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Abstract: The paper focuses on the design of an intelligent interface that compensates for the
incapacity of a person with Parkinson’s disease to drive a wheelchair. The fractional order model that
defines a person with Parkinson’s disease is investigated. An identification technique based on the
analysis of the frequency behavior of the movement of a wheelchair driven by a with Parkinson’s
disease person on the test trajectory is proposed and a delay time crossover model with fractional
order exponent β = 1.5 is inferred. The fractional dynamic model of the “disabled man-wheelchair”
system is discussed and a control system is proposed to compensate for the inability of the wheelchair
driver. The conditions that ensure the stability of the closed loop control system are inferred. An
experimental technique for analyzing movement performance is developed and a quality index
is proposed to evaluate these experiments. The values of this index on the tests performed on
Parkinson’s patients are analyzed and discussed.

Keywords: human fractional order model; control system; stability

1. Introduction

The analysis of human behavior in control systems has been of paramount importance,
becoming a focal research topic in recent decades. The mainstream literature includes
numerous titles dedicated to this objective. Beginning with the pioneering paper of Mc
Ruer and Kleinman [1,2] and continuing with the most recent contributions [3,4], these
papers have tried to define mathematical models that characterize human dynamics in a
control system. Representative papers in this field are [5,6], in which man-machine models
involved in the control of vehicles are analyzed, as well as how the visual information is
processed by the human operator and how the vehicle motion is controlled. Techniques
and methods derived from the control theory regarding the controller type characteristics
of a human operator are discussed in [7–9]. The cyber-mechanism associated with visual
feedback control is analyzed in [10,11]. Different problems related to data storage and
levels of human processing are formulated in [12–14]. The human control strategy based
on memorizing of sequences of past observations is analyzed in [15,16]. Drawing on these
observations, it is concluded that the dynamics of a human controller is more accurately
described by fractional order models (FOM) that add memory components to the conven-
tional differential model, integer order models (IOM). The Mc Ruer’s crossover model for
fractional order systems is generalized in [17]. The adaptive behavior of a human operator
to the characteristics of the driven system is studied in article [18].

All these papers indicate that to achieve a good performance of the control system,
highly accurate knowledge of the transfer function of the human operator, Yh(s), is required.
Several models are proposed and used in literature. We can mention the Mc Ruer model [1],

Yh(s) = Kp
(1+TLs)
s(1+TIs)

e−τs. In [4], the model Yh(s) =
Kpe−τs

s(1+TIs)
is analyzed, which is developed
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in [5] as Yh(s) =
Kpe−τs

sβ(1+TIs)
with the fractional exponent β = 1.2. Other papers [7–9] examine

the models Yh(s) = Kp
(1+TLs)e−τs

s(1+TIs)(1+TN s) or Yh(s) =
kpe−τs

sα for ∝= 0.4.
In these models, the first component is associated with the properties of the human

neuromuscular system and the second one provides the control function, defined by the
operator’s ability to select the optimal control parameters. People with health problems are
characterized by transfer functions in which the second component is negligible or does not
exist and the first component is determined by the health conditions of the people. There
are a few papers in the literature that analyze the behavior of people with health problems,
locomotor disabilities or brain disorders. In this context, the human neuromuscular dy-
namics of a disabled operator is discussed in [19]. The quality of movement in disabled
man control systems is presented in [20]. Other papers [21–23] emphasize the complexity
of disabled human control systems determined either by the physical or mental incapacity
of the human operator.

All these papers study the human model and investigate solutions, using various
techniques and procedures, to determine a control system that allows the desired per-
formance. Thus, the fractional order models or integer order models of healthy people
(HP) or disabled people (DP) are analyzed and various design techniques are proposed,
ranging from the classic design methods for closed loop control to associated methods of
cyber-physical systems. These are completed by the implementation of controllers, either
by integer order models (IOMC) or by fractional order models (FOMC). A selection of these
papers is presented in Table 1.

Table 1. Man-machine systems: models, control techniques.

Paper Healthy/Disability
Man Man Model Control Techniques Controller

[1,2,8,18] HP Linear IOM Classic Closed Loop
Control IOMC

[3,11] HP Linear IOM Fuzzy Control IOMC

[12,16,23] HP Linear FOM with time delays Optimal control techniques IOMC

[4,6] HP Linear FOM with time delays Classic Closed Loop Control FOMC

[13,14,17,21] HP Nonlinear FOM with time delays Cyber-physical control IOMC

[7,23,24] HP FOM Admitance control IOMC

[19] HP FOM Frequency techniques IOMC

[5,20] HP Nonlinear IOM with time delays Algebraic criteria IOMC

[9,10,25] HP Linear IOM with time delays Classic Closed Loop Control IOMC

Our paper DP Linear FOM with time delays Lyapunov techniques and
frequency criteria FOMC or IOMC

In general, human behavior is assimilated through a two-component transfer function
(Figure 1). The first component is known as the crossover model [1,4] and is defined by the
transfer function

Yh(s) =
xh(s)

xtarget(s)
=

kh
s

(1)

where xtarget defines the target variable and xh is the human action. The second component
corresponds to the adaptive characteristic of the human operator, a self-tunning compo-
nent, YST(s), through which the operator compensates the characteristics of the driven
system [24].

YST(s) =
1

Yv(s)
(2)
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where Yv(s) represents the wheelchair transfer function. The open-loop transfer function
will be:

Y(s) = Yh(s)
1

Yv(s)
Yv(s) =

kh
s

(3)

which ensures the desired performances in the closed-loop control system.
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Figure 1. Closed-loop control with human operator.

In case of people with disabilities, the control system changes (Figure 2). The first
component Yh(s) becomes a fractional exponent transfer function:

Yh(s) =
kh

sβ
(4)

where kh and β are the parameters that characterize the degree of physical and mental
deficiency of the human operator (persons with arm or leg-emphasized hemiparesis, with
severe brain damage). In most cases, this incapacity eliminates the self-tuning component
of the operator, YST(s), (Figure 2b), completely. The open-loop transfer function becomes:

Y(s) =
kh

sβ
Yv(s) (5)

and the quality of motion worsens. A controller must be inserted into the closed-loop
control system to obtain the desired quality of wheelchair movement [24,25].

Our paper falls within this area of investigation, analyzing and proposing an intelligent
control system that compensates for this incapacity of a disabled man with Parkinson’s
disease who drives a wheelchair. This health condition of the driver with Parkinson’s
disease can lead to a reduced stability of the wheelchair movement. Our research focuses
on identifying a fractional model for the people with Parkinson’s disease, assuming that
such models define more accurately the dynamic characteristics of people with this class
of disability. Based on this model, a control algorithm has been proposed in our paper to
satisfy the desired performances. The main results can be summarized as follows:

- The fractional order model that defines a Parkinson’s is investigated. An identification
technique based on the analysis of the frequency behavior of the movement of a
wheelchair driven by a person with Parkinson’s disease on the test trajectory is
proposed. A fractional order exponent β = 1.5 is inferred for people with this class of
disability and a delay time crossover model is proposed.

- The fractional dynamic model of the “disabled person-wheelchair” system is discussed.
- An intelligent control system is proposed to compensate for the inability of the

wheelchair driver. The stability of the control system is demonstrated by the Lyapunov
techniques and frequency criteria derived from Yakubovici-Kalman-Popov Lemma.

- An experimental technique for analyzing the movement performance is developed
and a quality index is proposed to evaluate these experiments. The values of this
index on the tests performed on Parkinson’s patients are analyzed and discussed.

The paper is structured as follows: Section 2 presents Materials and Methods with sub-
sections on Disabled Human Model Identification Technique, Disabled Person-Wheelchair
Fractional Order Model and Control Systems, Section 3 emphasizes the Results with sub-
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sections on Numerical Simulations and Experimental Tests, and Section 4 is devoted to
Discussions and Conclusions.
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2. Materials and Methods
2.1. Disabled Human Operator Identification

The identification of a human operator model was performed on a patient, a human op-
erator with Parkinson’s disease, driving a wheelchair on an imposed path. The wheelchair
is an EZ Lite Cruiser Standard Model [26] with rear wheel drive and a brushless motor to
power them. A joystick and a conventional control system are used to ensure the direction
of control and the velocity. The identification technique uses a data acquisition and process-
ing system implemented by a Raspberry Pi4 system (Figure 3). An experiment was used
in which the operator, a man with no mental disabilities, whose driving performance was
severely impaired by the lack of controllability of hand movement caused by Parkinson’s
disease, was asked to drive the wheelchair on an imposed trajectory with a certain degree
of difficulty. It was considered representative for the evolution on a trajectory that suddenly
changes the direction of motion at right angles, as seen in Figure 4. The output characteristic
of the “person with Parkinson’ disease-wheelchair” system is analyzed for an evolution
on a test trajectory. A test trajectory is considered a motion at which, at a given moment,
the direction of movement is switched with 90◦ (step input, xtarget =

π
2 ). The output of the

system is considered the rotation θ around its instantaneous centre of rotation (ICR) [25,26].
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This variable is determined from the angular velocities ωL, ωR measured by the wheelchair
velocity sensors and stored in the Data Acquisition Module.

θ = kθ(ωL −ωR) (6)

An experiment consists of the sequences of movement through which the wheelchair,
driven by a man with Parkinson’s disease (the operator), moves on a test trajectory. The
motion on a test trajectory requires a sudden 90◦ change of direction, a change made
by accelerating one wheel and decelerating the opposite wheel. When reaching the new
direction, the operator returns the velocities to the same value maintaining the motion
on the new direction. Throughout the experiment, the angular velocities are measured
and stored. Subsequently, these parameters are transferred to a computer and analyzed.
MATLAB toolboxes (R2020a) are used to determine the family of output characteristics
{θ(t), t} i and frequency characteristics (Bode diagram). The experiments were conducted
on two patients without mental disabilities who had the intellectual ability and the capacity
to drive a wheelchair to a target, but whose driving performance was severely impaired by
the lack of controllability of hand movement caused by Parkinson’s disease. A number of
20 tests are performed independently by two patients with Parkinson’s disease to obtain an
accurate estimate of the parameters of the “disabled person-wheelchair” model. Figures 5–7
provide the representation of the output variable θ(t) for the 10 experiments (Figure 5—
Patient 1) and the Bode diagram (Figures 6 and 7). The results of the experiments are
summarized in Table A1 (Appendix A).
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The analysis of the curve family {θ(t), t} i does not only indicate the somewhat chaotic
evolution of the global system, whose characteristics is determined by the incapacity of
the disabled operator, but it also shows the tendency for a good evolution towards the
target position. The Bode diagrams, Magnitude-frequency (Figure 6) and Phase-frequency
(Figure 7), show the behavior of the “person-wheelchair” system with transfer function:

Y(s) =
θ(s)

xtarg(s)
= Yh(s) Yv(s) (7)

For low frequency ( f ∈ [1, 10] Hz), the electro-mechanical component can be ne-
glected, Y(s) ≈ Yh(s). The human behavior for a step input, xtarget(s) = π

2s , is evaluated
by the magnitude-frequency plot for f ∈ [1, 10] Hz with a slope that can be estimated at
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−50 dB/dec and the phase-frequency plot at a value of ϕ ∼= −3.925 [rad] ∼= −2.5 π
2 [rad]

(Table A1).

θ(s) =
kh

sβ

π

2s
=

kT

s2.5 (8)

which determines the identification of the human behavior by the transfer function Yh(s) =
kh
sβ with the fractional exponent β = 1.5 and the human gain coefficient kh = 9.54 as the
average value shown in Table A1.
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Remark 1. The response time of the disabled operator determined by the propagation time in the
nervous system, as well as the time constants of the muscular system, introduces a delay component
τ [6,11]. Through this component, the dynamic model becomes:

Yh(s) =
kh

sβ
e−τs (9)

Assumption 1 The following inequality will be considered for the delay time components

zT(t)z(t− τ) ≤ ρMzT(t)z(t) (10)

where ρM is a positive constant.

It is very difficult to evaluate this time delay. Experimental results [11] allow us to use
τ = 0.1 s and identify a domain = = [0.05; 0.15]s, τ ∈ =.

Remark 2. It is difficult to make a comparison of the model (9) with similar models in the
literature as all papers refer to healthy operators with no physical or mental disabilities. We can

mention: Yh(s) = ωc
s e−τs, or Yh(s) = Kp

(1+TLs)
s(1+TI s) e−τs from [1], the models Yh(s) =

Kpe−τs

s(1+TI s) ,

Yh(s) =
Kpe−τs

sβ(1+TI s)
from [4,5] with the fractional exponent β = 0.8. Other papers [7–9] studied

the models Yh(s) = Kp
(1+TLs)e−τs

s(1+TI s)(1+TN s) or Yh(s) =
kpe−τs

sα for ∝= 0.4. An analysis of the models
in [4,5,7–9] indicates the use of fractional order operators to describe the dynamic behavior of healthy
drivers, physically and mentally capable to perform the functions required to drive a vehicle. Our
paper examines patients who had the intellectual ability and capacity to drive a wheelchair to a
target, but whose driving performance was severely impaired by the lack of controllability of hand
movement caused by Parkinson’s disease. Comparing these models with (9), we notice the presence
of the component 1

sβ , the major difference being given by the fractional exponent that reaches, in the
case of our model for the human operator with disabilities, the highest value β = 1.5.
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2.2. Disabled Man-Wheelchair Fractional Order Model

From (9), the human dynamics can be rewritten as:

Yh(s) =
xh(s)

xtarget(s)
=

kh

sβ
e−τs, yh(s) = xh(s) (11)

where yh(s) and xh(s) are the output and the state of the human operator, respectively.
Rewritting (11) in time, it yields:

Dβxh(t) = khxtarg(t− τ) (12)

where Dβxh(t) is the Caputo fractional order derivative. In the human model, the delay vari-
ables are represented by the input xtarg(t− τ) and the velocity feedback ω1(t− τ), ω2(t− τ)
determined by the human reaction capacity.

The dynamic model of the Disabled Person Wheelchair (DPW) is a conventional
wheelchair model [26,27] with the control of velocity and motion direction given by the
joystick, with a decoupled drive system and with symmetrical, electrical and mechanical,
architecture, for moving to the left and, respectively, to the right. This symmetry allows to
decouple the DPW model as:

.
vj
(t) = Avvj(t) + bvuj

v(t), j = 1, 2 (13)

Av =

[
−R/L −ke/L
kt/nJ −ν/J

]
, bv =

[
1/L

0

]
, j = 1, 2 (14)

where vj =
[
ij ωj

]T defines the wheelchair state, uj
v is the input variable (index j = 1, 2

identifies the motion direction, toward the left and right) and R, L, J, kt, ke, n, ν are the
electrical and mechanical parameters of the system (Table A2). A fractional order state
vector zj is introduced and the following relations are inferred:

z1 = xh; D0.5z1 = z2; D0.5z2 = z3; D0.5z3 = khxtarg(t− τ)− kv(ω1(t− τ)−ω2(t− τ));

zj
4 = ij; D0.5zj

4 = zj
5; D0.5zj

5 = −R/Lzj
4 − ke/L zj

6 + 1/L uj
c

zj
6 = ωj; D0.5zj

6 = zj
7; D0.5zj

7 = kt/nJzj
4 − ν/J zj

6, D0.5zj
7 =

.
ωj, j = 1, 2

z =
[
z1 z2 z3 z1

4 z1
5 z1

6 z1
7 z2

4 z2
5 z2

6 z2
7
]T

(15)

The fractional order model will be [28–31]

D0.5z(t) = A0z(t) + A1z(t− τ) + buc(t) + d xtarg(t− τ) (16)

with initial conditions
z(t) = ϕ(t), t ∈ [−τ, 0] (17)

Consider the following output variable

y(t) = cTz(t) (18)

where

A0 =



02×1 I2×2 03×4 03×4

05×3

0

−R/L

0

kt/nJ

1

0

0

0

0
−ke

L

0
−ν

J

0

0

1

0

04×4

04×3 04×4

0

−R/L

0

kt/nJ

1

0

0

0

0
−ke

L

0
−ν

J

0

0

1

0



(19)
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A1 =

 02×11
01×5 −c1

v 01×3 −c2
v 0

08×11

;b =


04×1

1
L

03×1
1
L

02×1

; (20)

d =

02×1
kh

08×1

 (21)

c = [−kh1 kh2 01×2 −kω1 −kω2 01×2 −kω1 −kω2 0]T (22)

2.3. Control System

In the wheelchair control system, the human operator based on visual information
controls the direction and velocity of motion through the joystick, adapting the control
to the external disturbances and maintaining the motion on an imposed trajectory. In the
case of a disabled operator control, the adaptive control component and decision-making
capacity are missing or largely attenuated. Consequently, the movement has a chaotic,
oscillating character (Figure 4).

The proposed control system is shown in Figure 8. This system includes, in addition
to the local control systems of the two active wheels, Y1

v (s), Y2
v (s), a controller Yc(s) that

will implement the control law:
uc(t) = −kcy(t) (23)

where
uc(t) = uc1(t) + uc2(t) = −kc1y(t)− kc2y(t) (24)

and the controller gain kc = kc1 + kc2, which is a positive constant that verifies the condi-
tions:

Arg(eig
((

A0 + A1 − kc1bcT
) )

>
π

2
(25)

kc2σ ≤ 1 (26)

and σ is a positive constant.
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Theorem 1. The time delay fractional order system (16)–(22) with the control law (23)–(26) is
asymptotically stable if the following conditions are satisfied:
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Arg(eig(A∗)) >
π

2
(27)

Re
(

cT(jωI − A∗)−1b
)
≥ −
√

σ (28)

α = $− ρMρA1P > 0 (29)

where $ = ‖
(
q + kc2

√
σc
)(

q + kc2
√

σc
)T‖, A∗ = (A0 + A1 − kc1bcT) is a Hurwitz matrix and

P, q are solutions of Lyapunov equation
(

A∗T P + PA∗
)
= −qqT .

Proof. Assume xtarg(t) = 0, Consider the following Lyapunov function

V(z) = zT(t)Pz(t) (30)

where P > 0, P = PT . The following inequalities are satisfied [32–34]

λmin(P)‖z(t)‖
2 ≤ V(z) ≤ λmax(P)‖z(t)‖

2 (31)

The fractional order derivative is

D0.5V(z) ≤
(

D0.5zT
)

Pz + zT P
(

D0.5z
)

(32)

By substituting (16) into (31) yields

D0.5V(z) ≤ zT(t)
(

A∗T P + PA∗
)

z(t) + zT(t)
(

AT
1 P + PA1

)
∆z(t) + 2zT(t)Pbuc2(t) (33)

where uc2 = −kc2y and
∆z(t) = z(t− τ)− z(t) (34)

Applying the inequality (10), it is derived that

‖∆z(t)‖ ≤ ρM‖z(t)‖ (35)

By evaluating (32) along the solutions of (16)–(18), this inequality can be rewritten as

D0.5V(z) ≤ zT
(

A∗T P + PA∗
)

z + 2zT
(

Pb− 1
2

c
)

uc2 − σuc2
2 + ρMρA1P‖z(t)‖2 (36)

If the conditions (27) and (28) are verified, applying Yakubovici-Kalman-Popov
Lemma [35], we have: (

A∗T P + PA∗
)
= −qqT (37)

Pb− 1
2

c =
√

σq (38)

Substituting (36) and (37) into (35), results into:

D0.5V(z) ≤ −zT(q + kc2
√

σc
)(

q + kc2
√

σc
)Tz + ρMρA1P‖z(t)‖2 (39)

This inequality can be rewritten as

D0.5V(z) ≤ −
(
$− ρMρA1P

)
‖z(t)‖2

or by the conditions (27)–(29) results in [27,32,34]

D0.5V(z) ≤ −α‖z‖2 (40)

�
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Remark 3. According to (23), the control law is PD0.5

uc(t) = −kc(chc1xh − chc2D0.5xh − ccω1(ω1 −ω2)− ccω2D0.5(ω1 −ω2)) (41)

The terms D0.5xh, D0.5(ω1 −ω2) represent virtual variables which can be obtained by an
observer. A simpler solution is obtained by eliminating the virtual components and using only
physically significant, measurable components. In this case, the component D0.5 ω can be replaced
by D0.5zj

7 =
.

ωj, a measurable variable. Therefore, the control law becomes a classic controller PD,

uc(t) = −kc
(
chcxh − ccω1(ω1 −ω2)− ccω2

( .
ω1 −

.
ω2
))

(42)

3. Results
3.1. Numerical Simulations

We analyzed the control of the “disabled operator-wheelchair” system, where the man
is characterized by the model (11), (kh = 9.54, τ = 0.1 s, β = 1.5) and the wheelchair has
the electrical and mechanical parameters, as shown in Table A2.

Two cases will be examined. In the first case, the control system does not contain the
controller YC, the disabled person directly controls the wheelchair orientation by changing
the active wheel velocities. The movement on a linear trajectory with ω1 = ω2 = 0.3 rad

s
is considered. For a sudden change in the direction of movement, the disabled man operates
with a joystick, increases the velocity of the right wheel and decreases the velocity of the
left wheel. The analysis of the trajectories, ωdis

1 (t), ωdis
2 (t), indicates the appearance of

an over-steer phase and an oscillation regime. The Mittag-Leffler method [32] is used
for MATLAB/SIMULINK simulation of the velocity trajectories (Figure 9). In the second
case, a controller YC implements the control law (23). A controller with kc =9.2, with
kc1 = 8, kc2 = 1.2 is proposed. The inequality (25) is verified for σ = 0.8. A matrix Q = qqT

with q = col(2.5) is selected and the matrix P is obtained as a solution of Lyapunov
equation A∗T P + PA∗ where the matrix A∗ is a Hurwitz matrix, Arg(eig(A∗)) > π

2 , (with
λ1 = −33.48, λ2,3 = −6.2924∓ i 6.0567, λ4,5 = −3.7086∓ i 4.0386, λ6,7 = −7.3642∓
i 5.7963, λ8,9 = −2.6358∓ i 8.2765, λ10,11 = −1.3426∓ i 2.4831). The inequality (29) is
verified for $ = 28, ρA1P = 0.17. The frequential criteria (28) is verified for σ = 0.8.
(Figure 9).
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The new ωc
1(t), ωc

2(t), trajectories are presented for comparison in the same figure
(Figure 10). The increase of the movement quality can be easily noticed.
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3.2. Experimental Tests

The results of the previous sections were verified at the control of a wheelchair driven
by a person with Parkinson’s disability. This disability, like other similar ones caused by
brain injuries, affects the control of movement. The driving function being characterized by
rigid and uncontrollable movements of the hand, tremor and instability.

The experiments were performed on EZ Lite Cruiser Standard Model with rear wheel
drive and joystick control of the direction of movement. These experiments tried to high-
light the evolution of a wheelchair due to the inability of the disabled person to compensate
for disturbances that occur during movement and improve the quality of motion by intro-
ducing an adequate control system. An experiment consists of data acquisition and their
interpretation for an evolution on a test trajectory. A test trajectory has considered a move-
ment that requires a sudden change of direction with 90◦ (step input), as seen in Figure 4.
The tests performed were grouped into two categories. The first group of tests allowed for
the identification of the disabled human model (with Parkinson’s disease), according to the
technique developed in Section 2.1. The second group of tests highlighted the performance
obtained by introducing the controller analyzed in Section 2.3. The technical support of
the experiments consisted of the Raspberry Pi4 System through which the acquisition and
storage of angular velocities of the wheels in a motion trajectory and the implementation of
the control law were performed. The stored data was subsequently processed (off-line) in a
DELL 14 5000 computer using MATLAB toolboxes (Figure 3). The measured data of the
angular velocities of the wheels are stored and then interpreted. Figure 5 presents the data
of the trajectories for 10 experiments to identify the Parkinson disabled human model with
kh = 9.54, β = 1.5.

In the second part, a controller (42) with kc = 9.5, ch1 = 4.5, c1
ω = 1.8 and c2

ω = 0.8 is
implemented by Raspberry Pi4 System and a set of 10 tests are performed. The tracking
error e(t) is analyzed:

e(t) = θtarg − θ(t) (43)

where θtarg = π
2 . The following quality index is proposed [36]

QI =
1
T ∑

i
|ei|∆ti (44)

Figure 11 shows the errors e(t) in three cases: with the Parkinson’s disease human
operator without controller, eP(t), in the case of the Parkinson’s disease human operator
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with controller, eP
c (t), and in the case of the healthy operator, eh(t). The experiment

consists of 10 tests performed on two patients with Parkinson’s disability. The results are
summarized in Table A3 and are shown in Figure 12.
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4. Discussion and Conclusions

Mainstream literature includes numerous titles dedicated to human behavior in control
systems. A selection of these papers is presented in Table 1.

A second order time delay FOM of the Human Operator behavior is developed in [4,6]
and a fractional order control algorithm is analyzed. A PIλDµ controller is proposed to
ensure the desired performances of the control system. The time delay component is
compensated and the quality control is investigated by Bode characteristics. The difficulty
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of implementing the PIλDµ controller is solved by the Oustaloup method. A Fractional
Order Admittance Control is proposed in [7] for the physical human-robot interaction. The
stability analysis of the closed-loop control system with human in-the loop is performed by
using an extension of classical control theory. The delay time component is neglected. A
flexible tuning strategy of the controller parameters is used. The dynamics of a coupled
vehicle-driver system is analyzed in [20,23]. The model is a reduced-order non-linear
model based on a separation between kinetic and kinematic driver control components.
A linearized control law is used to implement “Linear Crossover Model”. Classical PID
controllers are implemented. A relation is established between the controller parameters
and the relative dead time of the human. A suboptimal FOM description of human
behavior in the coupled vehicle-driver system is studied in [2]. Human optimal control
characteristics are analyzed considering psycho-physical limitations of a healthy driver.
Prediction techniques are used to identify human model parameters. The optimal fractional-
order PID controller based on specified gain and phase margins with a minimum integral
squared error criterion is designed. A control algorithm is used to compensate for the
time delay component. A state-space representation of the FOM for a human operator is
discussed in [8]. Tuning and auto-tuning rules for fractional-order PID controllers are given.
The tuning rules are obtained by establishing the relations between the human dynamics
and the controller parameters. The design is focused on the maximization of the integral
gain with a constraint on maximum sensitivity. A rational approximation of the time delay
component is used.

This paper uses frequency techniques to identify the dynamic model of the “Parkin-
son’s disease person-wheelchair” system. The fractional order equations of the “Parkin-
son’s man-wheelchair” are inferred. The crossover model with a fractional order exponent
β = 1.5 is evaluated by Bode diagram analysis of the wheelchair evolutions driven by
a person with Parkinson’s disease on a test trajectory. A control system is proposed to
eliminate the inability of the human operator to ensure the movement of higher quality
performances. The stability of the control system is demonstrated by the Lyapunov tech-
niques. Frequency criteria derived from the Yakubovici-Kalman-Popov Lemma are used
to verify the performance of the control system. Two control solutions are proposed: a
FOM controller (42) and a PD-IOM controller (43) implemented by measurable variables.
Both control solutions display similar performances by tuning the control parameters [28],
but the IOM control is preferred due to the implementation facilities of the controller.
An experimental technique for analyzing the movement performance is developed and a
quality index is proposed to evaluate these experiments. The values of this index on the
tests performed on Parkinson’s patients confirm the correctness of the proposed solutions.

New investigation methods for other categories of people with functional disabilities
will be developed in the future. Also, the possibility of including humans in the general
structure of the controller will be studied with the man-machine architecture being analyzed
as a hierarchical system.
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Appendix A

Table A1. Human gain coefficient kh.

Human gain coefficient kh (Patient 1)

Experiment 1 2 3 4 5

kh 15.84 12.04 6.80 7.01 13.01

Experiment 6 7 8 9 10

kh 6.29 7.82 8.01 9.24 8.73

Human gain coefficient kh (Patient 2)

Experiment 1 2 3 4 5

kh 11.36 9.12 7.23 8.42 8.88

Experiment 6 7 8 9 10

kh 7.95 8.53 12.12 6.56 11.32

Phase angle ϕ (Patient 1)

Experiment 1 2 3 4 5

ϕ [rad] 3.843 4.012 3.910 4.002 3.768

Experiment 6 7 8 9 10

kh 3.891 4.123 4.014 3.901 3.927

Phase angle ϕ (Patient 2)

Experiment 1 2 3 4 5

ϕ [rad] 4.134 3.761 3.812 3.954 4.233

Experiment 6 7 8 9 10

kh 3.762 3.842 3.954 3.910 4.213

Table A2. Wheelchair Electrical and Mechanical Parameters.

Parameter. Value

J Drive System Inertia 0.270 kg·m2

Ra Armature resistance 0.2957 Ω

La Armature inductance 0.082 mH

υ Viscous friction coefficient 0.1044 Nm s/rad

ke Speed constant 1.685 rad/s/V

kt Torque constant 1.4882 Nm/A

m Wheelchair mass 98 kg

Appendix B

Table A3. QI for experimental tests.

Experiment Test 1 Test 2 Test 3 Test 4 Test 5

Parkinson’s
Patient 1

(without controller)
6.80 7.48 5.75 6.32 5.92

Experiment Test 6 Test 7 Test 8 Test 9 Test 10

Parkinson’s
Patient 1

(without controller)
8.24 6.12 7.35 8.94 7.02
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Table A3. Cont.

Experiment Test 1 Test 2 Test 3 Test 4 Test 5

Parkinson’s
Patient 1

(with controller)
3.92 3,58 4.13 4.02 3.72

Experiment Test 6 Test 7 Test 8 Test 9 Test 10

Parkinson’s
Patient 1

(with controller)
3.84 4.03 3.82 3.72 3.64

Appendix C

Mathematical Preliminaries

Consider the fractional order system

Dβz(t) = Az(t)

where Dβz(t) is the Caputo derivative of z(t) for 0 < β < 1.

Definition 1. The matrix A is Hurwitz stable if

Arg(eig(A)) >
π

2
(A1)

Definition 2. The matrix A is β-fractional order stable if

Arg(eig(A)) > β
π

2

Theorem 2 ([28,30]). The system (1), where A is β-fractional order stable, is asymptotically stable.

Theorem 3 ([28,33]). The system Dβz(t) = f (z(t)), z(t0) = z0 is asymptotically stable if there
exists a continuously differentiable function V(t, z) that satisfies

α1‖z‖2 ≤V(t, z(t)) ≤ α2‖z‖2

DβV(t, z(t)) ≤ −α3‖z‖2

where α1, α2, α3 are positive constants, 0 < β < 1.

Lemma 1. ([32,33]). Let z(.) ∈ Rn be a differentiable vector function. Then, the following
inequality holds:

1
2

Dβ
[
zT(t)z(t)

]
≤ zT(t)Dβz(t), β ∈ (0, 1), t ≥ t0

Lemma 2. Yakubovici-Kalman-Popov (YKP) Lemma [35]. Given a positive number
√

σ, the vectors
b, c, a Hurwitz matrix A, then a symmetric matrix P and a vector q satisfying.(

AT P + PA
)
= −qqT

Pb− 1
2

c =
√

σq

exist if and only if

Re
(

cT(jωI− A)−1b
)
≥ −
√

σ, ∀ω ∈ (−∞,+∞)
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