New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]
Abstract
:1. Introduction
- (Y0)
- is symmetric and positive definite matrix , and there exists functional while as and , for any and ;
- ()
- as uniformly in ;
- ()
- There exists such that for all ;
- ()
- There exists some constant such as , for any and .
- , and there exists , satisfying and two functional , in such that
- There exists and in such that
- There exists an open set and two constants , such that
2. Essential Preliminaries
- (i)
- If and , then is a critical value of I.
- (ii)
- If there exists a natural number r such that , and , then .
3. Proofs of Main Results
3.1. Proof of Theorem 1
3.2. Proof of Theorem 2
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdellouahab, N.; Tellab, B.; Zennir, K. Existence and stability results of A nonlinear fractional integro-differential equation with integral boundary conditions. Kragujev. J. Math. 2022, 46, 685–699. [Google Scholar] [CrossRef]
- Azzaoui, B.; Tellab, B.; Zennir, K. Positive solutions for a fractional configuration of the Riemann Liouville semilinear differential equation. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Bentrcia, T.; Mennouni, A. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discret. Contin. Dyn. Syst.—Ser. B 2023, 28, 580–622. [Google Scholar] [CrossRef]
- Mennouni, A.; Bougoffa, L.; Wazwaz, A.M. A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens. Opt. Quantum Electron. 2022, 54, 1–12. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Zhou, Y. Bifurcation results for a class of fractional Hamiltonian systems with Liouville-Wely fractional derivatives. J. Vib. Control 2014, 5, 1358–1368. [Google Scholar] [CrossRef]
- Rajchakit, G.; Pratap, A.; Raja, R.; Cao, J.; Alzabut, J.; Huang, C. Hybrid control scheme for projective lag synchronization of Riemann Liouville sense fractional order memristive BAM neural networks with mixed delays. Mathematics 2019, 7, 759. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.; Bonilla, B.; Trujillo, J.J. Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstr. Math. 2000, 33, 583–602. [Google Scholar] [CrossRef]
- Omana, W.; Willem, M. Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 1992, 114, 1115–1120. [Google Scholar] [CrossRef]
- Zhang, S.Q. Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 2011, 61, 1202–1208. [Google Scholar] [CrossRef] [Green Version]
- Izydorek, M.; Janczewska, J. Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential. J. Math. Anal. Appl. 2007, 335, 1119–1127. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Alzabut, J.; Samei, M.E.; Kaabar, M.K.A.; Siri, Z. Monotone Iterative Method for Langevin Equation in Terms of ψ-Caputo Fractional Derivative and Nonlinear Boundary Conditions. Fractal Fract. 2021, 5, 81. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Alzabut, J.; Samei, M.E. Monotone iterative and upper–lower solutions techniques for solving nonlinear ψ-Caputo fractional boundary value problem. Fractal Fract. 2021, 5, 194. [Google Scholar] [CrossRef]
- Mawhin, J.; Willem, M. Critical Point Theory and Hamiltonian Systems; Springer: New York, NY, USA, 1989. [Google Scholar]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Provodence, RI, USA, 1986; Volume 65. [Google Scholar]
- Zhou, Y.; Lu, Z. Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems. Comput. Math. Appl. 2017, 73, 1325–1345. [Google Scholar] [CrossRef]
- Torres, C. Existence of solution for a class of fractional Hamiltonian systems. Electron. J. Differ. Equ. 2013, 259, 1–12. [Google Scholar]
- Bartolo, P.; Benci, V.; Fortunato, D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. 1983, 7, 981–1012. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Homoclinic orbits Some for a class of Hamiltonian systems. Proceed. R. Soc. Edimburgh Sect. A 1990, 114, 33–38. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Zelati, V.C. Multiple homoclinic orbits for a class of conservative systems. Rend. Semin. Mat. Univ. Padova 1993, 89, 177–194. [Google Scholar]
- Ding, Y.H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal. 1995, 25, 1095–1113. [Google Scholar]
- Khelifi, F. Multiplicity of periodic solutions for a class of second order Hamiltonian systems. Nonlinear Dyn. Syst. Theory 2017, 17, 158–174. [Google Scholar]
- Khachnaoui, K. Existence of even homoclinic solutions for a class of Dynamical Systems. Nonlinear Dyn. Syst. Theory 2015, 15, 287–301. [Google Scholar]
- Timoumi, M. Periodic and subharmonic solutions for a class of noncoercive superquadratic Hamiltonian Systems. Nonlinear Dyn. Syst. 2011, 11, 319–336. [Google Scholar]
- Xu, J.; O’Regan, D.; Zhang, K. Multiple solutions for a calss of fractional Hamiltonian systems. Fract. Calc. Appl. Anal. 2015, 18, 48–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumen, A.; Boulares, H.; Alzabut, J.; Khelifi, F.; Imsatfia, M. New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]. Fractal Fract. 2023, 7, 39. https://doi.org/10.3390/fractalfract7010039
Moumen A, Boulares H, Alzabut J, Khelifi F, Imsatfia M. New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]. Fractal and Fractional. 2023; 7(1):39. https://doi.org/10.3390/fractalfract7010039
Chicago/Turabian StyleMoumen, Abdelkader, Hamid Boulares, Jehad Alzabut, Fathi Khelifi, and Moheddine Imsatfia. 2023. "New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]" Fractal and Fractional 7, no. 1: 39. https://doi.org/10.3390/fractalfract7010039
APA StyleMoumen, A., Boulares, H., Alzabut, J., Khelifi, F., & Imsatfia, M. (2023). New Results for Homoclinic Fractional Hamiltonian Systems of Order α∈(1/2,1]. Fractal and Fractional, 7(1), 39. https://doi.org/10.3390/fractalfract7010039