Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator
Abstract
:1. Introduction
2. Basic Settings
3. Existence and Uniqueness
- For any ,
- 2.
- For any and ,
- Suppose that . The definition of and Parseval’s equality show that
- 2.
- Similarly, Lemma 1 implies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.Q.; Kim, K.H.; Kim, P. Fractional time stochastic partial differential equations. Stoch. Process. Their Appl. 2015, 125, 1470–1499. [Google Scholar] [CrossRef]
- Akdemir, O.A.; Dutta, H.; Atangana, A. Fractional Order Analysis: Theory, Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Meerschaert, M.M.; Sikorskii, A. Stochastic Models for Fractional Calculus; De Gruyter Studies in Mathematics; Walter de Gruyter: Berlin/Heidelber, Germany; Boston, MA, USA, 2012; Volume 43. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 1997, 7, 753–764. [Google Scholar] [CrossRef]
- De Carvalho-Neto, P.M.; Planas, G. Mild solutions to the time fractional Navier-Stokes equations in RN. J. Differ. Equ. 2015, 259, 2948–2980. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations. In Mathematics in Sciene and Engineering; Academic Press: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. RACSAM 2021, 115, 1–16. [Google Scholar] [CrossRef]
- Adiguzel, R.S.; Aksoy, U.; Karapinar, E.; Erhan, I.M. On The Solutions Of Fractional Differential Equations Via Geraghty Type Hybrid Contractions. Appl. Comput. Math. 2021, 20, 313–333. [Google Scholar]
- Akdemir, A.O.; Karaoğlan, A.; Ragusa, M.A.; Set, E. Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions. J. Funct. Spaces. 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Bao, T.N.; Caraballo, T.; Tuan, N.H. Existence and regularity results for terminal value problem for nonlinear fractional wave equations. Nonlinearity 2021, 34, 1448–1503. [Google Scholar] [CrossRef]
- Caraballo, T.; Guo, B.; Tuan, N.H.; Wang, R. Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. Math. 2021, 151, 1700–1730. [Google Scholar] [CrossRef]
- Chen, P.; Wang, B.; Wang, R.; Zhang, X. Multivalued random dynamics of Benjamin-Bona-Mahony equations driven by nonlinear colored noise on unbounded domains. Math. Ann. 2022, 1–31. [Google Scholar] [CrossRef]
- Caraballo, T.; Ngoc, T.B.; Tuan, N.H.; Wang, R. On a nonlinear Volterra integrodifferential equation involving fractional derivative with Mittag-Leffler kernel. Proc. Am. Math. Soc. 2021, 149, 3317–3334. [Google Scholar] [CrossRef]
- Karapinar, E.; Binh, H.D.; Luc, N.H.; Can, N.H. On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Önalan, H.K.; Akdemir, A.O.; Ardıç, M.A.; Baleanu, D. On new general versions of Hermite–Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel. J. Inequalities Appl. 2021, 2021, 1–16. [Google Scholar]
- Nghia, B.; Luc, N.; Binh, H.; Long, L. Regularization method for the problem of determining the source function using integral conditions. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 351–361. [Google Scholar] [CrossRef]
- Nass, A.; Mpungu, K. Symmetry Analysis of Time Fractional Convection-reaction-diffusion Equation with a Delay. Results Nonlinear Anal. 2019, 2, 113–124. [Google Scholar]
- Nguyen, A.T.; Caraballo, T.; Tuan, N.H. On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative. Proc. R. Soc. Edinb. Sect. A 2021, 26, 1–43. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tuan, N.A.; Yang, C. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete Contin. Dyn. Syst. 2022, 42, 2637–2665. [Google Scholar] [CrossRef]
- Wang, R.; Shi, L.; Wang, B. Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on . Nonlinearity 2019, 32, 4524. [Google Scholar] [CrossRef]
- Wang, R.; Wang, B. Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. Stoch. Process. Appl. 2020, 130, 7431–7462. [Google Scholar] [CrossRef]
- Wang, R. Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping. J. Dyn. Differ. Equ. 2021, 33, 767–803. [Google Scholar] [CrossRef]
- Tuan, N.H.; Debbouche, A.; Ngoc, T.B. Existence and regularity of final value problems for time fractional wave equations. Comput. Math. Appl. 2019, 78, 1396–1414. [Google Scholar] [CrossRef]
- Tuan, N.H.; Zhou, Y.; Thach, T.N.; Can, N.H. Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104873. [Google Scholar] [CrossRef]
- Tuan, N.H.; Nane, E. Inverse source problem for time-fractional diffusion with discrete random noise. Stat. Probab. Lett. 2017, 120, 126–134. [Google Scholar] [CrossRef]
- Tuan, N.H.; Huynh, L.N.; Baleanu, D.; Can, N.H. On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math. Methods Appl. Sci. 2020, 43, 2858–2882. [Google Scholar] [CrossRef]
- Garra, R.; Giusti, A.; Mainardi, F.; Pagnini, G. Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar] [CrossRef]
- Dimovski, I. Operational calculus for a class of differential operators. C. R. Acad. Bulg. Sci. 1966, 19, 1111–1114. [Google Scholar]
- Orsingher, E.; Polito, F. Randomly stopped nonlinear fractional birth processes. Stoch. Anal. Appl. 2013, 31, 262–292. [Google Scholar] [CrossRef]
- Pagnini, G. Erdélyi–Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Al-Musalhi, F.; Al-Salti, N.; Karimov, E. Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. 2018, 21, 200–219. [Google Scholar] [CrossRef]
- Au, V.V.; Singh, J.; Anh, T.N. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electron. Res. Arch. 2021, 29, 3581–3607. [Google Scholar] [CrossRef]
- Baleanu, D.; Binh, H.D.; Nguyen, A.T. On a Fractional Parabolic Equation with Regularized hyper-Bessel Operator and Exponential Nonlinearities. Symmetry 2022, 14, 1419. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. [Google Scholar] [CrossRef]
- Souplet, P. Recent results and open problems on parabolic equations with gradient nonlinearities. Electron. J. Differ. Equ. 2001, 10, 19. [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang Luc, N.; O’Regan, D.; Nguyen, A.T. Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator. Fractal Fract. 2022, 6, 530. https://doi.org/10.3390/fractalfract6090530
Hoang Luc N, O’Regan D, Nguyen AT. Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator. Fractal and Fractional. 2022; 6(9):530. https://doi.org/10.3390/fractalfract6090530
Chicago/Turabian StyleHoang Luc, Nguyen, Donal O’Regan, and Anh Tuan Nguyen. 2022. "Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator" Fractal and Fractional 6, no. 9: 530. https://doi.org/10.3390/fractalfract6090530
APA StyleHoang Luc, N., O’Regan, D., & Nguyen, A. T. (2022). Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator. Fractal and Fractional, 6(9), 530. https://doi.org/10.3390/fractalfract6090530