On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation
Abstract
:1. Introduction
2. Preliminaries
3. An Averaging Principle
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Hu, F.; Zhu, W. Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping. Fract. Calc. Appl. Anal. 2013, 16, 189–225. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chen, W.; Sun, H.G.; Li, X.C. Fractional Derivative Modeling of Mechanics and Engineering Problems; Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Wu, A.; Zeng, Z. Boundedness, Mittag-Leffler Stability and Asymptotical ω-Periodicity of Fractional-Order Fuzzy Neural Networks; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Khasminskii, R.Z. On the principle of averaging the Itô stochastic differential equations. Kibernetika 1968, 4, 260–279. [Google Scholar]
- Pandit, S.; Mittal, R.C. A numerical algorithm based on scale-3 Haar wavelets for fractional advection dispersion equation. Eng. Comput. 2021, 38, 1706–1724. [Google Scholar] [CrossRef]
- Mittal, R.C.; Pandit, S. A Numerical Algorithm to Capture Spin Patterns of Fractional Bloch Nuclear Magnetic Resonance Flow Models. J. Comput. Nonlinear Dynam. 2019, 14, 081001. [Google Scholar] [CrossRef]
- Mahler, K. On a special functional equation. J. Lond. Math. Soc. 1940, 15, 115–123. [Google Scholar] [CrossRef]
- Fox, L.; Mayers, D.F.; Ockendon, J.R.; Tayler, A.B. On a functional differential equation. IMA J. Appl. Math. 1971, 8, 271–307. [Google Scholar] [CrossRef]
- Hale, J. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Iserles, A. On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 1993, 4, 1–38. [Google Scholar] [CrossRef]
- Kato, T. Asymptotic Behavior of Solutions of the Functional Differential Equation y′(x) = ay(ηx) + by(x), in Delay and Functional Differential Equations and Their Applications; Academic Press: Cambridge, MA, USA, 1972; pp. 197–217. [Google Scholar]
- Ockendon, J.R.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A 1971, 322, 447–468. [Google Scholar]
- Agarwal, R.P.; Zhou, Y.; He, Y. Existence of fractional functional differential equations. Comput. Math. Appl. 2010, 59, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Boulares, H.; Benchaabane, A.; Pakkaranang, N.; Shafqat, R.; Panyanak, B. Qualitative Properties of Positive Solutions of a Kind for Fractional Pantograph Problems using Technique Fixed Point Theory. Fractal Fract. 2022, 6, 593. [Google Scholar] [CrossRef]
- Boulares, H.; Alqudah, M.A.; Abdeljawad, T. Existence of solutions for a semipositone fractional boundary value pantograph problem. AIMS Math. 2022, 7, 19510–19519. [Google Scholar] [CrossRef]
- Hallaci, A.; Boulares, H.; Ardjouni, A. Existence and uniqueness for delay fractional dif ferential equations with mixed fractional derivatives. Open J. Math. Anal. 2020, 4, 26–31. [Google Scholar] [CrossRef]
- Ardjouni, A.; Boulares, H.; Laskri, Y. Stability in higher-order nonlinear fractional differential equations. Acta Comment. Tartu. Math. 2018, 22, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Mohammed, W.W.; Blömker, D. Fast-diffusion limit for reaction-diffusion equations with multiplicative noise. J. Math. Anal. Appl. 2021, 496, 124808. [Google Scholar] [CrossRef]
- Zhang, X.; Agarwal, P.; Liu, Z.; Peng, H.; You, F.; Zhu, Y. Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 with finite delays. Adv. Differ. Equ. 2017, 2017, 123. [Google Scholar]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouy, M.; Boulares, H.; Alshammari, S.; Alshammari, M.; Laskri, Y.; Mohammed, W.W. On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation. Fractal Fract. 2023, 7, 31. https://doi.org/10.3390/fractalfract7010031
Mouy M, Boulares H, Alshammari S, Alshammari M, Laskri Y, Mohammed WW. On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation. Fractal and Fractional. 2023; 7(1):31. https://doi.org/10.3390/fractalfract7010031
Chicago/Turabian StyleMouy, Mounia, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, and Wael W. Mohammed. 2023. "On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation" Fractal and Fractional 7, no. 1: 31. https://doi.org/10.3390/fractalfract7010031
APA StyleMouy, M., Boulares, H., Alshammari, S., Alshammari, M., Laskri, Y., & Mohammed, W. W. (2023). On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation. Fractal and Fractional, 7(1), 31. https://doi.org/10.3390/fractalfract7010031