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Abstract: Fractional calculus is useful in studying physical phenomena with memory effects. In this
paper, the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions was studied for
the first time. It can model short-wave propagation in saturated ferromagnetic materials, which has
many applications in the high-tech world, especially in microwave devices. Using the properties of
beta-derivatives and a proper transformation, the FKMM system was initially changed into the KMM
system, which is a (2+1)-dimensional generalization of the sine-Gordon equation. Lie symmetry
analysis and the optimal system for the KMM system were investigated. Using the optimal system,
we obtained eight (1+1)-dimensional reduction equations. Based on the reduction equations, new
soliton solutions, oblique analytical solutions, rational function solutions and power series solutions
for the KMM system and FKMM system were derived. Using the properties of beta-derivatives
and another transformation, the FKMM system was changed into a system of ordinary differential
equations. Based on the obtained system of ordinary differential equations, Jacobi elliptic function
solutions and solitary wave solutions for the FKMM system were derived. For the KMM system,
the results about Lie symmetries, optimal system, reduction equations, and oblique traveling wave
solutions are new, since Lie symmetry analysis method has not been applied to such a system before.
For the FKMM system, all of the exact solutions are new. The main novelty of the paper lies in the
fact that beta-derivatives have been used to change fractional differential equations into classical
differential equations. The technique can also be extended to other fractional differential equations.

Keywords: KMM system; Lie symmetries; optimal system; exact solutions; conservation laws; power
series solutions; conservation laws; fractional KMM system; beta-derivative

1. Introduction

During the past three decades, fractional calculus achieved significant popularity
and importance as a result of its applications in numerous fields of science and engi-
neering [1–7]. For example, it has been successfully applied to problems in physics [8],
hydrology [9,10], and chaos theory [11,12]. Fractional differential equations (FDEs), which
are generalizations of classical differential equations of integer order, can describe phys-
ical phenomena that depend on both the time instant and time history. Although these
fractional differential equations are often difficult to solve analytically, many methods
have been proposed and proven efficient, such as homotopy analysis technique [13,14],
variational iteration method [15], Sumudu decomposition method [16], Lie symmetry
analysis method [17,18], and so on [19]. At the same time, many definitions of fractional
derivative have been proposed and studied, such as the Caputo fractional derivative,
Riemann–Liouville derivative, Grünwald–Letnikov derivative, Hadamard derivative, and
the conformable derivative [20]. Among these, beta-derivatives [21–24] can be used to
change fractional differential equations into partial differential equations (PDEs) or or-
dinary differential equations (ODEs). Therefore, approaches for finding exact solutions
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of nonlinear PDEs such as the Bäcklund transformation method [25], Hirota’s bilinear
method [26], Painlevé expansion method [27], and so on [28–30], can be employed to find
exact solutions to fractional differential equations.

Ferrite materials, which have many special magnetic and electrical properties such
as high resistivity, high magnetic permeability, moderate saturation magnetization, and
excellent thermal stability, have been widely used in many high-tech fields for over half a
century. Recently, certain nanofabrication techniques have made it possible to manufacture
ferromagnetic particles to lengths of 20–30 nm. Since the original work by Kraenkel, Manna,
and Merle in 2000 [31], researchers have constructed a series of Kraenkel–Manna–Merle
(KMM) systems in order to study microwave propagation behavior in ferrite media, which
are of importance in explaining and predicting nonlinear phenomena that occur in ferrite
materials. Up to now, there have been (1+1)-dimensional KMM systems [32–41], their
complex forms [42–44], (2+1)-dimensional KMM systems [45,46], and various generaliza-
tions [47–53], when considering Gilbert damping or inhomogeneous exchange. For the
(1+1)-dimensional KMM systems, loop-like solutions [32,33], rogue wave solutions [36,39],
and interactional behaviors such as twining behaviors between solitons have been stud-
ied [34,38,40,41]. Particularly, the fractional KMM system in (1+1)-dimensions with beta-
derivative has been proposed and studied [24]. It has been shown that the wave profile
changes for different values of the fractional parameter. Inspired by this, we wanted to
investigate the fractional KMM (FKMM) system with beta-derivative in (2+1)-dimensions.
From the point of view of mathematical physics, solitons or stable solitary waves that are
localized in more than (1+1)-dimensions are of great interest.

To the best of our knowledge, the fractional forms of (2+1)-dimensional KMM systems
have not been reported in the existing literature. In this paper, we investigated the following
(2+1)-dimensional fractional KMM (FKMM) system:(

uβ
T

)
x
= −vvx + vy + uyy,(

vβ
T

)
x
= vux + vyy − uy,

(1)

where the physical observables u = u(x, y, T) and v = v(x, y, T) describe the external
magnetization and the magnetic field, respectively. Dβ

T(.) is the beta-derivative [21–24],
and is defined as follows:

Dβ
T( f (T)) =

dβ f (T)
dTβ

= lim
ε→0

f (T + ε(T + 1
Γ(β)

)
1−β

)− f (T)

ε
, 0 < β ≤ 1.

The beta-derivative has the following properties [21]:

Dβ
T( f (T)) = f ′(T)(T + 1

Γ(β)
)

1−β
,

Dβ
T( f ◦ g(T)) = f ′(g(T))g′(T)(T + 1

Γ(β)
)

1−β
.

In fact, the beta-derivative can build the relationship between fractional differential
equations and classical differential equations. If we take the following transformation:

u = u(x, y, t), v = v(x, y, t), t =
1
β
(T +

1
Γ(β)

)
β

, (2)

then FKMM system (1) can be changed into the following (2+1)-dimensional KMM sys-
tem [45,46]:

uxt = −vvx + vy + uyy,
vxt = vux + vyy − uy.

(3)

In [45], based on Maxwell’s equations and the Landau–Lifshitz equation, system (3)
was proposed to describe the electromagnetic wave propagation in a saturated, nonconduct-
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ing ferromagnetic medium. KMM system (3) is a (2+1)-dimensional generalization of the
well-known, completely integrable (1+1)-dimensional sine-Gordon model [45]. In [46], the
transverse stability of short line-solitons for system (3) has been researched, and it has been
found that the unstable line solitons of system (3) could decay into stable two-dimensional
solitary waves. To the best of our knowledge, there is no further research that studied
KMM system (3).

The main purpose of this paper is two-fold: on the one hand, through performing
Lie symmetry analysis, we obtained group-invariant solutions to KMM system (3). In the
process of applying Lie symmetries to achieve group-invariant solutions, each symmetry
sub-algebra corresponds to a group-invariant solution. In order to classify all of the group-
invariant solutions, the optimal system of the symmetry algebra will be considered by a
direct algorithm. Then, exact solutions to system (3) can be constructed by the optimal
system. On the other hand, we derived exact solutions to the FKMM system (1) by means
of transform (2) and the solutions of system (3).

The framework of the remainder of this paper is organized as follows. In Section 2, we
initially perform Lie symmetry analysis on KMM system (3), then find the optimal system
of the symmetries. In Section 3, using the obtained optimal system, all of the reduction
equations and many new exact solutions for the KMM system and FKMM system are
obtained. In Section 4, beginning from a reduction equation in the previous section, power
series solutions for the KMM system and FKMM system are obtained. In Section 5, exact
solutions of the FKMM system are further studied by means of a transformation. Section 6
is devoted to analysis and discussion of the methods and results in this paper. In Section 7,
some closing words and future directions of the research are presented.

2. Lie Symmetry Analysis and Optimal System of KMM System (3)

Generally speaking, Lie symmetry denotes a transformation that leaves the solution
manifold of a system invariant, i.e., it maps any solution of the system into a solution of the
same system, hence it is also called geometric symmetry. In this section, we will perform
Lie symmetry analysis on KMM system (3). Suppose that Lie symmetry of system (3) is
expressed as follows:

V = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ U

∂

∂u
+ W

∂

∂v
, (4)

where ξ, η, τ, U and W are functions of x, y, t, u and v, respectively. According to [29], the
Lie symmetry (4) can be determined by the following invariant condition equations:

Uxt + vWx + vxW −Wy −Uyy = 0,
Wxt − vUx − uxW −Wyy + Uy = 0,

(5)

where
Ux = Dx(U − ξux − ηuy − τut) + ξuxx + ηuxy + τuxt,
Uy = Dy(U − ξux − ηuy − τut) + ξuxy + ηuyy + τuty,
Uxt = Dxt(U − ξux − ηuy − τut) + ξuxxt + ηuxyt + τuxtt,
Uyy = Dyy(U − ξux − ηuy − τut) + ξuxyy + ηuyyy + τuyyt,
Wx = Dx(W − ξvx − ηvy − τvt) + ξvxx + ηvxy + τvxt,
Wy = Dy(W − ξvx − ηvy − τvt) + ξvxy + ηvyy + τvty,
Wxt = Dxt(W − ξvx − ηvy − τvt) + ξvxxt + ηvxyt + τvxtt,
Wyy = Dyy(W − ξvx − ηvy − τvt) + ξvxyy + ηvyyy + τvyyt.

(6)
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Substituting (6) into (5), with u, v being solutions of (3), we collect the coefficients of
the derivatives of u and v, and set them to zero to obtain the following:

ξ = −C1x + C3y + C4,
η = 2C3t + C5,
τ = C1t + C2,
U = −C1u + f (t),
W = −C1v− C3,

where C1, C2, C3, C4, and C5 are arbitrary constants, and f (t) is an arbitrary function of t.
Thus, the Lie algebra of (3) is spanned by the following:

Vf = f (t)
∂

∂u
,

and

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 =

∂

∂t
, V4 = x

∂

∂x
− t

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
, V5 = y

∂

∂x
+ 2t

∂

∂y
− ∂

∂v
. (7)

For (7), the commutation relations are obtained by the following Lie bracket:[
Vi, Vj

]
= ViVj −VjVi,(i, j = 1, 2,. . . , 5) (8)

and they are listed in the following Table 1.

Table 1. Commutator table of (7).[
Vi, Vj

]
V1 V2 V3 V4 V5

V1 0 0 0 V1 0

V2 0 0 0 0 V1

V3 0 0 0 2V2

V4 −V1 0 V3 0 −V5

V5 0 −V1 −2V2 V5 0

From Table 1, we know that the symmetries Vi (i = 1, 2, . . . , 5) form a closed five-
dimensional Lie algebra. The five-dimensional Lie algebra has many sub-algebras; theo-
retically, one sub-algebra can derive a group-invariant solution. In order to classify all of
the group-invariant solutions, we find the optimal system of (7) by the method proposed
in [54] and used in [55].

In order to construct the optimal system, invariants will initially be derived. Taking

V =
5
∑

i=1
aiVi, W =

5
∑

j=1
bjVj, where ai and bj(i, j = 1, 2, . . . , 5) are constants, we have

the following:

Adexp(εW)(V)

= V − ε[W, V] + o(ε2)

= V − ε[b1V1 + b2V2 + b3V3 + b4V4 + b5V5, a1V1 + a2V2 + a3V3 + a4V4 + a5V5] + o(ε2)

= V − ε
5
∑

j=1

5
∑

i=1
bjai
[
Vj, Vi

]
+ o(ε2)

= V − ε(θ1V1 + θ2V2 + θ3V3 + θ4V4 + θ5V5) + o(ε2),
(9)
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with
θ1 = b1a4 + b2a5 − b4a1 − b5a2, θ2 = 2b3a5 − 2b5a3,
θ3 = −b3a4 + b4a3, θ4 = 0, θ5 = −b4a5 + b5a4.

For any bj(j = 1, 2, 3, 4, 5), the function φ with regard to a1, a2, a3, a4 and a5 needs to
satisfy the following condition:

θ1
∂φ

∂a1
+ θ2

∂φ

∂a2
+ θ3

∂φ

∂a3
+ θ4

∂φ

∂a4
+ θ5

∂φ

∂a5
= 0. (10)

Collecting the coefficients of all bi in (10), we will obtain five differential equations
as follows:

a4
∂φ
∂a1

= 0, a5
∂φ
∂a1

= 0, 2a5
∂φ
∂a2
− a4

∂φ
∂a3

= 0,

−a1
∂φ
∂a1

+ a3
∂φ
∂a3
− a5

∂φ
∂a5

= 0,

−a2
∂φ
∂a1
− 2a3

∂φ
∂a2

+ a4
∂φ
∂a5

= 0.

(11)

By searching for the solutions to (11), we can obtain φ(a1, a2, a3, a4, a5) = F(a4, a4a2+2a3a5
2 ),

with F being an arbitrary function of a4 and a4a2+2a3a5
2 . Hence, KMM system (3) has the

following two basic invariants: ∆1 = a4 and ∆2 = a4a2+2a3a5
2 .

According to the theory in [29,54], the adjoint representation can be obtained by
the following:

Adexp(εVi)
(Vj) = Vj − ε

[
Vi, Vj

]
+ o(ε2)

and the results are shown in the following Table 2.

Table 2. Adjoint representation table of (7).

Ad V1 V2 V3 V4 V5

V1 V1 V2 V3 V4 − εV1 V5

V2 V1 V2 V3 V4 V5 − εV1

V3 V1 V2 V3 V4 + εV3 V5 − 2εV2

V4 eεV1 V2 e−εV3 V4 eεV5

V5 V1 V2 + εV1 V3 + 2εV2 V4 − εV5 V5

Applying the adjoint action of V1 on V = a1V1 + a2V2 + a3V3 + a4V4 + a5V5, we have
the following:

Adexp(εV1)
(V) = V − ε[V1, V] + o(ε2) = (a1, a2, a3, a4, a5) · A1 · (a1, a2, a3, a4, a5)

T ,

where

A1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−ε1 0 0 1 0

0 0 0 0 1

.
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Similarly, one can obtain A2, A3, A4 and A5 as follows:

A2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−ε2 0 0 0 1

, A3 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 ε3 1 0
0 −2ε3 0 0 1

,

A4 =


eε4 0 0 0 0
0 1 0 0 0
0 0 e−ε4 0 0
0 0 0 1 0
0 0 0 0 eε4

, A5 =


1 0 0 0 0
ε5 1 0 0 0
0 2ε5 1 0 0
0 0 0 1 −ε5
0 0 0 0 1

.

Then, the adjoint transformation equation for KMM system (3) is the following:

(ã1, ã2, ã3, ã4, ã5) = (a1, a2, a3, a4, a5) · A, (12)

where A = A1 A2 A3 A4 A5 and

A =


eε4 0 0 0 0
ε5 1 0 0 0
0 2e−ε4 ε5 e−ε4 0 0

−ε1eε4 2ε3e−ε4 ε5 ε3e−ε4 1 −ε5
−ε2eε4 − 2ε3ε5 −2ε3 0 0 eε4

.

Now, we can construct the optimal system of (7). From (12), we can obtain the
following cases:

Case 1. ∆1 = a4 = 1, ∆2 = a2+2a3a5
2 = C, where C is an arbitrary constant.

Taking ε1 = 2a3a2
5 + a2a5 − a5ε2 + a1, ε3 = −a3, ε4 = ln

(
ε5
a5

)
, we find that a1V1 + a2V2 +

a3V3 + V4 + a5V5 is equivalent to V4 + γV2, with γ = 2C.

Case 2. ∆1 = a4 = 0, ∆2 = a3a5 = 1.

Let a5 = 1 , then a3 = 1. Takingε2 = − 1
2 a2

2 + 2a2ε3 − 2ε2
3 + a1, ε4 = 0, ε5 = − 1

2 a2 + ε3,
we find that a1V1 + a2V2 + a3V3 + a5V5 is equivalent toV3 + V5.

Case 3. ∆1 = a4 = 0, ∆2 = a3a5 = −1.

Let a3 = 1, then a5 = −1. Taking ε4 = 0, ε5 = − a2
2 − ε3, ε2 =

a2
2

2 + 2a2ε3 + 2ε2
3 − a1, we

find that a1V1 + a2V2 + a3V3 + a5V5 is equivalent to V3 −V5.
In the following, we discuss the case when ∆1 = a4 = 0, ∆2 = a3a5 = 0.

Case 4. a5 = 1, a3 = 0. Taking ε2 = a1, ε3 = 1
2 a2, ε4 = 0, we find that a1V1 + a2V2 + V5 is

equivalent to V5.

Case 5. a5 = 0, a3 = 1. Taking ε4 = 0, ε5 = − 1
2 a2, we find that a1V1 + a2V2 + V3 is equivalent

to V3 + αV1, where α = a1 −
a2

2
2 .

Case 6. a5 = 0, a3 = 0, a2 = 1. Takingε5 = −a1eε4 , we find that a1V1 + V2 is equivalent to V2.

Case 7. a5 = 0, a3 = 0, a2 = 0, a1 = 1. Thus, V1 is equivalent to V1.

In summary, an optimal system of (7) is

V1, V2, V3 + αV1, V4 + γV2, V3 + V5, V3 −V5, V5, (13)

where α and γ are arbitrary constants.
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3. Reduction Equations and Group-Invariant Solutions to (3) and (1)

Based on the optimal system (13), we can reduce KMM system (3) to eight PDEs in
(1+1)-dimensions. For some reduction systems in (1+1)-dimensions, it is still difficult to
find their exact solutions. Hence, we perform Lie symmetry analysis on them for a second
time, and reduce them to ODEs.

Case 8. V1

For the symmetry V1 = ∂
∂x , we can obtain the following group-invariant solution to system (3):{

u = F(y, t),
v = G(y, t),

where F and G satisfy the following reduction equations:{
Gy + Fyy = 0,
Fy − Gyy = 0.

The above linear differential equations can be solved, and then an analytical solution to KMM
system (3) can be obtained as follows:{

lu = f1(t) + f2(t) sin y + f3(t) cos y,
v = − f2(t) cos y + f3(t) sin y + f4(t),

(14)

where f1(t), f2(t), f3(t) and f4(t) are arbitrary functions of t.

Case 9. V2

For the symmetryV2 = ∂
∂y ,we can obtain a group-invariant solution as follows:{

u = F(x, t),
v = G(x, t),

(15)

where F and G satisfy the following reduction equations:{
Fxt + GGx = 0,
Gxt − GFx = 0.

(16)

The equations in (16) constitute the (1+1)-dimensional KMM system [36].

Case 10. V3 + αV1 with α = 0

For the symmetry V3 + αV1 with α = 0, we can obtain a group-invariant solution as follows:{
u = F(x, y),
v = G(x, y),

where F and G satisfy the following reduction equations:{
GGx − Gy − Fyy = 0,
−GFx − Gyy + Fy = 0.

Applying the variable separating method [56] to the above equations, we can find two exact
solutions to system (3) as shown below:{

u = −x− 1
6 C1y3 + 1

2 C2y2 + C3y + C4,
v = 1

2 C1y2 − C2y− C3 + C1,
(17)
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and {
u = C2x− C5 cos(

√
C2+1y)√

C2+1 + C4 sin(
√

C2+1y)√
C2+1 + C2C1y

C2+1 + C3,

v = − sin(
√

C2 + 1y)C5 − cos(
√

C2 + 1y)C4 +
C1

C2+1 ,
(C2 > −1) (18)

where C1, C2, C3, C4 and C5are constants.

Case 11. V3 + αV1 with α 6= 0

For the symmetry V3 + αV1 with α 6= 0, we can obtain a group-invariant solution as follows:{
u = F(y, θ),
v = G(y, θ),

where θ = t− x
α , F and G satisfy the following reduction equations:{

GGθ + αGy + αFyy + Fθθ = 0,
GFθ − αGyy + αFy − Gθθ = 0.

(19)

From (19), we obtain a dark soliton solution of (3) via the consistent Riccati expansion (CRE)
method [57,58], as follows: u = u0 −

2(A2
1α+A2

2)
A2

tanh(A1y + A2(t− x
α )),

v = −A1α
A2
− 2I(A2

1α+A2
2)

A2
tanh(A1y + A2(t− x

α )),
(20)

where u0, A1 and A2 are constants, A2 6= 0. This is a new soliton solution to KMM system (3),
and it is different from the soliton solution in [45,46]. Usually, the CRE method can be used to
find various interaction solutions between different types of excitations. The CRE method has
been successfully applied to (1+1)-dimensional KMM systems and exact solutions, including
breather soliton, periodic oscillation soliton as well as multipole instanton [36]. However, for the
(2+1)-dimensional KMM system (3), (20) is the only result we can achieve.

From (20) and (2), a dark soliton solution to FKMM system (1) is as follows: u = u0 −
2(A2

1α+A2
2)

A2
tanh

(
A1y + A2

(
1
β (T + 1

Γ(β)
)

β − x
α

))
,

v = −A1α
A2
− 2I(A2

1α+A2
2)

A2
tanh

(
A1y + A2

(
1
β (T + 1

Γ(β)
)

β − x
α

))
.

(21)

Case 12. V4 + γV2

For the symmetryV4 +γV2 = x ∂
∂x +γ ∂

∂y − t ∂
∂t +u ∂

∂u + v ∂
∂v , we can obtain a group-invariant

solution as follows: {
u = xF(ξ, θ),
v = xG(ξ, θ),

(22)

where ξ = −γ ln x + y, θ = tx, F and G satisfy the following reduction equations:{
θGGθ + θFθθ + G2 − Fξξ − Gξ + 2Fθ − γGGξ − γFξθ = 0,
−θGFθ + θGθθ − GF− Gξξ + Fξ + 2Gθ + γGFξ − γGξθ = 0.

(23)

The equations in (23) are variable-coefficient (1+1)-dimensional PDEs, and it is very difficult
to solve them. We perform Lie symmetry analysis on (23). After calculations, Lie symmetry of (23)
is as shown below:

V = C11
∂

∂ξ
+

C12

θ

∂

∂F
, (24)

where C11 and C12 are arbitrary constants. From (24), we obtain a group-invariant solution of (23){
F = C12ξ

C11θ + f (θ),
G = g(θ),

(25)
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where f (θ) and g(θ) are solutions of the following reduction equations:{
θg(θ)g′(θ) + θ f ′′ (θ) + g2(θ) + 2 f ′(θ) + C12γ

C11θ2 = 0,

−θg(θ) f ′(θ) + θg′′ (θ)− g(θ) f (θ) + 2g′(θ) + C12(γg(θ)+1)
C11θ = 0.

(26)

From (22) and (25), an exact solution for (3) is as shown below:{
u = x

(
C12ξ
C11θ + f (θ)

)
,

v = xg(θ),
(27)

where f (θ) and g(θ) are determined by (26).

Case 13. V3 + V5

For the symmetry V3 +V5 = y ∂
∂x + 2t ∂

∂y +
∂
∂t −

∂
∂v , we can obtain a group-invariant solution

to (3) as follows: {
u = F(ξ, θ),
v = −t + G(ξ, θ),

(28)

where ξ = t2 − y, θ = 2
3 t3 − ty + x, F and G satisfy the following reduction equations:{

GGθ + ξFθθ + Gξ − Fξξ = 0,
−GFθ + ξGθθ − Gξξ − Fξ = 0.

(29)

After performing Lie symmetry analysis on (29), we find that the Lie symmetry of (29) is
the following:

V = C21
∂

∂θ
+ C22

∂

∂F
, (30)

where C21 and C22 are arbitrary constants. When C21 = 1, we can obtain the following group-
invariant solution to (29): {

G = P(ξ),
F = C22θ + Q(ξ),

(31)

where P and Q satisfy the following reduction equations:{
P′(ξ)−Q′′ (ξ) = 0,
C22P(ξ) + P′′ (ξ) + Q′(ξ) = 0.

(32)

The equations in (32) are solvable. When C22 > −1, an oblique analytical solution of (3) can
be obtained by (28) and (31) as follows: u = C22

(
2
3 t3 − ty + x

)
− N2 cos(

√
C22+1(t2−y))√
C22+1

+
N1 sin(

√
C22+1(t2−y))√
C22+1

− N0C22(t2−y)
C22+1 + N3,

v = −t + N2 sin
(√

C22 + 1
(
t2 − y

))
+ N1 cos

(√
C22 + 1

(
t2 − y

))
− N0C22

C22+1 .
(33)

When C22 = −1, a rational function solution to (3) can also be obtained by (28) and (31) as
shown below:

{
u = − 2

3 t3 + ty− x + 1
6 N0t6 − 1

2 N0t4y + 1
2 N0t2y2 − 1

6 N0y3 + 1
2 N1t4 − N1t2y + 1

2 N1y2 + N2t2 − N2y + N3,
v = −t + 1

2 N0t4 − N0yt2 + 1
2 N0y2 + N1t2 − N1y + N2 + N0.

(34)

Here N0, N1, N2 and N3 are arbitrary constants. From (33), we can obtain an oblique traveling
wave solution for FKMM system (1) by replacing t with 1

β (T + 1
Γ(β)

)
β
. Then, from (34), a rational

function solution for (1) can be derived by replacing t with 1
β (T + 1

Γ(β)
)

β
.

Case 14. V3 −V5
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For the symmetry V3 − V5 = −y ∂
∂x − 2t ∂

∂y + ∂
∂t +

∂
∂v , we can obtain a group-invariant

solution to (3) as follows: {
u = F(ξ, θ),
v = t + G(ξ, θ),

(35)

where ξ = t2 + y, θ = 2
3 t3 + ty + x, F and G satisfy the following reduction equations:{

GGθ + ξFθθ − Gξ − Fξξ = 0,
−GFθ + ξGθθ − Gξξ + Fξ = 0.

(36)

After performing Lie symmetry analysis on (36), we find that the Lie symmetry of (36) is the
same as for (30). From (30), we can obtain a group-invariant solution to (36) when C21 = 1:{

G = P(ξ),
F = C22θ + Q(ξ),

(37)

where P and Q satisfy the following reduction equations:{
P′(ξ) + Q′′ (ξ) = 0,
C22P(ξ) + P′′ (ξ)−Q′(ξ) = 0.

(38)

The equations in (38) are also solvable. When C21 > −1 and C22 6= 0, an oblique traveling
wave solution of (3) can be obtained by (35) and (37):{

u = C22(
2
3 t3 + ty + x) + N1 + N2(t2 + y) + N3 sin(

√
C22 + 1(t2 + y)) + N4 cos(

√
C22 + 1(t2 + y)),

v = t− N3 cos(
√

C22 + 1(t2 + y))
√

C22 + 1 + N4 sin(
√

C22 + 1(t2 + y))
√

C22 + 1 + N2
C22

.
(39)

When C22 = −1, another rational function solution to (3) can also be obtained by (35) and (37){
u = − 2

3 t3 − ty− x + 1
6 N1(t2 + y)3

+ 1
2 N2(t2 + y)2

+ N3(t2 + y) + N4,
v = t− N1 − 1

2 N1(t2 + y)2 − N2(t2 + y)− N3.
(40)

Here N1, N2, N3 and N4 are arbitrary constants. From (39) and (40), two analytical solutions
to FKMM system (1) can be obtained by replacing t with 1

β (T + 1
Γ(β)

)
β
. The characteristics of these

solutions will be further discussed in Section 6.

Case 15. V5

For the symmetry V5 = y ∂
∂x + 2t ∂

∂y −
∂

∂v , we can obtain a group-invariant solution as
shown below: {

u = F(θ, t),
v = G(θ, t)− y

2t ,
(41)

where θ = −4xt + y2, F and G satisfy the following reduction equations:{
−4tGGθ − 4θFθθ − 4tFθt − 6Fθ +

1
2t = 0,

4tGFθ − 4θGθθ − 4tGθt − 6Gθ = 0.
(42)

The equations in (42) are variable-coefficient PDEs, and their solutions are difficult to construct.
Therefore, we seek Lie symmetry for (42), which are shown as follows:

W1 = θ√
t

∂
∂θ +

√
t ∂

∂t −
F

2
√

t
∂

∂F −
G

2
√

t
∂

∂G , W2 = t ∂
∂t − F ∂

∂F − G ∂
∂G ,

W3 = t ∂
∂θ , Wh(t) = h(t) ∂

∂F .
(43)
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By means of W1, we can obtain the following group-invariant solution to (42):F = Q(Ω)√
θ

,

G = P(Ω)√
θ

,
(44)

where Ω = t
θ , P and Q satisfy the following reduction equations:{

4Ω3P(Ω)P′(Ω) + 2Ω2P2(Ω) + 1
2 = 0,

4Ω3P(Ω)Q′(Ω) + 2Ω2P(Ω)Q(Ω) = 0.
(45)

Exact solutions to (45) can be found, and they are as follows:{
P(Ω) = ± 1

2Ω
√

1 + 4K2Ω,
Q(Ω) = K1√

Ω
. (46)

Based on (41) and (44), the following rational function solution to (3) can be obtained:{
u = K1√

t
,

v = ± 1
2t

√
−4xt + y2 + 4K2t− y

2t ,
(47)

where K1 and K2 are constants. From (47), a rational function solution to (1) can be obtained by
replacing t with 1

β (T + 1
Γ(β)

)
β
. By means of W2, we can find a group-invariant solution to (42) as

shown below: {
F = Q(z)

t ,
G = P(z)

t ,
(48)

where z = −4xt + y2, P and Q satisfy the following reduction equations:{
8PP′ + 8zQ′′ + 4Q′ − 1 = 0,
−2PQ′ + 2zP′′ + P′ = 0.

(49)

This is a system of ODEs, and we will study its power series solution in the next section.

Remark 1. Using optimal system (13), we reduce KMM system (3) to eight reduction equations in
(1+1)-dimensions. These equations represent the complete classification of all (1+1)-dimensional
reduction equations. For the reduction equations (23), (29), (36) and (42), we perform Lie symmetry
analysis on them for a second time, and reduce them to ordinary differential equations (26), (32),
(38), (45) and (49). The solutions to (32), (38) and (45) have been found; solutions to (49) will be
studied in Section 4. However, the solutions of (26) have not been found.

Remark 2. We should mention that all of the solutions for KMM system (3) in this section have
not been reported in the existing literature. The oblique analytical solutions expressed by (33) and
(39) are difficult to achieve usingother methods, for example, the CRE method in [57] and the MAE
method in [24].

4. Power Series Solutions to Systems (3) and (1)

The power series method is very useful for solving ODEs [59]. We will seek a solution
for system (49) in the following form:

P(z) =
∞

∑
n=0

pnzn, Q(z) =
∞

∑
n=0

qnzn, (50)

where pn and qn(n = 0, 1, 2, . . . ) are all undetermined constants. Taking (50) into (49), we
obtain the following:
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(8p0 p1 + 4q1 − 1) + 8(2p0 p2 + p2
1 + 3q2)z +

∞
∑

n=2

n
∑

j=0
8(n + 1− j)pj pn+1−jzn +

∞
∑

n=2
4(n + 1)(2n + 1)qn+1zn = 0,

(−2p0q1 + p1) + (6p2 − 2p1q1 − 4p0q2)z +
∞
∑

n=2

n
∑

j=0

(
−2(n + 1− j)pjqn+1−j

)
zn +

∞
∑

n=2
(2n + 1)(n + 1)pn+1zn = 0.

(51)

For arbitrary constants p0 and q0, we can obtain the following coefficients from (51):p1 = p0
2(4p2

0+1)
,

q1 = 1
4(4p2

0+1)
,

(52)

{
p2 = − p1

4p2
0+9

(2p0 p1 − 3q1),

q2 = − p1
4p2

0+9
(2p0q1 + 3p1),

(53)


pn+1 = 2

(n+1)(4n2+4n+4p2
0+1)

(
(2n + 1)

n
∑

j=1
(n + 1− j)pjqn+1−j − 2p0

n
∑

j=1
(n + 1− j)pj pn+1−j

)
,

qn+1 = −2
(n+1)(4n2+4n+4p2

0+1)

(
2p0

n
∑

j=1
(n + 1− j)pjqn+1−j + (2n + 1)

n
∑

j=1
(n + 1− j)pj pn+1−j

)
,

(54)

for all n = 2, 3, . . . .
Thus, from (54) we can obtain the following:p3 = −2

3(4p2
0+25)

(−10p1q2 − 5p2q1 + 6p0 p1 p2),

q3 = −2
3(4p2

0+25)
(2p0 p2q1 + 4p0 p1q2 + 15p1 p2),

(55)

 p4 = −1
2(4p2

0+49)

(
−21p1q3 − 14p2q2 − 7p3q1 + 8p1 p3 p0 + 4p0 p2

2
)
,

q4 = −1
4p2

0+49

(
3p0 p1q3 + 2p0 p2q2 + p0 p3q1 + 14p1 p3 + 7p2

2
)
,

(56)

 p5 = −2
5(4p2

0+81)
(10p0 p1 p4 + 10p0 p2 p3 − 36p1q4 − 27p2q3 − 18p3q2 − 9p4q1),

q5 = −2
5(4p2

0+81)
(8p0 p1q4 + 6p0 p2q3 + 4p0 p3q2 + 2p0 p4q1 + 45p1 p4 + 45p2 p3),

(57)

and so on.
Therefore, we can obtain a power series solution (50) with the coefficients given by

(52)–(54). Moreover, we can show the convergence of (50).
From (54), one can obtain the following:

|pn+1| ≤
n
∑

j=1

∣∣pjqn+1−j
∣∣+ n

∑
j=1

∣∣pj pn+1−j
∣∣,

|qn+1| ≤
n
∑

j=1

∣∣pjqn+1−j
∣∣+ n

∑
j=1

∣∣pj pn+1−j
∣∣.

Suppose that
ri = |pi|, si = |qi|, i = 0, 1, 2,

and 
rn+1 =

n
∑

j=1

∣∣rjsn+1−j
∣∣+ n

∑
j=1

∣∣rjrn+1−j
∣∣,

sn+1 =
n
∑

j=1

∣∣rjsn+1−j
∣∣+ n

∑
j=1

∣∣rjrn+1−j
∣∣,
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where n = 2, 3, . . . . Then, it is easily seen that |pn| ≤ rn, |qn| ≤ sn, n = 0, 1, 2, 3, . . . . In

other words, the two series R = R(z) =
∞
∑

n=0
rnzn and S = S(z) =

∞
∑

n=0
snzn are majorant

series of P(z) =
∞
∑

n=0
pnzn and Q(z) =

∞
∑

n=0
qnzn in (50), respectively.

Next, we prove that R = R(z) and S = S(z) have a positive radius of convergence.
After calculation, we have the following:

R = r0 + r1z + r2z2 +
∞
∑

n=2

n
∑

j=1

∣∣rjsn+1−j
∣∣zn+1 +

∞
∑

n=2

n
∑

j=1

∣∣rjrn+1−j
∣∣zn+1

= r0 + r1z + r2z2 + RS + r0s0 − r0S− s0R− r1s1z + R2 + r0
2 − r1

2z2 − 2r0R,

S = s0 + s1z + s2z2 +
∞
∑

n=2

n
∑

j=1

∣∣rjsn+1−j
∣∣zn+1 +

∞
∑

n=2

n
∑

j=1

∣∣rjrn+1−j
∣∣zn+1

= s0 + s1z + s2z2 + RS + r0s0 − r0S− s0R− r1s1z + R2 + r0
2 − r1

2z2 − 2r0R.

Consider the following implicit functional system of z:

H1(z, R, S) = r0 + r1z + r2z2 + RS + r0s0 − r0S− s0R− r1s1z + R2 + r0
2 − r1

2z2 − 2r0R− R = 0,
H2(z, R, S) = s0 + s1z + s2z2 + RS + r0s0 − r0S− s0R− r1s1z + R2 + r0

2 − r1
2z2 − 2r0R− S = 0.

Since H1 and H2 are analytic in the neighborhood of (0, r0, s0), and H1(0, r0, s0) = 0
and H2(0, r0, s0) = 0, the following Jacobian determinant:

J =
∂(H1, H2)

∂(R, S)

∣∣∣∣
(0,r0,s0)

= 1 6= 0,

thus R = R(z) and S = S(z) are analytic in the neighborhood of (0, r0, s0), and with a
positive convergence radius by the implicit function theorem [60]. This means that the
two power series in (50) converge in the neighborhood of (0, r0, s0). Thus, the power series
solution (50) is an analytical solution to (49). Therefore, the analytical solution to (3) is
the following:

u = 1
t

(
q0 + q1(−4xt + y2) + q2(−4xt + y2)

2
+

∞
∑

n=2
qn+1(−4xt + y2)

n+1
)

,

v =
−y
2t + 1

t

(
p0 + p1(−4xt + y2) + p2(−4xt + y2)

2
+

∞
∑

n=2
pn+1(−4xt + y2)

n+1
)

,
(58)

where the coefficients pi and qi(i = 1, 2, . . . ) are determined by (52), (53) and (54). From

(58), a power series solution to (1) can be obtained by replacing t with 1
β (T + 1

Γ(β)
)

β
.

5. Traveling Wave Solutions of (1)

For the fractional KMM system (1), we can change it into ODEs by the follo-
wing transformation:

u = u(ε), v = v(ε), ε = k1x + k2y +
k3

β

(
T +

1
Γ(β)

)β

, (59)

where k1, k2 and k3 are constants to be determined, 0 < β ≤ 1. Substituting (59) into (1) and
applying the properties of the beta-derivative [21–24], we obtain the following:

uβ
T =

(
T + 1

Γ(β)

)1−β
u′εT =

(
T + 1

Γ(β)

)1−β
u′ k3

β β
(

T + 1
Γ(β)

)β−1
= k3u′,

vβ
T =

(
T + 1

Γ(β)

)1−β
v′εT =

(
T + 1

Γ(β)

)1−β
v′ k3

β β
(

T + 1
Γ(β)

)β−1
= k3v′,
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thus
(

uβ
T

)
x
= k3k1u′′ and

(
vβ

T

)
x
= k3k1v′′ . Then, the fractional KMM system (1) reduces

to the following system of ODEs after simplification:

u′ =
k2v− k1

2 v2

k1k3 − k2
2

+ k0, (60)

v′2 = C4v4 + C3v3 + C2v2 + C1v + C0, (61)

where the coefficients C0, C1, C2, C3 and C4 are the following:

C0 = − k4

(k1k3 − k2
2)

2 , C1 = −
2k0k1k2k3 − 2k0k3

2

(k1k3 − k2
2)

2 ,

C2 =
−k0k1k2

2 − k2
2 + k0k2

1k3

(k1k3 − k2
2)

2 , C3 =
k1k2

(k1k3 − k2
2)

2 , C4 = −
k2

1

4(k1k3 − k2
2)

2 .

Here, k0 and k4 are integral constants.
Equation (61) is called a Jacobi elliptic equation, and its solutions have been studied

in [28]. Substituting the expression of v into (60) and integrating with respect to ε, we can
obtain the explicit expression of u. Next, we choose suitable values of k0, k1, k2, k3, and k4 in
order to derive exact traveling wave solutions for (1).

Case 16. When k0 = 2m
m−1 , k1 = 2k2, k3 = k2m−k2+1

2m−2 , k4 = − k2
2m

(m−1)2 , there are two Jacobi elliptic

function solutions to (1) as shown below: u1 = 1
1−m (EllipticE(sn(ε), m)− (m + 1)ε) +

√
mcn(ε)dn(ε)

(1−m)(
√

msn(ε)+1)
,

v1 =
√

msn(ε)+1
2
√

msn(ε)+msn2(ε)+1 ,
(62)

and  u2 = 1
1−m (EllipticE(sn(ε), m)− (m + 1)ε) +

√
mcn(ε)dn(ε)

(1−m)(
√

msn(ε)+1)
,

v2 = m3/2sn(ε)
m3/2sn(ε)−dn2(ε)+1

,
(63)

where m(0 < m < 1) denotes the modulus of the Jacobi elliptic function, EllipticE is the incomplete
elliptic integral, and Elliptic(z, m) =

∫ z
0

√
1−m2t2/

√
1− t2dt.

Case 17. When k0 = m2

2(k2−2k3)(m2−1) , k1 = 2k2, k4 =
k2

2m2

4(m2−1) , there are three solutions to (1)
as follows:

u3 = −1
2(k2−2k3)(m2−1)(−1+msn(aε))

(
m
√

1−m2(k2 − 2k3)cn(aε)dn(aε)

−εmsn(aε) + ε +
√

1−m2(k2 − 2k3)EllipticE(sn(aε), m)(msn(aε)− 1)
)

v3 = msn(aε)
msn(aε)+dn(aε)−1 ,

, (64)

 u4 = −1
2(k2−2k3)(m2−1)

(√
1−m2(k2 − 2k3)(EllipticE(sn(aε), m)−msn(aε))− ε

)
,

v4 = mcn(aε)

mcn(aε)+dn(aε)+
√

1−m2 ,
(65)

 u5 = −1
2(k2−2k3)(m2−1)

(√
1−m2(k2 − 2k3)(EllipticE(sn(aε), m)−msn(aε))− ε

)
,

v5 = dn(aε)+
√

1−m2

dn(aε)+mcn(aε)+
√

1−m2 ,
(66)

where a = 1√
1−m2(k2−2k3)

, m (0 < m < 1) denotes the modulus of the Jacobi elliptic function,

Elliptic(z, m) =
∫ z

0

√
1−m2t2√

1−t2 dt.
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Case 18. Whenk1 = 1, there is one soliton solution to (1), shown below:

u6 = 2(k2
2 − k3)sech(ε),

v6 = (k2
2 − k3)(2tanh(ε)− ε).

(67)

When ε = k1x + k2y + k3t, solution (67) is the same as the plane solitary wave solution
in [45], with k3 = −w + p2 and k2 = p.

6. Results and Discussion

In this paper, FKMM system (1) with beta-derivative in (2+1)-dimensions were studied
from the point of analytical solutions. The beta-derivative, which is a new proposed
definition of the fractional derivative, has been used to change fractional differential
equations into PDEs for the first time. The beta-derivative may not be seen as a fractional
derivative but can be considered to be a natural extension of the classical derivative. Using
one of the advantages of the beta-derivative in changing fractional differential equations
into classical differential equations, we changed the (2+1)-dimensional FKMM system (1)
into the (2+1)-dimensional KMM system (3) and a system of ODEs named (60) and (61).
Taking a suitable transformation, FKMM system (1) can be changed into (1+1)-dimensional
PDEs. For example, if we set the following:

u = u(x + y, t), v = v(x + y, t), t =
1
β
(T +

1
Γ(β)

)
β

, (68)

then FKMM system (1) can be changed into a system of (1+1)-dimensional PDEs.
Through the optimal system (13), we reduced the (2+1)-dimensional KMM system (3)

to (1+1)-dimensional PDEs. For some of the derived (1+1)-dimensional PDEs, we performed
Lie symmetry analysis for a second time and reduced them to ODEs. These ODEs are
different from those in (60) and (61), and they possess novel solutions. For example, from
(39), a solution to FKMM system (1) is expressed as follows:

u = C22

(
2
3 (

1
β (T + 1

Γ(β)
)

β
)

3
+ ( 1

β (T + 1
Γ(β)

)
β
)y + x
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(69)

This is a triangular periodic solution expressed by sine and cosine functions, and it
is different from the triangular periodic solutions in (1+1)-dimensional FKMM, which are
expressed by tangent or cotangent functions [24]. In [61], the authors also studied these
kinds of oblique traveling wave solutions for the Heisenberg models of ferromagnetic
spin chains with beta-derivative by implementing the generalized exponential expansion
method. However, the structures of oblique traveling wave solutions in [61] differ from
our results.

In addition to the oblique traveling wave solutions, we also obtained two soliton
solutions for FKMM system (1). Solution (21) is a dark soliton solution, while solution (67)
is a combo soliton solution. In (67), u6 is a bright soliton, and v6 is a dark soliton. Soliton
solutions have very important uses in describing wave propagation in various media. We
take as an example to illustrate the behaviors of the electromagnetic wave in a saturated
ferromagnetic medium. Figures 1–3 depict the solution u6 for different β at T = 1 when
taking k2 = 1, k3 = 0.25. Figure 4 shows the different locations of the solution with different
β at T = 1, y = 0. As can be seen from the figures, the wave profiles and locations of the
solutions change as the fractional order parameter β changes. The larger the value of β,
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the more forward the solution is located; conversely, the smaller the value of β, the more
backward the solution is located.

Figure 1. Solution locations for β = 0.05.

Figure 2. Solution locations for β = 0.3.
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Figure 3. Solution locations for β = 0.9.

Figure 4. Locations of the solutions with different β.

7. Conclusions

Recently, beta-derivative, which is a newly introduced fractional derivative, was
applied to a (2+1)-dimensional KMM system. The new model can describe electromagnetic
wave propagation in a saturated nonconducting ferromagnetic medium when considering
the effects of memory. Applying the properties of beta-derivatives, the KMM system with
beta-derivative (FKMM system (1)) can be changed into KMM system (3). To the best of
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our knowledge, this is the first time that beta-derivative has been used to change fractional
differential equations into PDEs. Through constructing exact solutions for KMM system (3),
exact solutions for FKMM system (1) can be derived through a transformation.

In this paper, we first investigated new exact solutions to KMM system (3) by the Lie
symmetry analysis method. Lie symmetries and their optimal system were derived. By
the optimal system, all of the (1+1)-dimensional reduction equations of KMM system (3)
were obtained. Through performing Lie symmetry analysis on some reduction equations,
we reduced them to ODEs. Based on the reduced (1+1)-dimensional PDEs and ODEs,
many new analytical solutions for KMM system (3), including soliton solutions, oblique
analytical solutions, rational function solutions, and power series solutions, were obtained.
The solitary wave solution of (3) that was obtained in [45] was derived as well. In addition,
we obtained a novel dark soliton solution (20) for (3). In particular, we obtained novel
oblique analytical solutions (33) and (39), which are triangular periodic solutions of (3)
and are expressed by sine and cosine functions. Those oblique solutions are difficult to
obtain by other algebraic methods, for example, the CRE method in [57] and the MAE
method [24]. For FKMM system (1), dark soliton solutions and oblique analytical solutions
were constructed at the same time. Furthermore, one can still investigate the solutions to
the KMM system and FKMM system via the reduced (1+1)-dimensional PDEs and ODEs.
The explicit solutions for (26) remain an open problem.

In addition, the FKMM system is also changed into a system of ODEs by means of a
transformation and the properties of beta-derivatives. Making use of the known solutions
to a Jacobi elliptic equation, Jacobi elliptic function solutions and soliton solutions for the
FKMM system were constructed. To the best of our knowledge, a (2+1)-dimensional FKMM
system with beta-derivative has been proposed and studied for the first time, and all the
solutions for the FKMM system are new. Soliton solutions (21) as well as (67), and oblique
analytical solution (69) have important physical applications. The properties of (67) have
been illustrated by Figures 1–4.

For the (1+1)-dimensional KMM system, it has rich soliton structures [36,41]. However,
some similar results have not been derived for the (2+1)-dimensional KMM system. In the
future, rogue wave solutions for the (2+1)-dimensional KMM system and FKMM system
will be studied using the truncated Painlevé analysis method or Hirota’s bilinear method.
Moreover, new propagation structures such as the breather soliton and periodic oscillation
soliton may be studied.

There have been many definitions of fractional derivative, such as the Riemann–
Liouville derivative, the Atangana–Baleanu derivative, the conformable derivative, and so
on. In this paper, we only studied the fractional KMM system with beta-derivative, which
is a weakness of our research. In the future, we will study the KMM system with other
derivatives, and compare the results between different fractional derivatives.
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