (t)BRBRT

ξ I
i (t)

+∑N
i=1 ξ IT

i (t− τ(t))ξ I2

k ξ I
i (t− τ(t))

}
,

∑N
i=1 ξ IT

i (t)B̄I k̂R(ξi(t− τ(t))) ≤ 1
2

{
∑N

i=1 ξ IT

i (t)BT BIT
ξ I

i (t)

+∑N
i=1 ξRT

i (t− τ(t))ξR2

k ξR
i (t− τ(t))

}
,

(13)

From Lemma 3, it follows that

N

∑
i=1

ξRT

i (t)CR
∫ t

t−τ
ĥR(ξi(ζ))dζ =

1
2

N

∑
i=1

{
ξRT

i (t)CR
∫ t

t−τ
ĥR
(

ξRT

i (ζ)
)

dζ

+
∫ t

t−τ
ĥRT

(ξi(ζ))dζCRT
ξRT

i (t)
}

≤1
2

N

∑
i=1

{∫ t

t−τ
ĥRT

(ξi(ζ))dζ
∫ t

t−τ
ĥR(ξi(ζ))dζ

+ξRT

i (t)CRCRT
ξR

i (t)
}

≤1
2

N

∑
i=1

{∫ t

t−τ
ĥRT

(ξi(ζ))ĥR(ξi(ζ))dζ

+ξRT

i (t)CRCRT
ξR

i (t)
}

≤1
2

N

∑
i=1

{
ξR2

h

∫ t

t−τ
ξRT

i (ζ)ξR
i (ζ)dζ

+ξRT

i (t)CRCRT
ξR

i (t)
}

. (14)



∑N
i=1 ξRT

i (t)CI ∫ t
t−τ ĥI(ξi(ζ))dζ ≤ 1

2 ∑N
i=1

{
ξ I2

h
∫ t

t−τ ξ IT

i (ζ)ξ I
i (ζ)dζ + ξRT

i (t)CICIT
ξR

i (t)
}

,

∑N
i=1 ξ IT

i (t)CR ∫ t
t−τ ĥI(ξi(ζ))dζ ≤ 1

2 ∑N
i=1

{
ξ I2

h
∫ t

t−τ ξ IT

i (ζ)ξ I
i (ζ)dζ + ξ IT

i (t)CRCRT
ξ I

i (t)
}

,

∑N
i=1 ξ IT

i (t)CI ∫ t
t−τ ĥR(ξi(ζ))dζ ≤ 1

2 ∑N
i=1

{
ξR2

h
∫ t

t−τ ξRT

i (ζ)ξR
i (ζ)dζ + ξ IT

i (t)CICIT
ξ I

i (t)
}

,

(15)

Therefore,

V̇1(t) ≤
N

∑
i=1

{
ξRT

i ER(t)ξ̇R
i (t− τ(t))− ξRT

i EI(t)ξ̇ I
i (t− τ(t)) + ξ IT

i EI(t)ξ̇R
i (t− τ(t))

+ξ IT

i ER(t)ξ̇ I
i (t− τ(t))

}
+

N

∑
i=1

ξRT

i (t)
[
−DR +

1
2

(
AR ART

+ ξR2

f − AI AIT
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+BRBRT − BI BIT
+ CRCRT − CICIT

)
+ πR

i (t)
]
ξR

i (t)

+ ξR2

k

N

∑
i=1

ξRT

i (t− τ(t))ξR
i (t− τ(t)) + ξ I2

k

N

∑
i=1

ξ IT

i (t− τ(t))ξ I
i (t− τ(t)) (16)

Then, the derivative of the Lyapunov term V2(t) and V3(t) is described as follows:

V̇2(t) =
1
2

N

∑
i=1

ξRT

i (t)PξR
i (t)−

1
2

N

∑
i=1

(
1− ˙̂τ(t)

)
ξRT

i (t− τ̂(t))PξR
i (t− τ̂(t))

+
1
2

N

∑
i=1

ξ IT

i (t)P1ξ I
i (t)−

1
2

N

∑
i=1

(
1− ˙̂τ(t)

)
ξ IT

i (t− τ̂(t))P1ξ I
i (t− τ̂(t)),

≤1
2

N

∑
i=1

ξRT

i (t)PξR
i (t)−

1
2

N

∑
i=1

(1− τ̃)ξRT

i (t− τ̂(t))PξR
i (t− τ̂(t))

+
1
2

N

∑
i=1

ξ IT

i (t)P1ξ I
i (t)−

1
2

N

∑
i=1

(1− τ̃)ξ IT

i (t− τ̂(t))P1ξ I
i (t− τ̂(t)), (17)

V̇3(t) ≤
1
2

ξR2

h

N

∑
i=1

τξRT

i (t)ξR
i (t)−

ξR2

h
2

N

∑
i=1

∫ t

t−τ
ξRT

i (ζ)ξR
i (ζ)dζ

+
1
2

ξ I2

h

N

∑
i=1

τξ IT

i (t)ξ I
i (t)−

ξ I2

h
2

N

∑
i=1

∫ t

t−τ
ξ IT

i (ζ)ξ I
i (ζ)dζ (18)

and

V̇4(t) =
N

∑
i=1

1
ω

πR
i (t)π̇

R
i (t) +

N

∑
i=1

1
ω

π I
i (t)π̇

I
i (t),

≤
N

∑
i=1

[
−ξRT

i (t)ER ξ̇R
i (t− τ(t))− πR

i (t)ξ
RT

i (t)ξR
i (t)− ξ IT

i (t)EI ξ̇ I
i (t− τ(t))

− π I
i (t)ξ

IT

i (t)ξ I
i (t)− ξRT

i (t)φξR
i (t)− ξ IT

i (t)φξ I
i (t)−

N

∑
j=1

ξRT

i (t)lijΓξR
j (t− τ(t))

− ε
∥∥∥ξR

i (t)
∥∥∥− ε√

ε

∣∣∣πR
i (t)

∣∣∣− N

∑
j=1

ξ IT

i (t)lijΓξ I
j (t− τ(t))− ε

∥∥∥ξ I
i (t)

∥∥∥− ε√
ε

∣∣∣π I
i (t)

∣∣∣
− ε

(∫ t

t−τ(t)
ξRT

i (s)PξR
i (s)ds

) 1
2
− ε

(∫ t

t−τ(t)
ξ IT

i (s)Pξ I
i (s)ds

) 1
2

−εξR2

h

(∫ 0

−τ

∫ t

t+θ
ξRT

i (ζ)ξR
i (ζ)dζdθ

) 1
2
− εξ I2

h

(∫ 0

−τ

∫ t

t+θ
ξ IT

i (ζ)ξ I
i (ζ)dζdθ

) 1
2
]

(19)

According to Assumption 3, we have

V̇(t) ≤ξRT

i (t)

[
− DR +

1
2

AR ART − 1
2

AI AIT
+

1
2

BRBRT − 1
2

BI BIT
+

1
2

CRCRT

− 1
2

CICIT
+

1
2

P +
τξ I2

h
2
− φ

]
ξR(t) + ξ IT

i (t)

[
− DI +

1
2

AR ART
+

1
2

AI AIT

+
1
2

BRBRT
+

1
2

BI BIT
+

1
2

CRCRT
+

1
2

CICIT
+

1
2

P1 +
τξ I2

h
2
− φ

]
ξ I(t)
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+
N

∑
i=1

ξRT

i (t− τ(t))
[

1
2

ξR2

k −
1
2
(1− τ̄P)

]
ξR

i (t− τ(t))

+
N

∑
i=1

ξ IT

i (t− τ(t))
[

1
2

ξ I2

k −
1
2
(1− τ̄P1)

]
ξ I

i (t− τ(t))

−
N

∑
i=1

ε

(∫ t

t−τ(t)
ξRT

i (s)PξR
i (s)ds

) 1
2
−

N

∑
i=1

ε

(∫ t

t−τ(t)
ξ IT

i (s)Pξ I
i (s)ds

) 1
2

−
N

∑
i=1

εξR2

h

(∫ 0

−τ

∫ t

t+θ
ξRT

i (ζ)ξR
i (ζ)dζdθ

) 1
2
−

N

∑
i=1

εξ I2

h

(∫ 0

−τ

∫ t

t+θ
ξ IT

i (ζ)ξ I
i (ζ)dζdθ

) 1
2

−
N

∑
i=1

ε
∥∥∥ξ I

i (t)
∥∥∥− N

∑
i=1

ε√
ε

∣∣∣π I
i (t)

∣∣∣− N

∑
i=1

ε
∥∥∥ξ I

i (t)
∥∥∥− N

∑
i=1

ε√
ε

∣∣∣π I
i (t)

∣∣∣. (20)

Then,

V̇(t) ≤ξRT

i (t)
[
−λmin(DR) +

1
2

λmax(AR ART
)− 1

2
λmin(AI AIT

) +
1
2

λmax(BRBRT
)

− 1
2

λmin(BI BIT
) +

1
2

λmax(CRCRT
)− 1

2
λmin(CICIT

) +
1
2

λmax(P)

+
τξ I2

h
2
− λmin(φ)

]
ξR(t) + ξ IT

i (t)
[
−λmin(DI) +

1
2

λmax(AR ART
)

+
1
2

λmax(AI AIT
) +

1
2

λmax(BRBRT
) +

1
2

λmax(BI BIT
)

+
1
2

λmax(CRCRT
) +

1
2

λmax(CICIT
) +

1
2

λmax(P1) +
τξ I2

h
2
− λmin(φ)

]
ξ I(t)

+
N

∑
i=1

ξRT

i (t− τ(t))
[

1
2

ξR2

k −
1
2
(1− τ̄P)

]
ξR

i (t− τ(t))

+
N

∑
i=1

ξ IT

i (t− τ(t))
[

1
2

ξ I2

k −
1
2
(1− τ̄P1)

]
ξ I

i (t− τ(t))

−
N

∑
i=1

ε

(∫ t

t−τ(t)
ξRT

i (s)PξR
i (s)ds

) 1
2
−

N

∑
i=1

ε

(∫ t

t−τ(t)
ξ IT

i (s)Pξ I
i (s)ds

) 1
2

−
N

∑
i=1

εξR2

h

(∫ 0

−τ

∫ t

t+θ
ξRT

i (ζ)ξR
i (ζ)dζdθ

) 1
2
−

N

∑
i=1

εξ I2

h

(∫ 0

−τ

∫ t

t+θ
ξ IT

i (ζ)ξ I
i (ζ)dζdθ

) 1
2

−
N

∑
i=1

ε
∥∥∥ξ I

i (t)
∥∥∥− N

∑
i=1

ε√
ε

∣∣∣π I
i (t)

∣∣∣− N

∑
i=1

ε
∥∥∥ξ I

i (t)
∥∥∥− N

∑
i=1

ε√
ε

∣∣∣π I
i (t)

∣∣∣. (21)

Based on inequality conditions (7)–(9), we have

V̇(t) ≤
N

∑
i=1

[
−

N

∑
i=1

ε

(∫ t

t−τ(t)
ξRT

i (s)PξR
i (s)ds

) 1
2
−

N

∑
i=1

ε

(∫ t

t−τ(t)
ξ IT

i (s)Pξ I
i (s)ds

) 1
2

−
N

∑
i=1

εξR
h

(∫ 0

−τ

∫ t

t+θ
ξRT

i (ζ)ξR
i (ζ)dζdθ

) 1
2
−

N

∑
i=1

εξ I
h

(∫ 0

−τ

∫ t

t+θ
ξ IT

i (ζ)ξ I
i (ζ)dζdθ

) 1
2

−
N

∑
i=1

ε(
∥∥∥ξ I

i (t)
∥∥∥2
)

1
2 −

N

∑
i=1

ε√
ε
(
∣∣∣π I

i (t)
∣∣∣2) 1

2 −
N

∑
i=1

ε(
∥∥∥ξ I

i (t)
∥∥∥2
)

1
2 −

N

∑
i=1

ε√
ε
(
∣∣∣π I

i (t)
∣∣∣2) 1

2

]
,
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≤−
√

2ε

[
1
2

N

∑
i=1

ξRT

i (t)ξR
i (t) +

1
2

N

∑
i=1

ξ IT

i (t)ξ I
i (t) +

1
2

N

∑
i=1

∫ t

t−τ̂(t)
ξRT

i (θ)PξR
i (θ)dθ

+
1
2

N

∑
i=1

∫ t

t−τ̂(t)
ξ IT

i (t)P1ξ I
i (t)dθ +

1
2

N

∑
i=1

∫ 0

−τ(t)

∫ t

t+s
ξRT

i (ζ)ξT
h ξhξi(ζ)dζds

+
1
2

N

∑
i=1

∫ 0

−τ(t)

∫ t

t+s
ξ IT

i (ζ)ξT
h ξhξi(ζ)dζds +

N

∑
i=1

1
2ω

πR2

i (t) +
N

∑
i=1

1
2ω

π I2

i (t)

] 1
2

,

=−
√

2εV(t)
1
2 . (22)

From Lemma 2 and (22), the error converges to zero in a finite amount of time under

T = t0 +
(2V(t0))

1
2

ε . As such, using the formulated adaptive control scheme, the finite-time
CS problem of neutral-type CVCNNs with mixed delays can be solved. This concludes
the proof.

4. Numerical Evaluation

To demonstrate the effectiveness of the aforementioned results, we consider the fol-
lowing numerical example

Case (i): A neutral-type CVCNN model with distributed delays is formed, where the
ith dynamics of the model is described as follows:

dφi(t)
dt = Eφ̇i(t− σ(t))− Dξi(t) + A f̂ (φi(t)) + Bk̂(φi(t− τ(t))) + C

∫ t
t−τ ĥ(φi(ζ))dζ

+∑N
j=1 lijΓφj(t− τ(t)) + ui(t), t > 0,

φi(s) = ϑi(s), s ∈ [−τ, 0], i = 1, 2, . . . , N,

(23)

where φi(t) = [φ1i(t), φ2i(t)]T ∈ C2 is the state vector of the model and its parameters are
defined as

E =

[
0.5 + i0.5 0

0 0.5 + i0.5

]
, D =

[
0.1 + i0.6 0

0 0.1 + i0.6

]
,

A =

[
1.2 + i1.0 −0.1 + i3.2
−0.5 + i0.1 0.2 + i0.1

]
, B =

[
1 + i0.2 −0.5 + i0.2
−1.5 + i1.1 0.3 + i0.1

]
,

C =

[
2.2 + i1.4 −0.7 + i3.2
−0.6 + i0.1 0.5 + i0.1

]
,

The time-varying delay is chosen as τ(t) = et/(1 + et) and τ̄ = 1, while the activa-
tions are considered to be f̂ (φi(t)) = tanh(φi(t)), f̂ (φi(t)) = tanh(φi(t)). According to
Assumptions 1–4, f̂ (φi(t)) = tanh(φR

i (t)) + i tanh(φI
i (t)), f̂ (φi(t)) = tanh(φR

i (t)) + i
tanh(φI

i (t)), let ξR
f = ξ I

f = ξR
k = ξ I

k = ξR
h = ξ I

h = 1, ς = 20, ς̃ = 5, λmin(DR) =

1, λmin(DI) = 1, λmax(AR ART
) = 1.7190, λmax(AI AIT

) = 1.0181, λmax(BRBRT
) = 3.5327,

λmax(BI BIT
) = 1.2685, λmax(CRCRT

) = 5.8611, λmax(CICIT
) = 12.2173, λmax(ERERT

) =

0.0100, λmax(EI EIT
) = 0.3600λmin(AR ART

) = 0.0210, λmin(AI AIT
) = 0.0119,

λmin(BRBRT
) = 0.0573, λmin(BI BIT

) = 0.0315, λmin(CRCRT
) = 0.0789, λmin(CICIT

) =

0.0027, λmin(ERERT
) = 0.0100, λmin(EI EIT

) = 0.3600. According to Theorem 1, the condi-
tions obtained indicate the feasible solutions are 741.3839 < λmin(φ), 755.5942 < λmin(φ1),



Fractal Fract. 2022, 6, 515 13 of 19

λmax(PPT) = 1.4872× 103, λmax(P1PT
1 ) = 1.4866× 103. The outer coupling term of the

given system is given as

(lij)4×4 =


2 −1 −1 0
0 1 0 0
0 −1 1 0
0 0 0 1


Furthermore, the drive system is described as

dψh(t)
dt = Eψ̇h(t− σ(t))− Dψh(t) + A f̂ (ψh(t)) + Bk̂(ψh(t− τ(t)))

+C
∫ t

t−τ ĥ(ψh(ζ))dζ, t > 0,

ψh(s) = ϕh(s), s ∈ [−τ, 0], h = 1, 2, . . . , g,

(24)

where ψh(t) = [ψh1(t), ψh2(t)]
T is the state vector of the drive model, while the parameters

of the drive system are considered the same as those of the response system in this example.
Then, by employing Assumption 1, the error model can be obtained as follows:



ξ̇R
i (t) = ER ξ̇R

i (t− τ(t)) + EI ξ̇ I
i (t− τ(t))− DRξR

i (t) + AR f̂ R(ξi(t))− AI f̂ I(ξi(t))

+BRK̂R(ξi(t− τ(t)))− BI K̂ I(ξi(t− τ(t))) + CR ∫ t
t−τ ĥR(ξi(ζ))dζ

−CI ∫ t
t−τ ĥI(ξi(ζ))dζ + ∑N

j=1 lijΓξR(t− τ(t) + uR(t),

ξ̇ I
i (t) = EI ξ̇R

i (t− τ(t)) + ER ξ̇ I
i (t− τ(t))− DRξ I

i (t) + AR f̂ I(ξi(t)) + AI f̂ R(ξi(t))

+BRK̂ I(ξ(t− τ(t))) + BI K̂R(ξ(t− τ(t))) + CR ∫ t
t−τ ĥI(ξi(ζ))dζ

+CI ∫ t
t−τ ĥR(ξi(ζ))dζ + ∑N

j=1 lijΓξ I(t− τ(t) + uI(t),

ξR
i (s) = ϑR

i (s)− ϕR
h (s), ξ I

i (s) = ϑI
i (s)− ϕI

h(s), s ∈ [−τ, 0], i = 1, 2, . . . , N,

(25)

where ξR
i (t) = (ξR

i1(t), ξR
i2(t), . . . , ξR

in(t))
T , ξ I

i (t) = (ξ I
i1(t), ξ I

i2(t), . . . , ξ I
in(t))

T , E = ER +
iEI = (eR

pq)n×n + i(eI
pq)n×n, A = AR + iAI = (aR

pq)n×n + i(aI
pq)n×n, B = BR + iBI =

(bR
pq)n×n + i(bI

pq)n×n, C = CR + iCI = (cR
pq)n×n + i(cI

pq)n×n, u(t) = uR(t) + iuI(t).
If the state of the above-mentioned system is finite-time stable, then finite-time CS

of (23) and (24) is solved.

ER =

[
0.5 0
0 0.5

]
, DR =

[
0.1 0
0 0.1

]
, AR =

[
1.2 −0.1
−0.5 0.2

]
, BR =

[
1 −0.5
−1.5 0.3

]
,

EI =

[
0.5 0
0 0.5

]
, DI =

[
0.6 0
0 0.6

]
, AI =

[
1.0 3.2
0.1 0.1

]
, BI =

[
0.2 0.2
1.1 0.1

]
,

CR =

[
2.2 −0.7
−0.6 0.5

]
, CI =

[
1.4 3.2
0.1 0.1

]
,

Figures 1–4 illustrate that neurons in each cluster can synchronize with their target
neurons in a finite amount of time, while under the adaptive controller, synchronization
among various clusters is not achievable. Figure 5 displays the trajectories of the CS errors.
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Figure 1. (a) The real parts of state trajectories of CVNNs (23) and (24) for h = 1, i = 1. (b) The real
parts of state trajectories of CVNNs (23) and (24) for h = 1, i = 2 .
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Figure 2. (a) The real parts of state trajectories of CVNNs (23) and (24) for h = 2, i = 3. (b) The real
parts of state trajectories of CVNNs (23) and (24) for h = 2, i = 4.
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Figure 3. (a) The imaginary parts of state trajectories of CVNNs (23) and (24) for h = 1, i = 1. (b) The
imaginary parts of state trajectories of CVNNs (23) and (24) for h = 1, i = 2.
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Figure 4. (a) The imaginary parts of state trajectories of CVNNs (23) and (24) for h = 2, i = 3. (b) The
imaginary parts of state trajectories of CVNNs (23) and (24) for h = 2, i = 4.
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Figure 5. (a) The error state trajectories between CVNNs (23) and (24) of cluster one i.e., (h = 1, i =
1, 2). (b) The error state trajectories between CVNNs (23) and (24) of cluster two i.e., (h = 2, i = 3, 4) .

Case (ii): We consider the state of the model (23) as in the three-dimensional complex
domain φi(t) ∈ C3, that is φi(t) = (φ1i(t), φ2i(t), φ3i(t))T . Then, the system parameters are
must be three-dimensional and are taken as

E =

 0.5 + i0.5 0 0
0 0.5 + i0.5 0
0 0 0.5 + i0.5

, D =

 0.1 + i0.6 0 0
0 0.1 + i0.6 0
0 0 0.1 + i0.6

,

A =

 1.78 + i0.1 21 + i0.02 0.1 + i0.3
0.1 + i0.0 1.78 + i0.01 0.2 + i0.1
0.2 + i0.0 0 + i0.01 0.1 + i0.1

,

B =

 −1.44− i0.1 0.2 + i0.0 0.1 + i0.2
0.1 + i0.01 −1.44 + i0.0 0.1 + i0.02
0.2 + i0.07 −0.1− i0.08 0.1 + i0.01

,

C =

 2.2 + i1.4 −0.7 + i3.2 0.1 + i0.02
−0.6 + i0.1 0.5 + i0.1 0 + i0.01

0.01 + i0 0.02 + i0.1 0 + i0.02

.

Therefore, according to the Assumptions 1–4 and Theorem 1, the conditions obtained
indicate the feasible solutions are 770.7230 < λmin(φ), 782.8778 < λmin(φ1), λmax(PPT) =
1.0990× 103, λmax(P1PT

1 ) = 1.0985× 103. Figures 6 and 7 illustrate, that neurons in each
cluster can synchronize with their target neurons in a finite amount of time, while un-
der the adaptive controller, synchronization among various clusters is not achievable.
Figures 8 and 9 displays the trajectories of the CS errors.
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Figure 6. The real and imaginary parts of state trajectories of cluster one i.e., (h = 1, i = 1, 2) of
CVNNs (23) and (24).

Figure 7. The real and imaginary parts of state trajectories of cluster two i.e., (h = 2, i = 3, 4) of
CVNNs (23) and (24).
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Figure 8. The error state trajectories of cluster one i.e., (h = 1, i = 1, 2) between CVNNs (23) and (24).

Figure 9. The error state trajectories of cluster two i.e., (h = 2, i = 3, 4) between CVNNs (23) and (24).

Remark 5. As a result, many academics have made significant efforts to study delayed neural net-
work systems, and many excellent publications have resulted from their efforts [46–49]. For instance,
the authors of [46] investigated the stability issues of neutral-type Cohen–Grossberg neural networks
with multiple time delays. A novel sufficient stability criterion is derived for Cohen–Grossberg
neural networks of neutral type with multiple delays by utilizing a modified and enhanced version
of a previously introduced Lyapunov functional. The new stability problems for more general
models of neutral-type neural network systems were investigated in [47,48]. In this study, new
finite-time CS of CCVNN models with single neutral delay were realized under adaptive control.
The obtained results can extend further those in the existing literature [46–49]. For further research,
the dynamics of coupled delayed CVNN models with multiple neutral delays and impulsive effects
will be investigated.

5. Conclusions

In this study, we examined the issue of adaptive finite-time CS pertaining to neutral-type
CVCNNs with mixed time delays. The relevant stability analysis is very challenging, since
it takes into account a more general dynamic model of neutral-type CVCNN with mixed
time delays. A useful adaptive control scheme has been developed to address this chal-
lenging issue. Using the Lyapunov functionals approach and linear matrix inequality, the
corresponding adequate conditions have been obtained. The simulation results positively
indicate the viability and validity of the proposed method. For further work, finite-time CS
of neutral-type delayed CVCNNs with stochastic inputs and disturbances will be studied
in detail.
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