The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation
Abstract
:1. Introduction
2. Description of the Model
3. Computation of Soliton Solutions
3.1. Description of the Method
- For and
- For and
- For and
- For and
- For and
- For and
- For ,
- For , and
- For
- For
- For and
- For and
3.2. Imposition of the Technique on Equation (4)
- (1)
- For − 4 < 0, ≠ 0,
- (2)
- For − 4 > 0, ≠ 0,
- (3)
- For and ,
- (4)
- For and ,
- (5)
- For and
- (6)
- For and ,
- (7)
- For ,
- (8)
- For , , and ,
- (9)
- For ,
- (10)
- For ,
- (11)
- For and ≠ 0,
- (12)
- For , , where q ≠ 0 and ,
3.3. The First Integral and Exact Solution with Nucci’s Reduction Method
4. Graphical Discussion
5. Conclusions
- The mixed complex solitary shock solution, singular solution, mixed shock singular solution, mixed trigonometric solution, mixed singular solution, exact solution, mixed periodic solution, and mixed hyperbolic solution, as well as the periodic solution.
- The first integral was developed for the nonlinear dissipative Schrödinger equation.
- A 2D, 3D, and contour visualization was presented, and it was observed that the dissipative parameter and velocity of the soliton were responsible for controlling the amplitude of the propagating wave.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berezin, F.A.; Shubin, M. The Schrödinger Equation; Springer Science and Business Media: Cham, Switzerland, 2012; Volume 66. [Google Scholar]
- Dodson, B. Defocusing Nonlinear Schrödinger Equations; Cambridge University Press: Cambridge, UK, 2019; Volume 217. [Google Scholar]
- Malomed, B. Nonlinear Schrödinger Equations. In Encyclopedia of Nonlinear Science; Scott, A., Ed.; Routledge: New York, NY, USA, 2005; pp. 639–643. [Google Scholar]
- Seadawy, A.R.; Ali, A.; Albarakati, W.A. Analytical wave solutions of the (2 + 1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods. Results Phys. 2019, 15, 102775. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Liu, W. The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 2022, 102, 305–312. [Google Scholar] [CrossRef]
- Wang, T.Y.; Zhou, Q.; Liu, W.J. Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 2022, 31, 020501. [Google Scholar] [CrossRef]
- Ma, G.; Zhao, J.; Zhou, Q.; Biswas, A.; Liu, W. Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dyn. 2021, 106, 2479–2484. [Google Scholar] [CrossRef]
- Mo, Y.; Ling, L.; Zeng, D. Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 2022, 421, 127739. [Google Scholar] [CrossRef]
- Jiang, C.; Cui, J.; Qian, X.; Song, S. High-order linearly implicit structure-preserving exponential integrators for the nonlinear Schrödinger equation. J. Sci. Comput. 2022, 90, 1–27. [Google Scholar] [CrossRef]
- Chen, J.; Luan, Z.; Zhou, Q.; Alzahrani, A.K.; Biswas, A.; Liu, W. Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 2020, 100, 2817–2821. [Google Scholar] [CrossRef]
- Cazenave, T.; Han, Z.; Naumkin, I. Asymptotic behavior for a dissipative nonlinear Schrödinger equation. Nonlinear Anal. 2021, 205, 112243. [Google Scholar] [CrossRef]
- López, J.L. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discret. Contin. Dyn. Syst. 2021, 41, 2601. [Google Scholar] [CrossRef]
- Weng, W.; Zhang, G.; Zhang, M.; Zhou, Z.; Yan, Z. Semi-rational vector rogon–soliton solutions and asymptotic analysis for any n-component nonlinear Schrödinger equation with mixed boundary conditions. Phys. D Nonlinear Phenom. 2022, 432, 133150. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R. Optical solitons and closed form solutions to the (3 + 1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. B 2020, 34, 2050291. [Google Scholar] [CrossRef]
- Rehman, H.U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Anwar, I.; Baber, M.Z.; Althobaiti, A. Weakly nonlinear electron-acoustic waves in the fluid ions propagated via a (3 + 1)-dimensional generalized Korteweg–de-Vries–Zakharov–Kuznetsov equation in plasma physics. Results Phys. 2022, 33, 105069. [Google Scholar] [CrossRef]
- Akram, G.; Sarfraz, M. Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 2021, 242, 167258. [Google Scholar] [CrossRef]
- Akram, G.; Gillani, S.R. Sub pico-second Soliton with Triki–Biswas equation by the extended ()-expansion method and the modified auxiliary equation method. Optik 2021, 229, 166227. [Google Scholar] [CrossRef]
- Sadaf, M.; Arshed, S.; Akram, G. Exact soliton and solitary wave solutions to the Fokas system using two variables ( -expansion technique and generalized projective Riccati equation method. Optik 2022, 268, 169713. [Google Scholar] [CrossRef]
- Kumar, S.; Almusawa, H.; Hamid, I.; Akbar, M.A.; Abdou, M.A. Abundant analytical soliton solutions and Evolutionary behaviors of various wave profiles to the Chaffee–Infante equation with gas diffusion in a homogeneous medium. Results Phys. 2021, 30, 104866. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A. Abundant closed-form wave solutions and dynamical structures of soliton solutions to the (3 + 1)-dimensional BLMP equation in mathematical physics. J. Ocean. Eng. Sci. 2022, 7, 178–187. [Google Scholar] [CrossRef]
- Kumar, S.; Almusawa, H.; Kumar, A. Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+ 1)-dimensional rdDym equation using the Lie symmetry approach. Results Phys. 2021, 24, 104201. [Google Scholar] [CrossRef]
- Jhangeer, A.; Faridi, W.A.; Asjad, M.I.; Akgül, A. Analytical study of soliton solutions for an improved perturbed Schrödinger equation with Kerr law non-linearity in non-linear optics by an expansion algorithm. Partial. Differ. Equations Appl. Math. 2021, 4, 100102. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Eldin, S.M. Exact Fractional Solution by Nucci’s Reduction Approach and New Analytical Propagating Optical Soliton Structures in Fiber-Optics. Fractal Fract. 2022, 6, 654. [Google Scholar] [CrossRef]
- Asjad, M.I.; Faridi, W.A.; Jhangeer, A.; Abu-Zinadah, H.; Ahmad, H. The fractional comparative study of the non-linear directional couplers in non-linear optics. Results Phys. 2021, 27, 104459. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Jhangeer, A. The fractional analysis of fusion and fission process in plasma physics. Phys. Scr. 2021, 96, 104008. [Google Scholar] [CrossRef]
- Ma, G.; Zhou, Q.; Yu, W.; Biswas, A.; Liu, W. Stable transmission characteristics of double-hump solitons for the coupled Manakov equations in fiber lasers. Nonlinear Dyn. 2021, 106, 2509–2514. [Google Scholar] [CrossRef]
- Inan, I.E.; Inc, M.; Rezazadeh, H.; Akinyemi, L. Optical solitons of (3+ 1) dimensional and coupled nonlinear Schrodinger equations. Opt. Quantum Electron. 2022, 54, 1–15. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Almost general solution of the reduced higher-order nonlinear Schrödinger equation. Optik 2021, 230, 166347. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik 2021, 235, 166626. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational theory and new abundant solutions to the (1+ 2)-dimensional chiral nonlinear Schrödinger equation in optics. Phys. Lett. A 2021, 412, 127588. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Jarad, F. The fractional wave propagation, dynamical investigation, and sensitive visualization of the continuum isotropic bi-quadratic Heisenberg spin chain process. Results Phys. 2022, 43, 106039. [Google Scholar] [CrossRef]
- Faridi, W.A.; Asjad, M.I.; Toseef, M.; Amjad, T. Analysis of propagating wave structures of the cold bosonic atoms in a zig-zag optical lattice via comparison with two different analytical techniques. Opt. Quantum Electron. 2022, 54, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Farman, M.; Akgül, A.; Tekin, M.T.; Akram, M.M.; Ahmad, A.; Mahmoud, E.E.; Yahia, I.S. Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel. Alex. Eng. J. 2022, 61, 10965–10980. [Google Scholar] [CrossRef]
- Modanli, M.; Göktepe, E.; Akgül, A.; Alsallami, S.A.; Khalil, E.M. Two approximation methods for fractional order Pseudo-Parabolic differential equations. Alex. Eng. J. 2022, 61, 10333–10339. [Google Scholar] [CrossRef]
- Partohaghighi, M.; Mirtalebi, Z.; Akgül, A.; Riaz, M.B. Fractal–fractional Klein–Gordon equation: A numerical study. Results Phys. 2022, 42, 105970. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Yasin, M.W.; Ahmed, N.; Akgül, A.; Rafiq, M.; Raza, A. Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation and its measurable properties. J. Comput. Appl. Math. 2023, 418, 114618. [Google Scholar] [CrossRef]
- Bekir, A.; Younis, M.; Rizvi, S.T.; Sardar, A.; Mahmood, S.A. On traveling wave solutions: The decoupled nonlinear Schrödinger equations with inter modal dispersion. Comput. Methods Differ. Equations 2021, 9, 52–62. [Google Scholar]
- Younis, M.; Ali, S.; Rizvi, S.T.R.; Tantawy, M.; Tariq, K.U.; Bekir, A. Investigation of solitons and mixed lump wave solutions with (3 + 1)-dimensional potential-YTSF equation. Commun. Nonlinear Sci. Numer. Simul. 2021, 94, 105544. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Bibi, I.; Younis, M.; Bekir, A. Interaction properties of solitons for a couple of nonlinear evolution equations. Chin. Phys. B 2021, 30, 010502. [Google Scholar] [CrossRef]
- Attia, N.; Akgül, A. A reproducing kernel Hilbert space method for nonlinear partial differential equations: Applications to physical equations. Phys. Scr. 2022, 97, 104001. [Google Scholar] [CrossRef]
- Chen, S.; Baronio, F.; Soto-Crespo, J.M.; Liu, Y.; Grelu, P. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Phys. Rev. E 2016, 93, 062202. [Google Scholar] [CrossRef] [Green Version]
- Baronio, F.; Chen, S.; Trillo, S. Resonant radiation from Peregrine solitons. Opt. Lett. 2020, 45, 427–430. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rizvi, S.T.; Ahmed, S.; Ahmad, A. Study of dissipative NLSE for dark and bright, multiwave, breather and M-shaped solitons along with some interactions in monochromatic waves. Opt. Quantum Electron. 2022, 54, 1–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Bakar, M.; Owyed, S.; Faridi, W.A.; Abd El-Rahman, M.; Sallah, M. The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation. Fractal Fract. 2023, 7, 38. https://doi.org/10.3390/fractalfract7010038
Abu Bakar M, Owyed S, Faridi WA, Abd El-Rahman M, Sallah M. The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation. Fractal and Fractional. 2023; 7(1):38. https://doi.org/10.3390/fractalfract7010038
Chicago/Turabian StyleAbu Bakar, Muhammad, Saud Owyed, Waqas Ali Faridi, Magda Abd El-Rahman, and Mohammed Sallah. 2023. "The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation" Fractal and Fractional 7, no. 1: 38. https://doi.org/10.3390/fractalfract7010038
APA StyleAbu Bakar, M., Owyed, S., Faridi, W. A., Abd El-Rahman, M., & Sallah, M. (2023). The First Integral of the Dissipative Nonlinear Schrödinger Equation with Nucci’s Direct Method and Explicit Wave Profile Formation. Fractal and Fractional, 7(1), 38. https://doi.org/10.3390/fractalfract7010038