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Abstract: In this paper, we studied an averaging principle for Caputo–Hadamard fractional stochastic
differential pantograph equation (FSDPEs) driven by Brownian motion. In light of some suggestions,
the solutions to FSDPEs can be approximated by solutions to averaged stochastic systems in the sense
of mean square. We expand the classical Khasminskii approach to Caputo–Hadamard fractional
stochastic equations by analyzing systems solutions before and after applying averaging principle.
We provided an applied example that explains the desired results to us.
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1. Introduction

The nature of solutions for fractional stochastic differential pantograph equations
(FSDPEs) in Euclidean space n-dimensional Rn [1,2], is particularly interesting in practical
applications. In general, the systems take the form Dα

ςX (ς) = b(ς,X (ς),X (1 + ης)) + σ1(ς,X (ς),X (1 + ης))
dB(ς)

dς
X (1) = X0,

(1)

where η ∈
(

0, T−1
T

)
, Dα

ς is the Caputo–Hadamard fractional derivative (CHFD), α ∈ ( 1
2 , 1),

for each ς ≥ 1, b : [1, T] × Rn → Rn and σ1 : [1, T] × Rn → Rn×m are measurable
continuous functions (CF), B(ς) is a m-dimensional standard Brownian motion on {Ω,F, P}
probability space. The initial value X0 is an F0-measurable Rn-value random variable,
satisfying E|X0|2 < ∞.

Solutions of non-linear FSDPEs are almost impossible to solve and very difficult. For
this reason we used symmetrical methods and techniques in the widest field. It plays very
important in modernity of partial calculus [3,4].

In [5], Khasminiskii was interested in studying the convergence of idle systems on the
drag time scale ε→ 0, in resolving intermediate arguments. He concluded that averaging
principle lay in the study of equations lost in terms of the relevant average. So, we have an
easy way to solve these equations, as it is known that such equations have been applied to
many numerical algorithms to different models, including FSDEs see [6,7].
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The generalized pantograph equation has a variety of applications. Only applications
in number theory are mentioned [8], in electrodynamics [9] and in the absorption of energy
by the pantograph of an electronic locomotive [10–13].

We rely on this article, which aims to expand Khasminskii’s classic argument into
random fractional differential equations with CHFD. For our goal, with the help of rigorous
mathematical deduction, which here accurately illustrates the fractional averaging principle
mean square that has been reached. This means that an easy and effective way has been
given to solve the FSDPEs (1) accurately. We have arranged the organization of this article
as follows. We present in the second section some basic ideas, definitions, lemmas and
arguments. In section 3, we explain an averaging principle obtained first, and complete
with a main result. To explain this, we give a specific illustrative example.

2. Preliminaries

In this section, we introduce some basic techniques, definitions, lemmas and theorems
(see [14–19]).

Definition 1 ([2,19]). The Riemann–Liouville fractional integral (RLFI) of order α > 0 for a
function x : [0,+∞)→ R is defined as

Iαx(ς) =
1

Γ(α)

∫ ς

0
(ς− s)α−1x(s)ds,

where Γ is the Euler gamma function and it is defined by

Γ(α) =
∫ ∞

0
e−ςςα−1dς.

Definition 2 ([2,19]). The Hadamard fractional integral of order α > 0 for a CF x : [1,+∞)→ R
is defined as

Iα
1 x(ς) =

1
Γ(α)

∫ ς

1

(
log

ς

s

)α−1
x(s)

ds
s

.

Definition 3 ([2,19]). The Riemann–Liouville fractional derivative (RLFD) of order α > 0 for a
CF x : [0,+∞)→ R is defined as

Dαx(ς) =
1

Γ(n− α)

∫ ς

0
(ς− s)n−α−1x(n)(s)ds, n− 1 < α < n, n ∈ N.

Definition 4 ([2,19]). The CHFD of order α > 0 for a CF x : [1,+∞)→ R is defined as

Dα
1 x(ς) =

1
Γ(n− α)

∫ ς

1

(
log

ς

s

)n−α−1
δnx(s)

ds
s

, n− 1 < α < n,

where δn =
(

ς d
dς

)n
, n ∈ N.

Lemma 1 ([2,19]). Let n− 1 < α ≤ n, n ∈ N. The equality
(
Iα

1D
α
1 x
)
(ς) = 0 is true if and

only if

x(ς) =
n

∑
k=1

ck(log ς)α−k for each ς ∈ [1, ∞),

where ck ∈ R, k = 1, . . . , n are arbitrary constants.

Lemma 2 ([2,19]). Let m− 1 < α ≤ m, m ∈ N and x ∈ Cn−1[1, ∞). Then

Iα
1 [D

α
1 x(ς)] = x(ς)−

m−1

∑
k=0

(
δkx
)
(1)

Γ(k + 1)
(log ς)k.
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Lemma 3 ([2,19]). For all µ > 0 and ν > −1,

1
Γ(µ)

∫ ς

1

(
log

ς

s

)µ−1
(log s)ν ds

s
=

Γ(ν + 1)
Γ(µ + ν + 1)

(log ς)µ+ν.

Lemma 4 ([2,19]). Let x(ς) = (log ς)µ, where µ ≥ 0 and let m− 1 < α ≤ m, m ∈ N. Then

Dα
1 x(ς) =

{
0 if µ ∈ {0, 1, . . . , m− 1},

Γ(ν+1)
Γ(µ+ν+1) (log ς)µ−ν if µ ∈ N, µ ≥ m or µ /∈ N, µ > m− 1.

Here we put some conditions on coefficient functions, to study the qualitative proper-
ties of solving Equation (1), which will help us solve it.

(Λ1) For every x, y, z, w ∈ Rn and ς ∈ [1, T], there exist three constants C1, C2 and C3
are positive, so that

|b(ς, x, y)|2 ∨ |σ1(ς, x, y)|2 ≤ C2
1

(
1 + |x|2 + |y|2

)
|b(ς, x, y)− b(ς, w, z)| ∨ |σ1(ς, x, y)− σ1(ς, w, z)| ≤ C2|x− w|+ C3|y− z|

where |.| is the norm of Rn, x1 ∨ x2 = max{x1,x2}.
In coordination with pivotal research of Zone [20], Zhang and Agarwal [21], as we

recognize that by proposal (Λ1), FSDPEs (1) has a unique solution

X (ς) = X0 +
1

Γ(α)

∫ ς

1

(
log

ς

s

)α−1
b(s,X (s),X (1 + ηs))

ds
s

+
1

Γ(α)

∫ ς

1

(
log

ς

s

)α−1
σ1(s,X (s),X (1 + ηs))

dB(s)
s

, (2)

X (ς) is F(ς)-adapted and E
(∫ T

1 |X (ς)|2dς
)
< ∞.

3. An Averaging Principle

In this part we investigated the averaging principle for FSDPEs, combining the results
of existence and uniqueness. Let us consider the standard form of Equation (1):

Xε(ς) = X0 +
ε

Γ(α)

∫ ς

1

(
log

ς

s

)α−1
b(s,Xε(s),Xε(1 + ηs))

ds
s

+

√
ε

Γ(α)

∫ ς

1

(
log

ς

s

)α−1
σ1(s,Xε(s),Xε(1 + ηs))

dB(s)
s

, (3)

where the initial value X0, coefficients b and σ1 it has the same meaning as in Equation (1).
We also denote by ε0 a fixed number, and ε ∈ [0, ε0] is a positive small parameter.

Before we continue with the averaging principle, we impose some measurable coeffi-
cients, b : Rn → Rn, σ : Rn → Rn, satisfying (Λ1) and the additional inequalities:

(Λ2) For any T1 ∈ [1, T], x, y ∈ Rn, there exist two positive bounded functions
Ψi(T1), i = 1, 2 such that

1
log T1

∫ T1

1

∣∣∣b(s, x, y)− b(x, y)
∣∣∣ds

s
≤ Ψ1(T1)(1 + |x|+ |y|),

1
log T1

∫ T1

1
|σ1(s, x, y)− σ1(x, y)|2 ds

s
≤ Ψ2(T1)(1 + |x|2 + |y|2),

where lim
T1→∞

Ψi(T1) = 0.

With sufficient help above, we will explain that the exact solution Xε(ς) converges, as
ε→ 0, tend to Zε(ς) of the averaged system
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Zε(ς) = X0 +
ε

Γ(α)

∫ ς

1
(log

ς

s
)α−1b(Zε(s), Zε(1 + ηs))

ds
s

+

√
ε

Γ(α)

∫ ς

1
(log

ς

s
)α−1σ1(Zε(s), Zε(1 + ηs))

dB(s)
s

. (4)

We come now and present the main result of this research.

Theorem 1. Suggest that (Λ1)− (Λ2) are satisfied. For δ1 > 0 there exists L > 1, ε1 ∈ (0, ε0]
and β ∈ (0, 1) us such for every ε ∈ (0, ε1],

E

 sup
ςε
[
1,Lε−β

]|Xε(ς)− Zε(ς)|2

 ≤ δ1. (5)

Proof. For any ς ∈ [1, u] ⊂ [1, T],

Xε(ς)− Zε(ς)

=
ε

Γ(α)

∫ ς

1

(
log

ς

s

)α−1[
b(s,Xε(s),Xε(1 + ηs))− b(Zε(s), Zε(1 + ηs))

]ds
s

+

√
ε

Γ(α)

∫ ς

1

(
log

ς

s

)α−1
[σ1(s,Xε(s),Xε(1 + ηs))− σ1(Zε(s), Zε(1 + ηs))]

dB(s)
s

. (6)

Using the elementary inequality

|x1 + x2|2 ≤ 2(|x1|2 + |x2|2), (7)

we have

E

(
sup

1≤ς≤u
|Xε(ς)− Zε(ς)|2

)

≤ 2ε2

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[b(s,Xε(s),Xε(1 + ηs))

− b(Zε(s), Zε(1 + ηs))
ds
s

]∣∣∣∣2
+

2ε

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[σ1(s,Xε(s),Xε(1 + ηs))

− σ1(Zε(s), Zε(1 + ηs))
dB(s)

s

]∣∣∣∣2
= I1 + I2. (8)

Recalling inequality (7), we obtain

I1 ≤
4ε2

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[b(s,Xε(s),Xε(1 + ηs))

− b(Zε(s), Zε(1 + ηs))]
ds
s

∣∣∣∣2
+

4ε

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[b(s, Zε(s), Zε(1 + ηs))

− b(Zε(s), Zε(1 + ηs))
]ds

s

∣∣∣∣2
= I11 + I12. (9)
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Using the Cauchy–Schwarz inequality and condition (Λ1), we obtain

I11 ≤ K11ε2 log u
∫ u

1
(log

u
s
)2α−2E

(
sup

1≤s1≤s
|Xε(s1)− Zε(s1)|2

ds
s

)
, (10)

where K11 =
8
(
C2

2 + C2
3
)

Γ(α)2 . By the definition of variable upper limit integration,

I12 ≤
4ε2

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
d
[∫ s

1
b(τ, Zε(τ), Zε(1 + ητ))

− b(Zε(τ), Zε(1 + ητ))
dτ

τ

]∣∣∣∣2, (11)

integration by parts is used,

I12 ≤
4ε2(α− 1)2

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(∫ s

1
b(τ, Zε(τ), Zε(1 + ητ))

− b(Zε(τ), Zε(1 + ητ))
dτ

τ

)
(log

ς

s
)α−2 ds

s

∣∣∣∣2, (12)

then together with the hypothesis (Λ2) and the Cauchy–Schwarz inequality, we obtain

I12 ≤
4ε2(α− 1)2(log u)2α−3

(2α− 3)Γ(α)2

× E
∫ u

1

∣∣∣∣∫ s

1
b(τ, Zε(τ), Zε(1 + ητ))− b(Zε(τ), Zε(1 + ητ))

dτ

τ

∣∣∣∣2 ds
s

≤ K12ε2(log u)2α, (13)

in which

K12 =
4(α− 1)2

(2α− 3)Γ(α)2 sup
1≤ς≤u

Ψ1(ς)
2

[
1 + E

(
sup

1≤τ≤u
|Zε(τ)|2

)

+ E

(
sup

1≤τ≤u
|Zε(1 + ητ)|2

)]
. (14)

With the same technique we look forward to the second term,

I2 ≤
4ε2

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[σ1(s,Xε(s),Xε(1 + ηs))

− σ1(s, Zε(s), Zε(1 + ηs))]
dB(s)

s

∣∣∣∣2
+

4ε

Γ(α)2 E sup
1≤ς≤u

∣∣∣∣∫ ς

1

(
log

ς

s

)α−1
[σ1(s, Zε(s), Zε(1 + ηs))

− σ1(Zε(s), Zε(1 + ηs))]
dB(s)

s

∣∣∣∣2
= I21 + I22. (15)
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By applying Doob’s martingale inequality, Itô’s formula and condition (Λ1),

I21 ≤
4ε

Γ(α)2 E
∫ u

1

(
log

u
s

)2α−2
|σ1(s,Xε(s),Xε(1 + ηs))

− σ1(s, Zε(s), Zε(1 + ηs))|2 ds
s

≤ K21ε
∫ u

1

(
log

u
s

)2a−2
E

(
sup

1≤s1≤s
|Xε(s1)− Zε(s1)|2

)
ds
s

, (16)

where K21 =
8
(
C2

2 + C2
3
)

Γ(α)2 . Applying Doob’s martingale inequality and Itô’s formula again,

I22 ≤
4ε

Γ(α)2 E
∫ u

1

(
log

u
s

)2α−2
|σ1(s,Xε(s),Xε(1 + ηs))

− σ1(Zε(s), Zε(1 + ηs))|2 ds
s

. (17)

Integrating by parts, produces

I22 ≤
4ε

Γ(α)2 E
∫ u

1

(
log

u
s

)2α−2
d
[∫ s

1
|σ1(τ, Zε(τ), Zε(1 + ητ))

− σ1(Zε(τ), Zε(1 + ητ))|2 dτ

τ

]
≤ 4ε(2α− 2)

Γ(α)2 E
∫ u

1

(∫ s

1
|σ1(τ, Zε(τ), Zε(1 + ητ))

− σ1(Zε(τ), Zε(1 + ητ))|2 dτ

τ

)(
log

u
s

)2α−3 ds
s

, (18)

thanks to the hypothesis (Λ2), we can conclude

I22 ≤
4ε(2α− 2)

Γ(α)2 E
∫ u

1

(
sup

1≤s1≤s
Ψ2(s1)

[
1 + E

(
sup

1≤τ≤s
|Zε(τ)|2

)

+ E

(
sup

1≤τ≤s
|Zε(1 + ητ)|2

)])
(log s)

(
log

u
s

)2α−3 ds
s

≤ K22ε(log u)2α−1, (19)

where

K22 =
3(2α− 2)

α(2α− 1)Γ(α)2 sup
1≤ς≤u

Ψ2(ς)

[
1 + E

(
sup

1≤ς≤u
|Zε(τ)|2

)

+ E

(
sup

1≤ς≤u
|Zε(1 + ητ)|2

)]
. (20)

Now, substituting Equations (10)–(19) into (8), for any u ∈ [1, T], we find

E

(
sup

1≤ς≤u
|Xε(ς)|2

)
≤ K12ε2u2α + K22εu2α−1

+
(

K11ε2u + K21ε
) ∫ u

1

(
log

u
s

)(2α−1)−1
E

(
sup

1≤s1≤s
|Xε(s1)− Zε(s1)|2

)
ds
s

, (21)



Fractal Fract. 2023, 7, 31 7 of 9

depending on the Gronwall–Bellman inequality [22], we find

E

(
sup

1≤ς≤u
|Xε(ς)− Zε(ς)|2

)
≤
(

K12ε2(log u)2α + K22ε(log u)2α−1
)

×
∞
∑

k=0

((
K11ε2(log u)2α + K21ε(log u)2α−1

)
Γ(2α− 1)

)k

Γ(k(2α− 1) + 1)
. (22)

This implies that we can select β ∈ (0, 1) and L > 1, such that for every ς ∈
[
1, Lε−β

]
⊆

[1, T] having

E

 sup
1≤ς≤Lε−β

|Xε(ς)− Zε(ς)|2
 ≤ Cε1−β, (23)

where

C =
(

K12(log L)2αε1+β−2αβ + K22(log L)2α−1ε2β(1−α)
)

×
∞
∑

k=0

((
K11(log L)2αε2(1−αβ) + K21(log L)2α−1ε1+β(1−2α)

)
Γ(2α− 1)

)k

Γ(k(2α− 1) + 1)
, (24)

is a constant. Hence, for any given number δ1,there exists ε1 ∈ (0, ε0] such that for each

ε ∈ (0, ε1] and ς ∈
[
1, Lε−β

]
having

E

 sup
1≤ς≤Lε−β

|Xε(ς)− Zε(ς)|2
 ≤ δ1. (25)

finished the proof.

4. Example

We present the following equation FSDPEs Dα
1Xε(ς) = 3ε(Xε(ς) +Xε(1 + ης)) log2(ς) +

√
ε

dB(ς)

dς
,

X (1) = 0,
(26)

where η ∈
(

0, π−1
π

)
, α ∈

(
1
2 , 1
)

. The coefficients b(ς,Xε, Yε) = 3(Xε + Yε) log2(ς) and
σ1(ς,Xε, Yε) = 1 verify the conditions (Λ1), so there has a unique solution to FSDPEs (26).

Define

b(Xε, Yε) =
1

log π

∫ π

1
b(ς,Xε, Yε)

dς

ς
= (Xε + Yε) log2(π), σ1(Xε, Yε) = 1,

it is easily seen (Λ2) holds, so the averaging form of (26) is

Dα
1 Zε(ς) = ε(Zε(ς) + Zε(1 + ης)) log2(π) +

√
ε

dB(ς)

dς
, Zε(1) = X0. (27)

Depending to Theorem 1, as ε→ 0, the solution Xε(ς) and Zε(ς) to Equations (26) and (27)
are equivalent in the sense of mean square.
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5. Conclusions

Previously, many researchers studied the averaging principle for Caputo fractional
stochastic differential equations approximated by solutions to averaged stochastic systems
in the sense of mean square. The new idea in our research in (1) is a discussion of a special
kind of Caputo–Hadamard fractional stochastic differential pantograph equations driven
by Brownian motion. We have also made two commitments, the solutions to FSDPEs can
be approximated by solutions to averaged stochastic systems in the sense of mean square.
Moreover, we extend the classical Khasminskii approach to Caputo–Hadamard fractional
stochastic differential pantograph equations.
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