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Abstract: We investigate the Cauchy problem for a nonlinear fractional diffusion equation, which
is modified using the time-fractional hyper-Bessel derivative. The source function is a gradient
source of Hamilton–Jacobi type. The main objective of our current work is to show the existence
and uniqueness of mild solutions. Our desired goal is achieved using the Picard iteration method,
and our analysis is based on properties of Mittag–Leffler functions and embeddings between Hilbert
scales spaces and Lebesgue spaces.
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1. Introduction

Fractional partial differential equations (FPDEs) arise naturally in modeling since
fractional derivatives help to describe phenomena efficiently [1], and FPDEs arise in many
fields of applied science [2–8]; see also [9–29].

In this study, we consider a Cauchy problem for a time-space fractional hyper-Bessel
differential equation as follows:

CD
α,β
t ϕ(t, x) + (−∆)σ ϕ(t, x) =

∣∣∣∇ϕ(t, x)
∣∣∣p, in (0, T]×Ω,

ϕ(t, x) = 0 on (0, T]× ∂Ω,

ϕ(0, x) = g(x) in Ω,

(1)

where Ω is a bounded domain in RN (N > 1) with sufficiently smooth boundary ∂Ω, and
g is the initial function. Recall from [30] the fractional operator(

tα d
dt

)β

ϕ(t) := (1− α)βt(α−1)β 1− α

Γ(−β)
t(α−1)β

∫ t

0
(t1−α − s1−α)β−1s−α ϕ(s)ds, (2)

where α < 1, β ∈ (0, 1), Γ is the Gamma function and ∇ is the usual gradient operator.
The notation CD

α,β
t stands for the Caputo-like counterpart of the hyper-Bessel operator

with parameters α < 1 of order β ∈ (0, 1) and can be defined as follows:

CD
α,β
t ϕ(t) :=

(
tα d

dt

)β

ϕ(t)− ϕ(0)(1− α)β t(α−1)β

Γ(1− α)
, (3)

provided that the right-hand side of the above equality makes sense. Since first introduced
in [31] by Dimovski, the fractional hyper-Bessel operator has been shown to have applications
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in Brownian motion, fractional relaxation, and fractional diffusion models [30,32,33]. The regu-
larized Caputo-like counterpart operator CD

α,β
t was introduced in [34] by Al-Musalhi et al.,

where the authors considered a direct problem and a inverse problem for a linear diffusion
equation with the Caputo-like counterpart of the hyper-Bessel derivative. To provide an
overview of topics related to Problem (1), we mention [35], where Au et al. investigated
the Cauchy problem for the following equation:

CD
α,β
t u +Lu(t, x) = F(u), (4)

where L is a generalization of−∆ and F is a nonlinearity of logarithm type, and the authors
established the existence and uniqueness of a mild solution. In addition, they studied the
blowing-up behavior of this solution. Tuan et al. [29] considered a terminal value problem
for (4) where F is given in a linear form, and they showed that the backward problem is
ill-posed and then applied a regularized Tikhonov regularization method to construct an
approximating solution. In [36], Baleanu et al. investigated mild solutions to Equation (4)
where F satisfies an exponential growth, and they showed the local well-posedness of
mild solutions.

The first equation of Problem (1) is a modification of the classical diffusion equation.
In the classical problem, Newton’s derivative describes the velocity of a particle or slope of
a tangent, whereas the general conformable derivative in (1) can be regarded as a special
velocity and its direction and strength rely on a particular function [37]. The main goal of
this work is to study the theory of existence and uniqueness of mild solutions, by which we
can find an efficient numerical approach to investigate (1). In comparison with the above
studies, our work possesses some new features. First, our source function is a gradient
nonlinearity of Hamilton–Jacobi type. The presence of this function requires us to use
different methods and, motivated by Souplet [38], we use the Picard iteration method to
establish the existence and uniqueness of mild solutions. However, to deduce our results,
we balance the linear and nonlinear parts of Problem (1), and to do this, we apply properties
of Mittag–Leffler functions in an efficient way. Additionally, some Sobolev embeddings
between Hilbert scales spaces and Lebesgue space are required to find an appropriate
estimate to deal with the gradient source.

The outline of the work is as follows. Section 2 provides some preliminaries, and the
main result concerning Problem (1) is given in Section 3.

2. Basic Settings

We begin this section with a convention that a . b means a positive constant C exists
such that a 6 Cb. Let (B, ‖‖B) be a Banach space. We define the following space:

L∞(0, T; B) :=
{

u : (0, T)→ B
∣∣∣ u is bounded almost everywhere on (0, T)

}
. (5)

Next, we recall that in L2(Ω), the negative Laplace operator subject to Dirichlet conditions
satisfies the following spectral problem: −∆Θl(x) = λlΘl(x), x ∈ Ω,

Θl(x) = 0, x ∈ ∂Ω,
(6)

where {Θl}l∈N is a set of eigenvectors which is also a orthonormal basic of L2(Ω) and
{λl}l∈N is the corresponding increasing set of positive eigenvalues such that λl → ∞ as
l → ∞. Then, for any σ > 0, we define the fractional Laplacian (−∆)σ by

(−∆)σu := ∑
l∈N

λσ
l ulΘl , (7)
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where ul :=
∫

Ω u(x)Θl(x)dx and u belongs to the following space

Dσ(Ω) :=

{
u ∈ L2(Ω)

∣∣∣ ∑
l∈N

λ2σ
l u2

l < ∞

}
. (8)

We note that Dσ(Ω) is a Hilbert space and possesses the following norm:

∥∥u
∥∥
Dσ(Ω)

:=
∥∥∥(−∆)σu

∥∥∥
L2(Ω)

=

(
∑
l∈N

λ2σ
l u2

l

) 1
2

. (9)

We define the Hilbert scale space with negative orders D−σ(Ω) as the dual space
of Dσ(Ω). Denote by 〈·, ·〉∗ the dual product between D−σ(Ω) and Dσ(Ω), and D−σ(Ω) is
a Hilbert space equipped with the norm

∥∥u
∥∥
D−σ(Ω)

:=

(
∑
l∈N

λ−2σ
l 〈u, Θl〉2∗

) 1
2

, u ∈ D−σ(Ω). (10)

Remark 1 (Chapter 5 [39]). For any u ∈ L2(Ω) and v ∈ Dσ(Ω), we have the following equality:

〈u, v〉∗ =
∫

Ω
u(x)v(x)dx. (11)

Proposition 1 (Lemma 4.7 [35]). Let Ω be a smooth bounded domain of RN . The following
embeddings are satisfied:

Lq(Ω) ↪→ Dν(Ω) if
−N

4
< ν 6 0, and q >

2N
N − 4ν

, (12)

Lq(Ω)←↩ Dν(Ω) if 0 6 ν <
N
4

, and q 6
2N

N − 4ν
. (13)

Next, we derive the mild formula for solutions of Problem (1). First, we introduce
the definition of Mittag–Leffler functions, which play an important role in investigating
time-fractional differential equations.

Definition 1. For β1 ∈ R+, β2 ∈ R and z ∈ C, the Mittag-Leffler function is defined as follows

Eβ1,β2(z) := ∑
n∈N

zn

Γ(nβ1 + β2)
. (14)

Suppose that ϕ ∈ L∞(0, ∞; L2(Ω)), and we find from the first equation of Problem (1) that

CD
α,β
t ϕl(t) + λσ

l ϕl(t) =
∣∣∣∇ϕ(t)

∣∣∣p
l
, t > 0, (15)

here, we recall that ϕl =
∫

Ω ϕ(x)Θl(x)dx, |∇ϕ| is the module of the gradient of ϕ and
|∇ϕ(t)|pl =

∫
Ω |∇ϕ(t, x)|pΘl(x)dx.

In order to solve this equation, we recall the following theorem from ([34]) (Section 2):

Theorem 1. Let α < (−∞, 1), λ > 0 and β ∈ (0, 1). For any t > 0, solutions of the following
fractional differential equation

CD
α,β
t u(t) + λu(t) = f (t) (16)

are represented by the formula below:
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u(t) =Eβ,1

(
−λt(1−α)β

(1− α)β

)
u(0)

+
1

(1− α)βΓ(β)

∫ t

0

(
t1−α − s1−α

)β−1
f (s)d(s1−α) (17)

− λ

(1− α)2β

∫ t

0

(
t1−α − s1−α

)2β−1
Eβ,2β

(
−

λ
(
t1−α − s1−α

)β

(1− α)β

)
f (s)d(s1−α).

Based on the above theorem and some calculations, we derive the following equivalent
equation of the (15):

ϕl(t) =Eβ,1

(
−λσ

l t(1−α)β

(1− α)β

)
gl

+
∫ t

0

(
t1−α − s1−α

)β−1

(1− α)β
Eβ,β

(
−

λσ
l
(
t1−α − s1−α

)β

(1− α)β

)∣∣∣∇ϕ(s)
∣∣∣p
l
d(s1−α). (18)

Recall that, for any u ∈ L2(Ω), we have the Fourier expansion u(x) = ∑l∈N ulΘl(x).
Based on (18), we obtain the formula of the Fourier coefficient ϕl(t) at t ∈ (0, T) of a mild
solution ϕ ∈ L∞(0, T;Dν(Ω)) of Problem (1). In summary, the solution ϕ ∈ L∞(0, T;Dν(Ω))
can be studied via the following equivalent integral equation:

ϕ(t, x) = R1,σ(t1−α)g(x) +
∫ t

0
R2,σ(t1−α − s1−α)

∣∣∣∇ϕ(s, x)
∣∣∣pd(s1−α), (19)

where

R1,σ(t)u(x) := ∑
l∈N

Eβ,1

(
−λσ

l tβ

(1− α)β

)
ulΘl(x), (20)

R2,σ(t)u(x) := ∑
l∈N

tβ−1

(1− α)β
Eβ,β

(
−

λσ
l tβ

(1− α)β

)
ulΘl(x). (21)

Remark 2. The function ϕ in (19) is actually described by the limit (in L∞(0, T;Dν(Ω))) of the
sequence {ϕj}j∈N, which is defined by

ϕ1(t, x) := R1,σ(t1−α)g(x) (22)

and

ϕj+1(t, x) := ϕ1(t, x) +
∫ t

0
R2,σ(t1−α − s1−α)

∣∣∣∇ϕj(s, x)
∣∣∣pd(s1−α). (23)

3. Existence and Uniqueness

This section begins with some linear estimates for R1,σ and R2,σ, which are derived
via the Fourier series of L2 functions and Parseval’s equality.

Lemma 1 ([8] Theorem 1.6). Let β1 ∈ (0, 1) and β2 ∈ R and ς ∈ (πβ1
2 , π). Then, for any z ∈ C

such that

ς 6 |arg z| 6 π, (24)

the following estimate is satisfied:
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∣∣∣Eβ1,β2(z)
∣∣∣ . 1

1 + |z| . (25)

Lemma 2 (Linear estimates). Let ν > 0 and 0 < σ 6 1. The following estimates hold:

1. For any u ∈ Dν(Ω), ∥∥∥R1,σ(t)u
∥∥∥
Dν(Ω)

.
∥∥u
∥∥
Dν(Ω)

, t > 0. (26)

2. For any θ ∈ [0, 1] and u ∈ Dν(Ω),∥∥∥R2,σ(t)u
∥∥∥
Dν(Ω)

. tβ−θβ−1∥∥u
∥∥
Dν−θσ(Ω)

, t > 0. (27)

Proof.
1. Suppose that u ∈ Dν(Ω). The definition of Dν(Ω) and Parseval’s equality show that∥∥∥R1,σ(t)u

∥∥∥2

Dν(Ω)
=
∥∥∥(−∆)νR1,σ(t)u

∥∥∥
L2(Ω)

= ∑
l∈N

λ2ν
l

[
Eβ,1

(
−λσ

l tβ

(1− α)β

)]2

u2
l . (28)

Applying Lemma 1, we find that∣∣∣∣∣Eβ,1

(
−λσ

l tβ

(1− α)β

)∣∣∣∣∣ . (1− α)β

(1− α)β + λσ
l tβ

. (29)

Combining (28) and (29) yields∥∥∥R1,σ(t)u
∥∥∥
Dν(Ω)

.
∥∥u
∥∥
Dν(Ω)

. (30)

2. Similarly, Lemma 1 implies∣∣∣∣∣Eβ,β

(
−

λσ
l tβ

(1− α)β

)∣∣∣∣∣ .
[

(1− α)β

(1− α)β + λσ
l tβ

]1−θ[
(1− α)β

(1− α)β + λσ
l tβ

]θ

. λ−σθ
l t−θβ, (31)

for any θ ∈ [0, 1]. For any u ∈ Dν−θσ(Ω), one has

∥∥∥R2,σ(t)u
∥∥∥2

Dν(Ω)
= ∑

l∈N
λ2ν

l

[
tβ−1

(1− α)β
Eβ,β

(
−λσ

l tβ

(1− α)β

)]2

u2
l . (32)

Based on estimate (31), we deduce

∥∥∥R2,σ(t)u
∥∥∥
Dν(Ω)

. tβ−θβ−1

(
∑
l∈N

λ2ν−2θσ
l u2

l

) 1
2

= tβ−θβ−1∥∥u
∥∥
Dν−θσ(Ω)

. (33)

The proof is completed.

Next, we provide a lemma about the nonlinear estimate that helps us to completely
define the source function

∣∣∇u
∣∣p and find an appropriate way to deal with it.
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Lemma 3 (Nonlinear estimates). Let N > 1 and ν, γ, p be constants such that

ν < γ 6
N
4
+ ν, (34)

1
2
6 ν <

N
4
+

1
2

, (35)

max
{

1,
2N

N − 4(ν− γ)

}
p 6

2N
N − 4(ν− 1

2 )
. (36)

Then, for any u, v ∈ Dν(Ω), we have the following nonlinear estimate:∥∥∥∣∣∇u
∣∣p − ∣∣∇v

∣∣p∥∥∥
Dν−γ(Ω)

.
(∥∥u

∥∥p−1
Dν(Ω)

+
∥∥u
∥∥p−1
Dν(Ω)

)∥∥∥u− v
∥∥∥
Dν(Ω)

. (37)

Proof. We first note that there exists a positive constant q such that

max
{

1,
2N

N − 4(ν− γ)

}
p 6 q 6

2N
N − 4(ν− 1

2 )
. (38)

Hölder’s inequality thus helps us to derive∥∥∥∣∣∇u
∣∣p − ∣∣∇v

∣∣p∥∥∥
Lq/p(Ω)

.
(∥∥∇u

∥∥p−1
Lq(Ω)

+
∥∥∇u

∥∥p−1
Lq(Ω)

)∥∥∥∇u−∇v
∥∥∥

Lq(Ω)
. (39)

Then, we apply the inclusion Dν− 1
2 (Ω) ↪→ Lq(Ω) and deduce∥∥∥∣∣∇u

∣∣p − ∣∣∇v
∣∣p∥∥∥

Lq/p(Ω)
.
(∥∥∇u

∥∥p−1

Dν− 1
2 (Ω)

+
∥∥∇u

∥∥p−1

Dν− 1
2 (Ω)

)∥∥∥∇u−∇v
∥∥∥
Dν− 1

2 (Ω)
. (40)

It immediately follows that∥∥∥∣∣∇u
∣∣p − ∣∣∇v

∣∣p∥∥∥
Lq/p(Ω)

.
(∥∥u

∥∥p−1
Dν(Ω)

+
∥∥u
∥∥p−1
Dν(Ω)

)∥∥∥u− v
∥∥∥
Dν(Ω)

. (41)

This result together with the embedding Lq/p(Ω) ↪→ Dν−γ(Ω) yield the desired
estimate, provided that q/p > 2N

N−4(ν−γ)
. The proof is completed.

Theorem 2. Suppose that N > 1 and ν, σ, θ, p satisfy the following assumptions:

0 < θ < 1, 0 < σ 6 1 (42)

1
2
6 ν <

N
4
+

1
2

, (43)

ν < θσ 6
N
4
+ ν, (44)

max
{

1,
2N

N − 4(ν− θσ)

}
p 6

2N
N − 4(ν− 1

2 )
. (45)

In addition, assume that g ∈ Dν(Ω). Then, there exists a positive constant T > 0 such that
Problem (1) has a unique mild solution ϕ ∈ L∞(0, T;Dν(Ω)).
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Proof. First, for any T > 0, we denote by BR(0, T;Dν(Ω)) a closed ball in L∞(0, T;Dν(Ω))
centered at zero with radius R > 0. Next, we consider a sequence of functions {ϕj}j∈N
defined in Remark 2. By induction, we show that if g ∈ Dν(Ω),{ϕj}j∈N is a subset of
BR(0, T;Dν(Ω)) for some appropriate constants R > 0 and T > 0. Indeed, for g ∈ Dν(Ω),
we can apply Lemma 2 and deduce∥∥ϕ1(t)

∥∥
Dν(Ω)

=
∥∥∥R1,σ(t1−α)g

∥∥∥
Dν(Ω)

.
∥∥g
∥∥
Dν(Ω)

(46)

<
1
2

R, t > 0.

Thus, ϕ1 ∈ BR(0, T;Dν(Ω)). Next, for j > 2, we suppose that ϕj ∈ BR(0, T;Dν(Ω)).
For t > 0, the triangle inequality yields∥∥ϕj+1(t)

∥∥
Dν(Ω)

6
∥∥ϕ1(t)

∥∥
Dν(Ω)

+
∫ t

0

∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

d(s1−α). (47)

According to Lemma 2, the following estimate holds:∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

. (t1−α − s1−α)β−θβ−1
∥∥∥∣∣∣∇ϕj(s)

∣∣∣p∥∥∥
Dν−θσ(Ω)

. (48)

Assumptions of ν, σ, θ enable us to use Lemma 3 and derive∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

. (t1−α − s1−α)β−θβ−1∥∥ϕj(s)
∥∥p
Dν(Ω)

, (49)

where we chose u = ϕj and v = 0. Therefore, for any t > 0, we find that

∫ t

0

∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

d(s1−α)

.
∫ t

0
(t1−α − s1−α)β−θβ−1∥∥ϕj(s)

∥∥p
Dν(Ω)

d(s1−α). (50)

Since ϕj ∈ BR(0, T;Dν(Ω)), one has∥∥ϕj(t)
∥∥
Dν(Ω)

6 R, for almost t ∈ (0, T). (51)

Thus, (50) is equivalent to∫ t

0

∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

d(s1−α)

.
∫ t

0
(t1−α − s1−α)β−θβ−1

[
ess sup
t∈(0,T)

∥∥ϕj(s)
∥∥
Dν(Ω)

]p

d(s1−α) (52)

. Mp
∫ t

0
(t1−α − s1−α)β−θβ−1d(s1−α).

Since θ < 1, the last integral is convergent. We thus can find a sufficiently small
constant T such that T(1−α)β−θβ

Rp−1 6 1
2 . Therefore, one has

∫ t

0

∥∥∥R2,σ(t1−α − s1−α)
∣∣∣∇ϕj(s, x)

∣∣∣p∥∥∥
Dν(Ω)

d(s1−α) 6
1
2

R. (53)

Combining (46), (47) and (53) gives us∥∥ϕj+1(t)
∥∥
Dν(Ω)

6 R. (54)
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We can now conclude that ϕj+1 ∈ BR(0, T;Dν(Ω)). Thus, {ϕj}j∈N is a subset of
BR(0, T;Dν(Ω)).

Next, we prove that {ϕj}j∈N is a Cauchy sequence in BR(0, T;Dν(Ω)). Let ϕj−1 and
ϕj be two elements of {ϕj}j∈N ⊂ BR(0, T;Dν(Ω)). We have

∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

6
∫ t

0

∥∥∥∥∥R2,σ(t1−α − s1−α)

[∣∣∣∇ϕj(s)
∣∣∣p − ∣∣∣∇ϕj−1(s)

∣∣∣p]∥∥∥∥∥
Dν(Ω)

d(s1−α). (55)

Repeated application of Lemma 2 enables us to write∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

.
∫ t

0
(t1−α − s1−α)β−θβ−1

∥∥∥∣∣∣∇ϕj(s)
∣∣∣p − ∣∣∣∇ϕj−1(s)

∣∣∣p∥∥∥
Dν−θσ(Ω)

d(s1−α). (56)

It follows that∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

.
∫ t

0
(t1−α − s1−α)β−θβ−1

(∥∥ϕj(s)
∥∥p−1
Dν(Ω)

(s) +
∥∥ϕj−1

∥∥p−1
Dν(Ω)

)∥∥∥ϕj(s)− ϕj−1(s)
∥∥∥
Dν(Ω)

d(s1−α). (57)

Similar to the above arguments, since ϕj−1, ϕj ∈ BR(0, T;Dν(Ω)), we have
ess sup
t∈(0,T)

∥∥ϕj−1(t)
∥∥
Dν(Ω)

6 R,

ess sup
t∈(0,T)

∥∥ϕj(t)
∥∥
Dν(Ω)

6 R.
(58)

Therefore, we obtain the following estimate:∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

(59)

.
∫ t

0
(t1−α − s1−α)β−θβ−1

[
ess sup
s∈(0,T)

∥∥ϕj(s)
∥∥
Dν(Ω)

(s)

]p−1∥∥∥ϕj(s)− ϕj−1(s)
∥∥∥
Dν(Ω)

d(s1−α)

+
∫ t

0
(t1−α − s1−α)β−θβ−1

[
ess sup
s∈(0,T)

∥∥ϕj−1(s)
∥∥
Dν(Ω)

(s)

]p−1∥∥∥ϕj(s)− ϕj−1(s)
∥∥∥
Dν(Ω)

d(s1−α)

. Rp−1
[∫ t

0
(t1−α − s1−α)β−θβ−1d(s1−α)

]
ess sup
t∈(0,T)

∥∥∥ϕj(t)− ϕj−1(t)
∥∥∥
Dν(Ω)

. (60)

From the fact that∫ t

0
(t1−α − s1−α)β−θβ−1d(s1−α) . T(1−α)β−θβ

, (61)

by a a suitable choice of T, we have

∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

6
1
2

ess sup
t∈(0,T)

∥∥∥ϕj(t)− ϕj−1(t)
∥∥∥
Dν(Ω)

, t > 0. (62)

This is equivalent to the following result:

ess sup
t∈(0,T)

∥∥ϕj+1(t)− ϕj(t)
∥∥
Dν(Ω)

6
1
2

ess sup
t∈(0,T)

∥∥∥ϕj(t)− ϕj−1(t)
∥∥∥
Dν(Ω)

. (63)
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From the above estimate, we easily deduce that {ϕj}j∈N is a Cauchy sequence in
BR(0, T;Dν(Ω)). The completeness of L∞(0, T;Dν(Ω)) ensures the unique existence of a
function ϕ such that

lim
j→∞

ess sup
t∈(0,T)

∥∥∥ϕj(t)− ϕ(t)
∥∥∥
Dν(Ω)

= 0. (64)

Therefore, we find that

ϕ(t, x) = lim
j→∞

ϕj(t, x) = R1,σ(t1−α)g(x) +
∫ t

0
R2,σ(t1−α − s1−α)

∣∣∣∇ϕ(s, x)
∣∣∣pd(s1−α). (65)

We can now conclude that Problem (1) possesses a unique mild solution
ϕ ∈ L∞(0, T;Dν(Ω)). The theorem is thus proven.

4. Conclusions

In this study, we prove the existence and uniqueness of a mild solution to an initial
value problem for a fractional diffusion equation with the Caputo-like counterpart of
the hyper-Bessel derivative and a gradient source function. The result hopefully can be
extended in future works to global results, and indeed the blowing-up behavior of mild
solutions is also an interesting open problem.
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