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Abstract: In this paper, we focus on the computation of Caputo-type fractional differential equations.
A high-order predictor—corrector method is derived by applying the quadratic interpolation polyno-
mial approximation for the integral function. In order to deal with the weak singularity of the solution
near the initial time of the fractional differential equations caused by the fractional derivative, graded
meshes were used for time discretization. The error analysis of the predictor—corrector method is care-
fully investigated under suitable conditions on the data. Moreover, an efficient sum-of-exponentials
(SOE) approximation to the kernel function was designed to reduce the computational cost. Lastly,
several numerical examples are presented to support our theoretical analysis.
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1. Introduction

Growing interest has focused on the study of fractional differential equations (FDEs)
over the last few decades; see [1,2] and the references therein. Obtaining the exact solutions
for FDEs can be very challenging, especially for general right-hand-side functions. Thus,
there is a need to develop numerical methods for FDEs, for which extensive work has
been conducted. One idea is to directly approximate the fractional derivative operators,
e.g., [3-5]. Another idea is first to transform the FDEs into the integral forms and then
use the numerical schemes to solve the integral equation; see, e.g., [6—15]. There are also
some other numerical methods for FDEs, such as the variational iteration [16], Adomian
decomposition [17], finite-element [18], and spectral [19] methods.

Adams methods are one of the most studied implicit-explicit linear multistep method
groups. They play a major rule in the numerical processing of various differential equa-
tions. Therefore, great interest has been devoted to generalizing Adams methods to FDEs,
especially the Adams-type predictor-corrector method. For example, Diethelm et al. [7-10]
suggested the numerical approximation of FDEs using the Adams-type predictor—corrector
method on uniform meshes. Deng [20] apprehended the short memory principle of frac-
tional calculus and further applied the Adams-type predictor—corrector method for the
numerical solution of FDEs on uniform meshes. Nguyen and Jang [21] studied a new
Adams-type predictor-corrector method on uniform meshes by introducing a new predic-
tion stage which is the same accuracy order as that of the correction stage for solving FDEs.
Zhou et al. [22] considered the fast second-order Adams-type predictor—corrector method
on graded meshes to solve a nonlinear time-fractional Benjamin-Bona—Mahony—Burgers
equation.

Solutions to FDEs typically exhibit weak singularity at the initial time. In order to
handle such problems, several techniques were developed, such as using nonuniform grids
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to keep errors small near the singularity [5,12,13,23-25], or employing correction terms to
recover theoretical accuracy [6,15,26,27], or choosing a simple change in variable to derive
a new and equivalent time-rescaled FDE [28,29].

In this paper, our goals are to construct high-order numerical methods and deal
with the singularity of the solution of FDEs. Motivated by the above research, we follow
the predictor-corrector method proposed in [21] and apply graded meshes to solve the
following FDEs

“Diy(t) = f(ty(H) forae (0,1), t€ (0T  y(0) =y, @

where yp is a real number; Df denotes the fractional derivative in the Caputo sense, which
is defined for all functions w that are absolutely continuous on t > 0 by (e.g., [1])

Diw(t) := ﬁ /;O(t —38)*w'(s)ds fora € (0,1). )

To ensure that the existence and uniqueness of the solution of Problem (1) (e.g.,[8], Theorems
2.1,2.2), we assumed that the continuous function f fulfilled the Lipschitz condition with
respect to its second argument on a suitable set G, i.e., forany y, 7 € G,

f(ty) = f(L9 < Lly—g| forte[0,T], ®)

where L > 0 is the Lipschitz constant independent of t,y and §. Equation (1) can be
rewritten as the following Volterra integral equation (e.g., [8])

t

W0 =v0+ s [ (=9 yle)ds with £y(6) = (6 y(e). @

Js=0

The following regularity assumptions on the solution are also used for our proposed
method:

y € Cl0,T]NC3(0,T] with [y®)(£)| <C(1+t*¥) fork=0,1,2,3, t€ (0,T]. (5)

Moreover, we can learn from ([30], Section 2) or ([10], Theorem 2.1) that the analytical
solution of (1) can be written as the summation of the singular and the regular parts; see
the following lemma where for each s € R, [s] := min{n € N:n > s}.

Lemma 1 ([10], Theorem 2.1).

(a) Suppose that f € C2(G). Then, there exist some constants c1,¢y, . ..,c5 € R and a function
¢ € CY0, T] such that

)
y(t) =9p(t) + Y cot™ witho:=[1/a] — 1.
v=1
(b)  Suppose that f € CS(G). Then, there exist some constants cq,¢2,...,¢5 € R, dy,dy,...,ds €
R and a function ¥ € C2[0, T), such that

y(t) = (t) + i Cot™ + i dpt' T with ¢ := [2/a] —1, 7:= [1/a] — 1.
v=1

v=1

From the above lemma, when f € C™(G), m > 2, there are some constants ¢, ¢y, ..., Cs
R, such that
y(t) = c1t® + cot® + - - - + c4t? + smoother terms.

Then A
“Diy(t) =di +dat* + - + dst@=D% 4 smoother terms,
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where dq,dy, ..., ds € R are some constants. Therefore, assumptions (5) are reasonable, and
we can also obtain for z := “D&y that

zeCl0,TINC30,T], |z2W(t)] <Cc1+t%) fork=0,1,2,3,te (0,T]. (6

The computational work and storage of the predictor—corrector method still remain
very high due to the nonlocality of the fractional derivatives. Therefore, fast methods to
reduce computational cost and storage were also investigated. For example, on the basis
of an efficient sum-of-exponentials (SOE) approximation for the kernel function t—#~1,
Jiang et al. [31] introduced a fast evaluation of the Caputo fractional derivative on the
interval [At, T] with a uniform absolute error €, where f € (0,1) and At is the time step
size. One can also refer to [32-35]. In the present paper, we also use this SOE technique to
construct the corresponding fast predictor—corrector method for (1).

The rest of this paper is organized as follows. In Section 2, we formulate the high-order
predictor—corrector method for (1). In Section 3, we discuss the error estimates of the
predictor—corrector method. In Section 4, we propose a fast algorithm for the presented
predictor—corrector method. Several numerical examples are given in Section 5 to illustrate
the computational flexibility and verify our error estimates of the used methods. A brief
conclusion is given in Section 6.

Notation: In this paper, notation C is used to denote a generic positive constant that is
always independent of mesh size, but may take different values at different occurrences.

2. High-Order Predictor—Corrector Method

In order to handle the weak singularity of the solution of (1), we consider the graded
meshes

ty, =T(n/N)" forn=0,1,...,N, Ty =t, —t,_1 forn=1,2,...,N,
where constant mesh grading r > 1 is chosen by the user. One can obtain that
ty <CN " and 7, = TN '[n' —(n —1)] <CN"n"! forn=1,2,...,N. (7)

The discretized version of (4) at t = t,,4; is given as
1 S tj“ a—1
Yltur) = vot prs 1o [ (bua =9 1y (s) ds. ®)
r(“) ]:O S:t]‘

To construct the high-order predictor—corrector method for (1), on each small inter-
val [tj, ti1], we denote the linear interpolation polynomial and quadratic interpolation
polynomial of a function w(t) as Iy jw(t) and I jw(t), respectively, i.e.,

t—ti t—t
I jw(t) = ——w(t) + ——-w(tj1)
! b=t b=t T
= Lj,o(t)w(tj) + Lj,l (t)w(t]-H) forj=0,1,...,N—1, )
and
(t =) (t = tjs1) (t = ti)(t = tja)
I w(t) = ! o w(ti) + / T w(t))

(tj1 = tj) (i1 — tjs1)
(t—ti1)(t— 1))

(tir1 —ti1) (b1 —

= Qj—1(Hw(ti1) + Qjo(H)w(t;) + Qj1(Hw(tiy) forj=1,2,...,N—1. (10)

(ti —ti—1)(t — tjz1)

) w(tj-‘rl)
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Set
t.
ait = /”l(tn+1 —5)*Lig(s)ds with =0or1,j=0,1,...,n, (11a)
=t
t.
b= /’“(fn+1 —5)*1Qjp(s)ds with6 = —1,00r1, j=1,2,...,n, (11b)

t.
C;’;l = /s_jjl<tn+1 — s)“*lQJ-,Lg(s) ds withd=-1,00r1, j=23,...,n (11¢)

For the calculation of the predictor formula of (8), we do not use the unknown value y(t,1)

when computing fstgj (tns1 — 5)* 1 f,(s) ds. Three cases are divided for n as follows:

*  Whenn =0, we use f,(y) to approximate f,(t) on interval [to, t1].

*  Whenn =1, we use ITy o f(t) to approximate f,(t) on intervals [ty, t1] and [t1, f2].

e  Whenn > 2, we use I of,(t) to approximate f,(t) on first small interval [fo, t],
Iy fy(t) to approximate f,(t) on each interval [t;,t;1] (j = 1,2,...,n —1) and
ITp,,—1fy(t) to approximate f,(t) on the last small interval [t;, t,1].

Then, it follows from (8) that

1 h a—1
Y(tes1) = yo + m/s (tng1 —s)" Ty ofy(s) ds

=t

11l i T, £, (s) d
+ W Z / (tn+1 — S) 2,jfy(5) 5

j=1 7551

1 tn+1 a—1
+ () /S (tnp1 —8)" Ty 1 fy(s)ds

=t

=yo+ r(la) ( Y ATy () + et fy(bn—2) + e fy(ta) + chlfyan)), (12)

=0

where I, _qw(t) := —ITj gw(t) + w(ty), Ixpw(t) := Iy gw(t) for a function w(t), and
dy =0, 6(1)/71 = c(lm =0, c(l),1 = /:t (t1 —s)* Lds (forn = 0); (13a)
=y #=dy do=0
C%,e = /:t (ta—3)* Log(s)ds with8=0or1 (forn = 1); (13b)
43 = a3 +1 b, & =a,+b, d3="b, (forn=2); (13¢)

and, forn > 3,

ag st + bf*_ll, forj =0,
agtt + byt + 05, forj=1,
4t = SOl pit b, for2 < j<n -2, (14)
beérl + bZﬂIO, forj=n-—1,
it forj=n.
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For the corrector formula of (8), we use ITj of, (t) to approximate f, () on the first small
interval [fo, t1], and Iy ;f,(f) to approximate f,(t) on intervals [t; tj 1] (j = 1,2,...,1).
Hence, we can obtain from (8) that

Y(tns1) = yo + F(ltx) /t1 (the1 — S)“ilnl,ofy(s) ds

1_‘1< dnJrlf bn+1fy( . 1) anrlfy(tn) +bn11fy( n+l)>/ (15)

where
b})],] = 0, bé]o - a(l)’o, b(1),1 - a(l),l (for n= 0) (16)

We denote the preliminary approximation of y(t,1) from (12) as yE 41 (used in (15)) and
the final approximation of y(t,1) from (15) as y,4+1. Then, with (12) and (15), our predictor—
corrector method for Problem (1) can be derived as follows:

1
y5+1 =1y + ﬁ Z dn+1f] + Cn-‘rl fn )+ Cn+1fn 1+ Cn+1fn
K 7)

1
Ynt+1 = Yo + W ( 'Zo d;'HlfJ bztllfn—l + b"“fn b"“ fﬂ)
]:

where f; := f(t;,y;) and f]-P = f(tjryf)-

Remark 1. We use the same approximation of integral f Lt (tns1 — )"~ Lfy(s) ds for the calcula-
tion of predictor Formula (12) and corrector Formula (15), “which had the greatest computational
burden. Thus, this reduces the overall cost of the predictor—corrector method. In addition, even
though our predictor—corrector method (17) can be viewed as a generalization of the predictor—
corrector method presented in [21], unlike their method, we did not need to use the values of y(ty4)
and y(ty ) to start up the scheme.

3. Error Estimates of the Predictor—Corrector Method

In this section, we study the error analysis of the predictor—corrector method (17). For
this, we first introduce some lemmas that are used in analysis.

Lemma 2 ([11], Lemma 3.3). Assume that k;,, < CTjyq(tn — t‘j)"‘_1 with0<j<n-—1,1<
n < N. Let g > 0. Assume also that sequence {qbn}nN:O satisfies

(PO S IPO/
n—1
¢ < Po + Eo kin®j for1<mn <N.

Then, one has
¢n <Cypp forl<mn<N.

Lemma 3. Terms d;?"’l {b”ﬂ, b;qa“l, bﬁ’l} and { ”*%, c]”arl, c]"fl} in (11), (13), (14) and (16)

satisfy the following estimates:

[ < Crjga (b = 1)1 for0<j<m 0<n<N-1,

it < CTyoq(typr — ta2)™™' for2<n < N-1,
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{|c"+1| bt \} < CTultpsr —tp1)¥ ! forl<n<N-—1,
{\C”+1| bt |ont! } <Ctiq for0<n<N-1L

Proof. A simple deduction from the expression of Ljg (6 = 0or 1) and Q;¢ (¢ = —1,00r 1)
in (9) and (10) gives

ILig] <C forf=0o0rl, |Qjel <C for6=—1,00rl.

Then, from (11), we have for 0 < j < nand 6§ = 0 or 1 that
n+1 j+1 a—1
|a | < C/ tyir —s)* ds
< C[(tn+1 — )% = (bas1 — tj41)"]

1—a
_ tn+1 — 1t
< T (bygr — 1) L
tnt1 =t

1-a
- Tj+1
< Cripq(tysr — 1) 1 1+ 4
> ]+1(n+1 ]) ( Tn+1+Tn+"'+Tj+2
< Crpa(turs — )"
Again, one can obtain that

|b;?;1| < Crjya(tysr — )" with6=—-1,1orl, j=0,1,...,7, (18)

|Cn+1|<C’L']+1(n+1—t) withf = —1,10r1, j=0,1,...,n. (19)

1—a
e T2 [ tpy1 — £
J Tiv1 \ Ent1 —tjpa

1-a
1T Ti+1
< CTipq by — ) 1214
> ]+1(n+1 ]) Tl( Tn+l+Tn+"'+Tj+2

< CTig(tner — )" L (20)

Moreover,

Tia(tup1 — t41) " = T (bnyr — ¢

Hence, for2 < j <n —2, n > 3, one has from (14) that
721 5
< CT(turr — 1)+ CTya (basr — 1)1+ Chypatuga — t1)" !
< Crjpa(tupr — )

Similar to the above inequalities, we can obtain other cases of the bound of |d]r"4rl |; that is,
|d;?+1| < CTii(tusr —t)* ' forj=0,1,...,n,n=0,1,...,N—1.
In addition, by using (18)—(20), we obtain

| n+1 | < CTn-H( n+1 — tn) S CTn(tn-H - tn—l)a_l

< Clyq(typr — tu2)® ! for2<n<N-1,

{lems 1B < Crusa(tagn — )™ < Caltass — i)™ forl<n<N-1,
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{lemst orgt leng! } < Cryy for0<m < N-—1,
Therefore, the proof is now completed. []
Forr > 1and 0 < a < 1. Define
N2« forl1 <r< %,
®(N,r,a) :={ N 3InN forr = %, (21)
N3 forr > %

Lemma 4. Let w € C[0, T] N C3(0, T]. Suppose that |w®) (t)| < C(1 + t*~K) fork = 0,1,2,3,
t € (0, T]. For n > 0, we define

n+1 __
L= ~

'ty n tit1
[ =9 =)&) ds+ Y [ (b =) (0~ o) () ds|,
0 j=17°74
and

=ty

t B nlortia _
= |/$ (tar1 — )" H(w =TIy w)(s)ds + Y /s , (1 —s)" Hw — Ty jw)(s) ds
j=1"°"4

br1
[ =) 0~ Ty y0) (5) ds

=tn

Then, we have
If“ + I;“ < C®(N,r,a) for0<n<N-1.

The proof of the above lemma is a bit lengthy. For the detailed proof, see Appendix A.

Set
e = y(tj) —yj, e]]?:]/(t]-)—]/}J forj=0,1,...,N.

On the basis of the above preliminaries, a convergence criterion of the predictor—corrector
method (17) can be stated as follows.

Theorem 1. Suppose that y(t;) and {y]-}].lio are the solutions of (8) and (17), respectively. Suppose
also that (5) holds true. Then, we have

lejl < CO(N,r,a) for1<j<N.

Proof. We can obtain from (8), (12), (15) and (17) that

=ty

i1 = T(lw) [/stl (tur1 — )" (fy — Tluofy) (s) ds

n=l i
[ =9y = T fy)(5) ds
j=175=%

+ /:H (tnp1 — )L (fy — Top1fy) (5) ds]
é#HUﬂW—ﬁHwﬁH@wdyqu
P

+ CQ,J(Sl (fy(tn—l) _fnfl) +C2j1(fy(tn) _fn)]

= Rq1 + Ryp, (22)

1

T
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and

1
ent1 = W

/stlto(tnﬂ — )" (fy —ofy)(s)ds

n

+) / T(tw — )" Ny — Ty ify)(s) ds]
1= ]

=1 s§=

+ ﬁ l .Xn;)d?“ (Fy(t) = £3) + B0 (Fytur) = fu1) + 005 (fy () — fir)
=
+ 1,(1)b”+1 (fy( th1) — frlz)+1)
= Rp1 + Ry + Ras. 23)

By using (1), (5), (6) and Lemma 4, we have

(N,r,a). (24)

It follows from (3) and Lemma 3 that

n
Rial < CL Y 7l + CL(Iei Y lew -l + 5 lew 1| + Ik lleal),  @5)

j=0
n
[Rop| < CLY . |di Y lej| + CL(|b) ™, [len—1] + [byh | lenl), (26)
j=0
and
|Rp3| < CLr, +l|en+1| (27)

Then, we obtain from (22)—(27) that

lef 1| < CO(N,7,a +CLZ |d"+1||e |
j=

+ CL(leg ezl + e llea—] + Iy lea ) 28)
and

n
lensa] < CO(N, 7,@) +CL Y [d7+]|e;|
=0

+ CL (1B, llen-al + 1655 lenl ) + CLS, el - 29)

Substituting (28) into (29) gives

n
leyi1] < CO(N,r,a)+C Z |d;?+1He]-| +C(| n+1 1llen—a| + |c”+1||€n 1|+ \Cn+1||en\)
j=0
+C (1Bt ena | + 5 el )
< C@(N,r,a) +C ZT]‘H w1 — ) ey (30)
j=0

for a fixed constant C; with the use of Lemma 3. Invoking Lemma 2 to (30) gives

leni1] < CO(N,r,a) for0<n<N-1.
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The proof is, thus, complete. O

Remark 2. Our predictor—corrector method (17) can easily be generalized to solve (1) with o > 1.
The corresponding convergence order is

N-73InN 2re =3, .
|ej| <C 3 n for m. with1 < j < N.
N otherwise,

4. Construction of the Fast Algorithm

Due to the nonlocality of the fractional derivatives, our predictor—corrector method (17)
also needed high computational work and storage. In order to overcome this difficulty,
inspired by Jiang [31], in this section we consider the corresponding sum-of-exponentials
(SOE) technique to improve the computational efficiency of the predictor—corrector method
(17). Before deriving the fast predictor—corrector method, we give the following lemma for
the SOE approximation.

Lemma 5 ([31], Section 2.1). For the given p € (0,2), an absolute tolerance error €, a cut-off time
At 1= miny<,<n Ty and a final time T, there exist a positive integer Nexp, positive quadrature
nodes s;, and corresponding positive weights @; (i = 1,2, ..., Nexp) such that

Nexp

tiﬁ— Z C@ieisit

i=1

<e forte [AtT],

where

1 1 T 1 1 1
Nexp = O((log (—:) <loglog€ + log At> + (log At) (logloge +log At))

Now, we describe the fast predictor—corrector method, and we obtain from (12) that

N,
1 h exp
Y(tr1) ® Yo+ = Iy fy(s) 2@6 i(t1=9) gs
T(a) | Js=t
n=l rt 4 Nexp
+ H2,]fy Z ;e” si(tws1-5) gg
] 1 S= t

1 [EE] a—1
+ W/s (tng1 — )" Ty u_1fy(s)ds

=tn
Ne‘xp

* Z‘”l[/ W& T hofy (s) ds
0

n—1

t,
VR [ g0

j=175=t

1 tug1 a—1
+ W/s (tnp1 —8)" Ty u_1fy(s)ds

=ty

Newp
_3/0+1"(1,x) ( Y @iP! 4+ et fy(tn2) + it fy () + cih fy(tn)>, (31)

i=1
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where Pl-0 =0fori=1,2,..., Nexp and

=t

t n=l cti4

Pin — / e_si(t;z+1_s)1—[1,0fy(s) ds "‘ Z \/J+ e_si(tn+1_s)]_—_[2,].fy(s) ds
S ]:1 S:tj
fori =1,2,...,Nexp, n=1,2,...,N - 1.

By using a recursive relation, one has that

1
Pin — / —8i(tn+Tpy1-5) H] Ofy dS+ Z / Siltn+Tu1 =3 HZ]fy( )
S

=ty

tn
+/ e Si (tnr1— S)HZYL 1fy(5)

tp1

ty
= ¢ St [/S t (9T o fy (5) ds + 2 / (=0T, £, (s) ds
=0

tn

+ - efsi(t”“*s)ﬂz,n,lfy(s) ds
=tp-1
= e TP AT fy (b)) + Al fy(ba1) + AT fy (1)
forn=2,3,...,N—1, (32)
where
Al = " e~Silti1=) Q1 4(s)ds with = —1,00r1, n=2,3,...,N — 1.

§=tp_1
Similarly, we have from (15) that

Nexp

Y(tur1) = yo + (1 <Z‘szn+b”+ Ly (b 1)+bn+1fy(tn)+b fy(tn+1)>. (33)

The prediction and correction stages approximations of y( n+1) are denoted with 77 11
and 7,1, respectively. Set f; = f(t;,7;) and f_] = f(t, 7 ) Then, we obtain the fast
predictor—corrector method for Problem (1) from (31)—-(33):

_p 1 [ New n+1

yn+1:y0+r(“) Z:(Dpz—’—cn—lfn 2+C f” 1716y f”

_ 1 N”‘” n+1 n+1 k1 £

Yns1 :y0+r(06) 421 ('oipz b f” 1+b f” b n+1
=

=0, pl= [, esiltir=9)(Loofo+ Lorfi)ds fori=1,2,. -+ Nexp,

S—to

(34)

ﬁl” :e*SiTan?*l_i_Al(Hr fn 2+An+lfn 1+An+lfn
fOI‘l: 1,2,...,Ngxp, n= 2,3,...,N.

The next result is the fundamental convergence bound for our fast predictor-corrector
method (34).
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Lemma 6. Let w € C[0, T] N C3(0, T]. Suppose that |w®) (t)] < C(1+ t**) fork = 0,1,2,3,
t € (0, T]. For n > 0, we define

1 ] 1 ty N”p
= / (tya1 —s)* " w(s)ds — Iy pw(s Z @;eSiltt179) gs
s=ty s=tp
n—1 ,t. Nexp t
j+1 .. _ n+1 _
- 2/ I w(s) ) @je siltnt1-9) g —/ (tnp1 — )Y I w(s) ds
j=1 s=t; i=1 s=ty
and
N,
Epy1 exp
= / t (tpp1 — )% ds—/ T gw(s Z @;eSilti179) g
S=1(

Nm’ nt1

_ Z/m 2,jW(s Z @;e Sl ds—/ (tn1 —8)* T -q20(s) ds|.

S=In

Then, we have
B+ < CO(Nra)+Ce for0<n<N-1

Proof. We can obtain that

R

n—1 ,t Nexp
+) /j+1 I jw(s) [(tn+1 e ) wje Si(t+1-5) ds] ds
j=175=¢ i=1
n=l b
<mtlye Iow(s)ds + ) / I jw(s) ds
:tO i—=1 s=t;
] ]

< CP(N,r,a) + Ce,

1n+1

where we used Lemmas 4 and 5. The proof of the bound of I; ™" is similar. [

The following theorem can easily be obtained by repeating the proof of Theorem 1.

Theorem 2. Suppose that y(t;) and {y]} _ o are the solutions of (8) and (34), respectively. Suppose
also that (5) holds true. Then we have

ly(t;) — gj| < CO(N,r,a) +Ce for1<j<N.

5. Numerical Examples

We present some numerical examples to check the convergence orders and the effi-
ciency of the proposed predictor—corrector method (17) and fast predictor—corrector method
(34). For convenience, we denote these two methods as PCM and fPCM, respectively.

Example 1. Consider the following FDEs with « € (0,1):

“Diy(t) = —y(t), t€(0,1;  y(0)=1. (35)
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The exact solution of (35) is y(t) = En(—t*), where

[ee]
=T ock +1)
is the Mittag-Leffler function.
Since
_ ttX ( _ tac )2

“Dfy(t) = —1-

Fla+1) T(a+1) 7

that is, “Dgy(t) behaves as C(1 + *). Set erry := maxo<j<n{|y(t;) —yj|} and err{\] =
maxo<j<n{|y(t;) — 7j|}. Through Theorems 1 and 2, we have

erry < CN—min{2ra3}  ong err{\] < CN—min{2ra3} 4 cc (36)

for PCM (17) and fPCM (34), respectively.
In our calculation, for fPCM, we take € = 10712, In addition, to present the results,
we define p := log,(En/Ezn) to measure the convergence order of the methods, where

En can be erry or err{\]. Applying PCM and fPCM to Problem (35) with different « and 7,
a series of numerical solutions can be obtained. For simplicity, in Table 1, we just display
the maximal nodal errors, convergence orders, and CPU times in seconds of PCM and
fPCM for Problem (35) with &« = 0.5. “EOC” in each column of p denotes the expected
order of convergence presented in (36). “CPU" denotes the total CPU time in seconds for
used methods to solve (35). As one may infer from Table 1, both PCM and fPCM almost
had the same maximal nodal errors and convergence orders because, as shown in (36), the
influence of the SOE approximation error € could be negligible when it is chosen to be
very small. In terms of CPU times, Figure 1 shows that fPCM took less time than PCM did,
and this advantage is becoming more obvious with the increase in time steps N. When N
was rather small compared to PCM, the fPCM was no longer efficient. Moreover, Figure 1
shows that the scales of PCM were like O(N?), but the scales of fPCM were just like O(N).

35 T
=—+—PCM
== fPCM -’
3}-|= =Slope =2 Phd 4
= =Slope =1 L s
25 b
S o i
T 2
O
e
815 8
1, -
051 i
0 1 1 1 1 1 1 1

1.8 2 2.2 2.4 2.6 2.8 3
log4(N)

Figure 1. Total number of time steps N versus CPU times of PCM and fPCM in log-log scale for
Problem (35) with » = 3/(2«).
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Table 1. Maximal nodal errors, convergence orders, and CPU times of PCM and fPCM for Problem (35)
with « = 0.5.

PCM fPCM
N r erry p CrPU err{, p CPU
64 1 1.1732 x 1073 - 2.58 1.1732 x 1073 - 3.34
128 6.9056 x 10~4 0.7646  9.51 6.9056 x 10~4 0.7646  6.95
256 41422 x 10~* 0.7374  39.85 41422 x 1074 0.7374  14.99
512 23219 x 1074 0.8351  162.84 2.3219 x 1074 0.8351 3226
1024 1.2514 x 10~* 0.8917  638.56 1.2514 x 104 0.8917  67.66
EOC 1 1
64 r=4 10150x107* - 241 10150 x 1074 - 4.68
128 1.8584 x 105 24493  9.61 1.8584 x 10 24493 997
256 42737 x 107° 21205  39.23 42737 x 107° 21205 2257
512 1.0898 x 10~ 19715  157.12 1.0898 x 10~ 1.9715  48.61
1024 2.7510 x 10~7 1.9860  639.94 2.7510 x 1077 1.9860  107.74
EOC 2 2
64 r=4  83324x107° - 244 8.3324x107¢ - 5.71
128 8.1803 x 107 33485  9.53 8.1803 x 1077 3.3485 1335
256 9.6599 x 108 3.0821  39.48 9.6599 x 108 3.0821 29.22
512 1.2096 x 108 29975  159.67 1.2096 x 108 29975  65.48
1024 1.5129 x 10~° 29991  580.18 1.5129 x 109 29991  128.07
EOC 3 3
64 r=  35974x107° - 241 35974 x 107 - 6.95
128 3.6817 x 1077 32885 8.71 3.6817 x 1077 3.2885  15.04
256 41714 x 10°8 3.1418  35.14 41714 x 108 3.1418 3336
512 49751 x 10~° 3.0677  142.50 49751 x 1072 3.0677  73.69
1024 6.0885 x 10710 30306 568.88 6.0883 x 10710 30306  159.33
EOC 3 3
Example 2. Consider the following Benjamin—Bona—Mahony—Burgers equation:

CDf,‘(u — Uyy) + Uty — Uyy = f(x, 1) for (x,t) € (0,1) x (0,1], (37a)
u(x,0) = sin(ntx)  for x € [0,1], u(0,t) =u(1,t) =0 forte (0,1], (37b)

the function f, the initial-boundary value conditions are determined by exact solution u(x,t) =
(1 + t* + £2%) sin(7rx).

Similarly to (4), Equation (37) can be rewritten as the following integrodifferential
equation.

u(x, t) — uyr(x,t) = Q(x) + F(lzx) /St:O(t —8)* 1P (x,s,u)ds

for (x,t) € (0,1) x (0,1], (38)

where
Q(x) := u(x,0) — ure(x,0) = (1+ 72)sin(7x),

F(x,t,u) := uxx(x, ) — u(x, t)ux(x, t) + f(x, t).

Let M be a positive integer. Seth = (xg — x1)/M, x; = xp +ih for 0 < i < M. By applying
the centered difference schemes 62v; = w and Ayv; = “EL2751 o numerically
approximate 1y, and uy, respectively, we can obtain the corresponding PCM and fPCM

for (37).
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One can check that

2aT (2a)

mt”‘ (14 72) sin(7x)

D& (U — tyy) (%, 1) = |T(a+1) +

behaves as C(14t*). For0 < n < N, 0 < i < M, sete!' = u(x;,ty) —ul, & =

1
u(x;, t,) — 1", where u'' and " are the predictor—corrector method solution and the
1 1 1 p

fast predictor—corrector method solution of (37). Set ¢" = (ei’,eg, . ,e”M_l)T and &' =

(e‘{‘, ey, énM—l) T Similarly to [22], we use discrete H! norm to calculate the errors. Let
E(M,N) := maxo<j<n llef|| ;1 and E(M, N)f := maxop<j<N [|é|| i1 Then, one has

E(M,N) < C(N-™in{2ra3} 4 32y and  E(M,N)f < (N~ ™in{Za3} L 2 4 ¢)  (39)

for PCM and fPCM, respectively.
The numerical results are given in Tables 2 and 3, where the convergence orders in
time and space are calculated with

1o Em,N pe = lo EmN
pro= 108 Emaon /)’ 7 82 Eomn )’

respectively, and Ep;n can be E(M,N) or E(M,N)/. In the fPCM, we set e = 1075.
Tables 2 and 3 show that PCM and fPCM almost had the same accuracy. In terms of CPU
time, Table 3 and Figure 2 show that the fPCM offered no advantage when N was small,
but when N was larger, the advantage of fPCM was obvious.

Table 2. Maximal nodal errors and convergence orders of PCM and fPCM for Problem (37) with
r =3/(2a) and M = 8000.

«=04 x=0.6 x =028

Scheme N EpynN pt EmN pt EmN pt

PCM 12 64472 x 1072 - 3.8631 x 1073 - 48683 x107% -
24 31108 x 1073 4.3733 25987 x 107%  3.8939 44781 x 107> 3.4425
48 17218 x 1074  4.1753 22876 x 107°  3.5058 57787 x 1076 2.9541
96 1.1986 x 107°  3.8445 24634 x 1076 3.2151 79723 x 107 2.8577
EOC 3 3 3

fPCM 12 64472 x 1072 - 3.8631x 1073 - 48683 x107% -
24 31108 x 1073 4.3733 25987 x 10~*  3.8939 44781 x 107> 3.4425
48 17218 x 1074  4.1753 22876 x 107°  3.5058 57787 x 1076 2.9541
96 1.1986 x 107°  3.8445 24634 x 1076 3.2151 79723 x 1077 2.8577
EOC 3 3 3

Table 3. Maximal nodal errors, convergence orders, and CPU times of PCM and fPCM for Problem (37)
withw = 0.8, 7 = 3/(2a) and N = 2000.

PCM fPCM
M E(M,N) Px CPU E(M,N)/ Px CPU
8 89024 x 1072 1.9377  2141.30 89024 x 1072 19377 13457
16 22690 x 1072 19722 2131.37 22690 x 1072 19722  133.85
32 57260 x 1073 19864  2164.59 57260 x 1073 19864  132.92
64 14382x 103 19932 215893 14382 x 1073 19933  137.41

EOC 2 2
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4 T T
——PCM P

3.8 |-|=#—=fPCM , i
= =Slope =2 s

2 1 1 1 1 1 1 1 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

log ;,(N)

Figure 2. Total number of time steps N versus CPU times of PCM and fPCM in log-log scale for
Problem (37) with a« = 0.8 and r = 3/(2«).

6. Concluding Remarks

A fast high-order predictor—corrector method was constructed for solving fractional
differential equations. Graded meshes were used for time discretization to deal with
the weak singularity of the solution near the initial time. Several numerical examples
were presented to support our theoretical analysis. Since the predictor-corrector method
failed to solve the stiff problem (see [6], Section 5), our fast high-order predictor—corrector
method also had the same property. In future work, we will try to construct implicit—
explicit methods by using the technique of our predictor—corrector method to solve the stiff
fractional differential equations or time-fractional partial differential equations.
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Appendix A. Proof of Lemma 4
Proof. By using |w/(t)| < C(1+t*~1), for t € [to, ]

_ t _ t
f=h / W' (6)do — L= 10 /1 w'(6)do
to — t1 Jo=¢, 1 —to Jo=t

t
<C 91 (146%1)do < Ct2, (A1)
=t

[w(t) — I pw(t)| =

and, for t € [ty,tp]

w(t) —Thw(t)| =

_ t _ t
c|l=h / W' (6)do — L0 /1 /' (6) d6
to — 11 Jo=t, ty — to Jo=t
_ t _ t
clt tZ/ W/ (6)do — 11 /2 w'(0) d6
t1 —ty Jo=t th —t1 Jo=t

t
<c| * (14 0% 1) de < CH. (A2)
=t

+

We similarly derive
\w(t) — Hl,()w(t” < Ctozt fort € [tl, tz], |w(t) — Hzrlw(t” < Cf% fort € [tz, tg]. (A3)

We first consider the estimate of I{’H. When n = 0, with the use of (7) and (A1),
we obtain

=

/i (t1 — )" (w — Ty w)(s) ds

f
< C/ (ty —s)* 18 ds < CH3* < CN~2%,
S:to
When n = 1, it follows from (7), (A1), and (A2) that

I =

t t
[ sy w=Thge)s)ds + [ (t2=5)"(w ~ ) (s) ds
S:to S:tl
s=ty

t t
<c /[’ (tp —s)¥ 14 ds+C/2 (ty —s)* 18 ds
s=H

< Ct2 f2 (t _ ya—1 20 —2ra
< Cty 2—8)" ds < CH* < CN~7*.
s

=ty
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For some § € (tj_1,tj11)

w//l(g)
ZU(t) - Hz/j@(](i’) = 6 (i’ — i’j,l)(t - i’j)(t - i’j+1) fort € [i’j,l, i’j+1]. (A4)
Then, when 1 > 2, one obtains from |w”’(t)| < C(1 4+ t*73), (A1), (A2) and (A4) that
t
B <] [ =9 @ Tygw)(s)ds+ [ (faa =9 w0 = Thpg)(5) s
S=1p s=t
{%.I t]+1 1
L [ =9 = Ty ) (s) ds
j=275=t
n-l b1 1
- [ b =9 (= T ) (5) ds
=51+ 75
S a—1
+ / (tns1 — )" Yw — Iy yw) (s) ds
5=lIn
2 —1 & 33 [l ~1
SC/it (tn+1—s)“ t%ds +C Zt;‘—lT]HLl/i.(tﬂ-H*S)a ds
5=1g ]:2 S—t’
n—1 B tiy1 3
+C| ) t;‘if’r]il /it (the1 —s)* tds
=l31+1 =
£y
+C t‘;‘leSH / o (thy1 —5)* Lds
s=ty
o= [l el et et (A5)
= 1,2 1,3 14 -
For I{‘jl, we can obtain from (7) that
I < Ctygr — ) M5 <CNT2%[(n+1)" — 27" 1 < CN~2%, (A6)
For I{‘:{l, recalling (7) and noting that, for 2 < j < [ 7]
N’ 1—a
ot a—1 <
(tn+1 t]+l) <C (n+ 1)7 _ (]+ 1)r
Nr 1—a (1 )
<C < C(N/n)'"—%,
<<| Gy <o
Therefore
1 & 3.4 1
Iy <C o T (b — )™
j=2
(31
< CN—2 2]‘2?“74(]'/7’1)}’(17“)
j=2
2 % 2ra—4
< CN~ 2 i ra—
=2
N2 forl<r< %,
(A7)

<C{N73InN forr= %,

N3 forr > 5,
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where the well-known convergence results for series

1 for B <0,

Z]ﬁ '<C{inn forp=0,

=1 n?  forB >0,

I}’H—l

was used. For I}'; ", with the use of (7), one obtains for [ 7 |

114
t]
Then, one sees that
tn

n+1 —ro, ra—3
11,3 <CN ™n /#
=

Nl=

(t
1+1
[

< cli-n/Ne <o 3] /N)“H) <

n+1 — S)a71 ds

S
< ON 72 (b1 = g7 0)" = (s — 1))
(t

< Cmenmf3
< CN72mn2m73

< C{NZ”" forl <r< 237,

n+1)“

-3 3
N forr > 5

For I'1, again by using (7), one can obtain that

+l 3 3+ 2 2 3— N7

n o o ro ree— 24

[t <cimit <CN- <C
N3

Substituting (A6)—(A9) into (A5) gives

N2« forl <r< %,
[ <C{N3InN forr=3,
-3 3
N forr > 5,

3+a
for1 <r < =3%,

3+«
forr > =5.%.

with0 <n < N -1

C(n/N)"®

+1<j<n-—1that

,3) .

(A8)

(A9)

Next, to estimate I} ™1, when n = 0, it follows from |w'(t)| < C(1 + t*~1) and (7) that

I =

<C

[ (=9 i) — wlto)) ds

/ (t1 —s)*~ 1/ 0) do ds
G:to

S
<c/ 175)"‘_1/ (14 6°1) dods
0

=ty

<C (t1 —5)* L% ds

S= tO
< CH* <CN—?%,

When n = 1, by using (7), (A1), and (A3),

=

7 (2= 9w~ ) ds

=ty

f
< C/ (t —8)* 18 ds < CH* < CN™2%,
s=ty
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When n = 2, from (7), (A1), (A2) and (A3), one obtains

B=| [ (a9 o= Tygu)(s)dst [ (13 =) o) s)ds

=t

151 t3
< C/ (t3 — )" 18 ds + C/ (t3 — )" 14 ds
s=ty s=f

< Cts—t)* M+ Clts — 1) 85

< CN72m.
Whenn > 3,
n+1 h a—1 2 a—1
B <] [ (=9 @ = Thgw) (6)ds [ (s =) (0 = Tl ) (s) ds
=ty =h
(21 .+
j+1 _
+ Z/ (tny1 —9)* ! (w — Ty jw) (s) ds
j=2 5=t
ol tj“ a—1
+ Y / (tn1 —5)" (w — I jw)(s) ds
j=51+1 770
tnt1 a—1
+ / g =5 (0= Ty -y () ds
S=In
; il
<cC / (tya1 — ) 15 ds| +C Z t;’.‘:frf’ﬂ / (tay1 —s)* Lds
S:to i S:]'
j

a-3_3 fn+1 a—1
tn72Tn+1/ (tns1 —s)* " ds

=In

+C +C

sy [h a1
2 b 1T /—t (thy1—8)" ds
j=1531+1 =i

. qn+l n+1 n+1 n+1
T Il,l +11,2 +Il,3 +12,1 ’

the difference to 11”Jrl is just the last term I;’Tl. One obtains from (7) that

N2 for1<r< 32%“,

I;irl < Ctuc73T3+oc < CN72mn2m737a < C
’ N=3% forr> 3te

n—2"'n+1

Hence, we have

N2« forl <r< %,
< C{N3InN forr= 3, with0 <n < N-—1.
N3 forr > %,

Therefore, synthesizing the above results, the lemma is proved. O
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