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Abstract: In this manuscript, we are interested in studying the homoclinic solutions of fractional
Hamiltonian system of the form−ςD

α
∞(−∞Dα

ς Z(ς))−A(ς)Z(ς)+∇v(ς, Z(ς)) = 0, where α ∈ ( 1
2 , 1],

Z ∈ Hα(R,RN) and v ∈ C1(R×RN ,R) are not periodic in ς. The characteristics of the critical point
theory are used to illustrate the primary findings. Our results substantially improve and generalize
the most recent results of the proposed system. We conclude our study by providing an example to
highlight the significance of the theoretical results.

Keywords: fractional Hamiltonian systems; Mountain Pass Theorem; genus properties critical point

1. Introduction

In physics, mechanics, control theory, biology, bioengineering, and economics, pro-
cesses are frequently simulated using fractional ordinary and partial differential equations.
The theory of fractional differential equations has consequently attracted a lot of attention
in recent years. For instance, existence and stability are addressed in [1–3], and several
resolution strategies are in [4–6]. The monographs [7,8] are exceptional sources for numer-
ous techniques that are thought to be extensions of various differential equations. Recent
discussions have focused in particular on equations that have both left and right fractional
derivatives. With regard to their numerous applications, these kinds of equations are
significant and are considered as a novel subject in the theory of fractional differential equa-
tions. Using nonlinear analytic techniques such as fixed point theory, there have appeared
many results dealing with the existence and multiplicity of solutions to nonlinear fractional
differential equations in this field. For instance, we name here Leray–Schauder nonlinear
alternative [9], topological degree theory [10], and the comparison method, which includes
upper and lower solutions and monotone iterative method [11,12], and so on. On the other
hand, it has been demonstrated that the critical point theory and variational techniques are
crucial for assessing whether or not differential equations have solutions. With the help of
this theory, one can search for solutions to a specific boundary value problem by locating
the critical points of an appropriate energy functional defined on a suitable function space.
In light of this, the critical point theory has developed into a potent tool for investigating
the existence of solutions to differential equations with variational forms (see [13,14] and
the references therein).
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Adopting the aforementioned classic research, Zhou and Lu [15] implemented the
critical point theory to tackle the existence of solutions for the following fractional BVP{

ςD
α
T(0D

α
ς Z(ς)) = ∇v(ς, Z(ς)), a.e. ς ∈ [0, T],

Z(0) = Z(T),
(1)

where α in ( 1
2 , 1), Z ∈ RN , v ∈ C1([0, T]×RN ,R) and ∇v(ς, Z) is the gradient of v at Z.

It is significant to note that many of the premises made in order to arrive at the conclusions
in [15] weaken the fundamental theorems. Inspired by their work, Torres [16] studied the
following fractional Hamiltonian systems{

−ςD
α
∞(−∞Dα

ς Z(ς))−A(ς)Z(ς) +∇v(ς, Z(ς)) = 0,
Z ∈ Hα(R,RN),

(2)

where −∞Dα
ς and ςD

α
∞ are left and right Liouville–Weyl fractional derivatives of order α and

A(ς) ∈ C(R,RN2
) is symmetric and positive definite matrix for all ς ∈ R. The Mountain

Pass Theorem was used in [16] to show that equations accept at least one nontrivial solution
as long as A and v can validate the following four hypotheses:

(Υ0) A(ς) is symmetric and positive definite matrix ∀ ς ∈ R, and there exists functional
l ∈ C(R, (0, ∞)) while l(ς)→ ∞ as |ς| → ∞ and (A(ς)Z, Z) ≥ l(ς)|Z|2, for any ς ∈ R
and Z ∈ RN ;

(F1) |∇v(ς, Z)| = o(|Z|) as |Z| → 0 uniformly in ς ∈ R;
(F2) There exists v ∈ C(RN ,R) such that |v(ς, Z)| + |∇v(ς, Z)| ≤ |v(Z)| for all

(ς, Z) ∈ R×RN ;
(F3) There exists some constant µ > 2 such as 0 < µv(ς, Z) ≤ (∇v(ς, Z), Z), for any

ς ∈ R and Z ∈ RN\{0}.
For α = 1, Equation (2) is downloaded to the following standard second–order

Hamiltonian system
Z̈(ς)−A(ς)Z(ς) +∇v(ς, Z(ς)) = 0. (3)

Several papers including [17–24] investigated the existence of homoclinic solutions for
the Hamiltonian system (3) when A(ς) and v(ς, Z) are either independent of or periodic
in ς.

In this work, we impose new standards based on the critical point theory to demon-
strate the existence of infinitely many homoclinic solutions of fractional Hamiltonian
system (2) where v(ς, Z) is sub-quadratic as |Z| → +∞. In addition to condition (Υ0), we
assume that v(ς, Z) fulfills the following three conditions:

(Λ1)v ∈ C1(R× RN ,R), and there exists γ1, γ2 satisfying 1 < γ1 < γ2 < 2 and two

functional a1, a2 in L
2

2−γ1 (R,R+) such that

|v(ς, Z)| ≤ a1(ς)|Z|γ1 , for all (ς, Z) in R×RN , |Z| ≤ 1,

and
|v(ς, Z)| ≤ a2(ς)|Z|γ2 , for all (ς, Z) in R×RN , |Z| ≥ 1.

(Λ2)There exists b in L
2

2−γ1 (R,R+) and ϕ in C([0,+∞), [0,+∞)) such that

|∇v(ς, Z)| ≤ b(ς)ϕ(|Z|), for all (ς, Z) in R×RN ,

and ϕ(s) = O(sγ1−1) as s→ 0+.
(Λ3)There exists an open set J ⊂ R and two constants γ3 ∈ (1, 2), η > 0 such that

v(ς, Z) ≥ η|Z|γ3 , ∀ (ς, Z) ∈ J ×RN , |Z| ≤ 1.
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It is worthy mentioning here that the results given in [14] were obtained under the
condition (F3), which is known as the global Ambrosetti–Rabinowitz condition. That is,
v(ς, Z) is super–quadratic when |Z| → ∞. Moreover, it was assumed that Z and v are
periodic in ς. In this paper, however, the main results are proved under less restrictive
condition where A is coercive at infinity, v is sub-quadratic growth as |Z| → ∞ ( v

|Z|2
= 0 if

|Z| → ∞ ) and Z and v are not periodic in ς. Our results supply substantial generalizations
to the recent results existing in the literature.

Significant findings of our paper are described in the following two theorems.

Theorem 1. If conditions (Υ0), (Λ1), (Λ2), and (Λ3) hold. So, (2) accepts one nontrivial
homoclinic solution.

Theorem 2. Assuming that (Υ0), (Λ1), (Λ2) and (Λ3) hold. In addition, assume that v(ς, Z)
is even in Z. Then, (2) has infinitely many nontrivial homoclinic solutions (Zk)k∈N such that, as
k→ ∞, ∫

R

[1
2
|−∞Dα

ς Zk(ς)|2 +
1
2
(A(ς)Zk(ς), Zk(ς))−v(ς, Zk(ς)

]
dς→ 0−. (4)

The proofs of Theorems 1 and 2 are given in Section 3.

2. Essential Preliminaries

This section is devoted to stating and demonstrating some fundamental definitions
and lemmas that are required in the work that follows.

Definition 1. The left and right Liouville–Weyl fractional integrals of order α on R, (0 < α < 1)
are, respectively, given by

−∞ Iα
κZ(κ) = 1

Γ(α)

∫ κ

−∞
(κ − ξ)α−1Z(ξ) dξ, κ ∈ R, (5)

and

κ Iα
∞Z(κ) = 1

Γ(α)

∫ ∞

κ
(ξ −κ)α−1Z(ξ) dξ, κ ∈ R.

Definition 2. The left and the right Liouville–Weyl fractional derivatives of order α on R,
(0 < α < 1) are, respectively, given by

−∞Dα
κZ(κ) = d

dκ−∞ I1−α
κ Z(κ), κ ∈ R (6)

and

κD
α
∞Z(κ) = − d

dκ κ I1−α
∞ Z(κ), κ ∈ R.

Remark 1. The operators (5) and (6) can be written in the form

−∞Dα
κZ(κ) = α

Γ(1− α)

∫ ∞

0

Z(κ)− Z(κ − ξ)

ξα+1 dξ,

and

κD
α
∞Z(κ) = α

Γ(1− α)

∫ ∞

0

Z(κ)− Z(κ + ξ)

ξα+1 dξ .

Definition 3. A solution x of (2) is called homoclinic (to 0) if x ∈ C2(R,RN), x 6= 0, x(t)→ 0
and ẋ(t)→ 0 as |t| → ∞. A function ϕ is said to be coercive if ϕ(t)→ ∞ as |t| → ∞.
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We recall that the Fourier transform of Z(·) is

Ẑ(w) =
∫ ∞

−∞
e−iκ.wZ(κ) dκ.

The semi–norm is given by

|Z|Iα
−∞

:= ‖−∞Dα
κZ‖L2 , α > 0,

while the norm is

‖Z‖Iα
−∞

:=
(
‖Z‖2

L2 + |Z|2Iα
−∞

)1/2
.

We denote by Iα
−∞(R) the completion of C∞

0 (R) coupled with the norm ‖ · ‖Iα
−∞

, that is

Iα
−∞(R) = C∞

0 (R)‖·‖Iα
−∞ .

Further, we define the semi-norm by

|Z|α = ‖|w|αẐ‖L2 , 0 < α < 1,

and the norm by
‖Z‖α = (‖Z‖2

L2 + |Z|2α)1/2.

We define the fractional Sobolev space Hα(R) in terms of the Fourier transform as follows:

Hα(R) := C∞
0 (R)‖·‖α .

Noting that Z ∈ L2(R) is an element of Iα
−∞(R) if and only if

|w|αẐ ∈ L2(R).

In particular, we obtain
|Z|Iα

−∞
= ‖|w|αẐ‖L2(R).

Therefore, if the semi-norm and the norm are equivalent, then Hα(R) and Iα
−∞(R) are also

equivalent [16].
Similar to Iα

−∞(R), we define Iα
∞(R). Thus, the semi-norm |Z|Iα

∞ and the norm |Z|Iα
∞ of

Z are, respectively, given by
|Z|Iα

∞ := ‖κDα
∞‖L2(R),

and
‖Z‖Iα

∞ := (‖Z‖2
L2 + |Z|2Iα

∞
)1/2.

Letting

Iα
−∞(R) := C∞

0 (R)‖·‖Iα
−∞ .

Additionally, if the semi-norm and the norm are equivalent, then Iα
∞(R) and Iα

−∞(R)
are equivalent.

Lemma 1 ([16]). If α > 1
2 , then Hα(R) is included in the continuous real functions space C(R),

and there exists a constant Cα (noted by C) such that

‖Z‖L∞ = sup
Z∈R
|Z(κ)| ≤ C‖Z‖α. (7)
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Remark 2. If Z ∈ Hα(R), then Z ∈ Lq(R) for any q in [2, ∞], as∫
R
|Z(κ)|qdκ ≤ ‖Z‖q−2

L∞ ‖Z‖2
L2 .

Next, we define the fractional space and construct the variational framework of the
fractional Hamiltonian systems (2). To this end, letting

E = Xα =
{

Z in Hα(R,Rn) :
∫
R
|−∞Dα

ς Z(ς)|2 + (A(ς)Z(ς), Z(ς)) dς < ∞
}

. (8)

The space Xα is a reflexive and separable Hilbert space under the inner product

(Z, v)Xα =
∫
R
(−∞Dα

ς Z(ς).−∞Dα
ς v(ς)) + (A(ς)Z(ς), v(ς))dς,

with the norm
‖Z‖2 = (Z, Z)Xα .

Lemma 2. If A satisfies (Υ0), then Xα is continuously embedded in Hα(R,Rn).

Proof. Since l ∈ C(R, (0, ∞)) and l is coercive, then l∗ := min
ς∈R

l(ς) exists. So, we obtain

(A(ς)Z(ς), Z(ς)) ≥ l(ς)|ς|2 ≥ l∗|ς|2, for any real ς.

Thus,

‖Z‖2
α =

∫
R
(|−∞Dα

ς Z(ς)|2 + (A(ς)Z(ς), Z(ς)))dς

≤
∫
R
|−∞Dα

ς Z(ς)|2dς +
1
l∗

∫
R
(A(ς)Z(ς), Z(ς))dς.

Therefore,
‖Z‖2

α ≤ K‖Z‖2, (9)

where K := max
(

1,
1
l∗

)
.

It is difficult to demonstrate that there are infinitely many solutions to the Hamil-
tonian systems (2) because the Sobolev embedding is not compact under the assump-
tions of Theorems 1 and 2. We will utilize the following lemma to ensure that the task is
made simple:

Lemma 3. If A satisfies the condition (Υ0), then the embedding of Xα in L2(R) is compact.

Proof. Form Lemma 2 and Remark 2, we obtain the continuity of Xα ↪→ L2(R). Let
(Zk) ∈ Xα be a sequence such that Zk ⇀ Z in Xα. We will prove that Zk → Z in L2(R)
functional. The Banach–Steinhauss theorem implies that

A := sup
k∈N
‖Zk − Z‖ < ∞.

Let ε > 0. Since lim
|ς|→∞

l(ς) = ∞, there exits a real T0 > 0 such that

1
l(ς)
≤ ε, for all |ς| ≥ T0.
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Therefore, ∫
|ς|≥T0

|Zk(ς)− Z(ς)|2dς ≤ ε
∫
|ς|≥T0

l(ς)|Zk(ς)− Z(ς)|2dς

≤ ε‖Zk − Z‖2 ≤ εA2. (10)

Moreover, Sobolev’s theorem ([13]) implies that Zk → Z uniformly on [−T0, T0]. Thus,
there is k0 ∈ N such that∫

|ς|≤T0

|Zk(ς)− Z(ς)|2dς ≤ ε, for all k ≥ k0. (11)

By combining (10) and (11), we obtain that Zk → Z in L2(R).

Remark 3. We note that Remark 2 and Lemma 3 assure the embedding of Xα in Lq(R). For
q ∈ (2, ∞), the operator Xα is also continuous and compact. Consequently, by the Lemma 1, there
exists a constant Cα satisfies ∥∥Zq

∥∥ ≤ Cq‖Z‖ for any q ∈ [2, ∞]. (12)

Lemma 4. Under the condition of Theorem 1, if Zk ⇀ Z in Xα, then ∇v(ς, Zk) → ∇v(ς, Z)
in L2(R).

Proof. Assuming Zk ⇀ Z in Xα. Consequently, by using the Banach–Steinhauss theorem,
there exists M > 0 such that

sup
k∈N
‖Zk‖ ≤ M and ‖Z‖ ≤ M. (13)

By (Λ2), there exists M1 > 0 such as

ϕ(|Z|) ≤ M1|Z|γ1−1, for all |Z| ≤ M. (14)

Further, by (8), for any Z ∈ Xα, there exists T > 0 such that

|Z(ς)| ≤ M, for all |ς| ≥ T. (15)

Therefore, from the inequalities (12), (13), (14) and (15), and by using Hölder inequality, we
obtain ∫

|ς|≥T
|∇v(ς, Zk(ς))−∇v(ς, Z(ς))|2dς

≤ 2
∫
|ς|≥T

(
|∇v(ς, Zk(ς))|2 + |∇v(ς, Z(ς))|2

)
dς

≤ 2M2
1

∫
|ς|≥T
|b(ς)|2

(
|Zk(ς)|2(γ1−1) + |Z(ς)|2(γ1−1)

)
dς

≤ 2M2
1

(∫
|ς|≥T
|b(ς)|

2
2−γ1 dς

)2−γ1
(∫
|ς|≥T
|Zk(ς)|2dς

)γ1−1

+ 2M2
1

(∫
|ς|≥T
|b(ς)|

2
2−γ1 dς

)2−γ1
(∫
|ς|≥T
|Z(ς)|2dς

)γ1−1

≤ 2M2
1‖b‖

2
2

2−γ1

(
‖Zk‖

2(γ1−1)
2 + ‖Z‖2(γ1−1)

2

)
≤ 4M2

1 M2(γ1−1)C2(γ1−1)
2 ‖b‖2

2
2−γ1

. (16)
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Moreover, since ∇v(ς, Z) is continuous, there is a constant d > 0 such that∫
|ς|≤T
|∇v(ς, Zk(ς))−∇v(ς, Z(ς))|2dς ≤ d. (17)

Thus, by combining (16) and (17), we obtain∫
R
|∇v(ς, Zk(ς))−∇v(ς, Z(ς))|2dς ≤ d + 4M2

1 M2(γ1−1)C2(γ1−1)
2 ‖b‖2

2
2−γ1

. (18)

However, by Lemma 3, the fact Zk ⇀ Z implies the existence of a subsequence (Zk)k∈N
such that Zk → Z ∈ L2(R), which yields Zk(ς)→ Z(ς) for almost every ς ∈ R. Thus, the
proof is completed by applying the Lebesgue’s convergence Theorem.

Lemma 5 ([13]). Let I ∈ C1(B,R) satisfying the Palais–Smale condition (PS) and bounded below.
Then, c = inf

B
I is a critical value of I.

To find solutions of (2) under the conditions of Theorem 2, we use the genus properties.
For this, we recall some definitions and results from [14]. Denote by B the real Banach
space. For I ∈ C1(B,R) and c ∈ R, let us define the following sets:

Σ := {A ⊂ B\{0} such that A symmetric with respect to 0 and closed in B},

Kc :=
{

Z ∈ B : I(Z) = c, I′(Z) = 0
}

,

and
Ic := {Z ∈ B : I(Z) ≤ c}.

Definition 4. For A ∈ Σ, we call the genus of A is j (denoted by Γ(A) = j) if there is an odd map
ψ in C(A,Rj\{0}), where j is the smallest integer satisfy this property.

Lemma 6 ([14]). Let I ∈ C1 be an even functional on B that satisfies the Palais–Smale (PS)
condition. Further, for every j ∈ N, let Σj = {A ∈ Σ : Γ(A) ≥ j} and cj = inf

A∈Σj
sup
Z∈A

I(Z).

(i) If Σj 6= ∅ and cj ∈ R, then cj is a critical value of I.
(ii) If there exists a natural number r such that cj = cj+1 = . . . = cj+r = c ∈ R, and c 6= I(0),

then Γ(Kc) ≥ r + 1.

Remark 4 ([14]). If Kc belongs to Σ and Γ(Kc) > 1, then Kc has infinitely many distinct points.
Thus, I contains infinitely many distinct critical points in B.

3. Proofs of Main Results

First, we construct the variational framework to prove the existence of solutions for (2).
We define I : Xα → R, by

I(Z) =
∫
R

[1
2
|−∞Dα

ς Z(ς)|2 + 1
2
(A(ς)Z(ς), Z(ς))−v(ς, Z(ς)

]
dς

=
1
2
‖Z‖2 −

∫
R

v(ς, Z(ς))dς. (19)

Under the assumptions of Theorem 1, we obtain

I′(Z)v =
∫
R

[(
−∞Dα

ς Z(ς),−∞ Dα
ς v(ς)

)
+ (A(ς)Z(ς), v(ς))− (∇v(ς, Z(ς)), v(ς))

]
dς (20)
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for any Z,v ∈ Xα. This implies that

I′(v)v = ‖v‖2 −
∫
R
(∇v(ς, Z(ς)), v(ς))dς. (21)

Furthermore, I is defined on Xα and continuously Fréchet-differentiable functional; that is
I ∈ C1(Xα,R).

3.1. Proof of Theorem 1

First, we prove that I is bounded below. From the hypothesis (Λ1) and Hölder
inequality, we obtain

I(Z) ≥ 1
2
‖Z‖2 −

∫
R(|Z(ς)|≤1)

a1(ς)|Z(ς)|γ1 dς−
∫
R(|Z(ς)|≥1)

a2(ς)|Z(ς)|γ2 dς

≥ 1
2
‖Z‖2 −

(∫
R(|Z(ς)|≤1)

|a1(ς)|
2

2−γ1 dς

) 2−γ1
2
‖Z(ς)‖γ1

2

−
(∫

R(|Z(ς)|≤1)
|a2(ς)|

2
2−γ2 dς

) 2−γ2
2
(∫

R(|Z(ς)|≥1)
|Z(ς)|

2γ2
γ1 dς

) γ1
2

≥ 1
2
‖Z‖2 − Cγ1

2 ‖a1‖ 2
2−γ1
‖Z‖γ1 − Cγ1

2 ‖a2‖ 2
2−γ1
‖Z‖γ2−γ1

∞ ‖Z‖γ2

≥ 1
2
‖Z‖2 − Cγ1

2 ‖a1‖ 2
2−γ1
‖Z‖γ1 − Cγ1

2 Cγ2−γ1
∞ ‖a2‖ 2

2−γ1
‖Z‖γ2 . (22)

Since 1 < γ1 < γ2, from (22), we conclude

I(Z)→ ∞ as ‖Z‖ → ∞.

Thus, I is bounded below.
Now, we show that I satisfies the (PS) condition. To this end, let (Zk)k∈N be a sequence

in Xα such that (I(Zk)) is bounded and I′(Zk)→ 0 as k→ ∞. So, by (19) and (22), it follows
that there exists a positive real constant A such that

‖Zk‖ ≤ A, for all k ∈ N. (23)

It follows from (21) that

(I′(Zk)− I′(Z))(Zk − Z) = ‖Zk − Z‖2 −
∫
R
(∇v(ς, Zk(ς))−∇v(ς, Z(ς)), Zk − Z(ς))dς.

Since (I′(Zk)− I′(Z))(Zk − Z)→ 0 as k→ ∞, by the Lemma 4, we deduce that

‖Zk − Z‖2 → 0 as k→ ∞.

Consequently, I validates the Palais–Smale condition (PS) as desired.
Now, by Lemma 5, it follows that c = inf

Xα
I(Z) is a critical value of I. Thus, there exists

a critical point Z∗ ∈ Xα such that I(Z∗) = c.
It is remaining to show that Z∗ 6= 0. Let Z0 ∈ (W1,2

0 (J) ∩ Xα)\{0} and ‖Z0‖∞ ≤ 1. Then,
by (Λ1), (Λ3) and (19), we obtain

I(sZ0) =
s2

2
‖Z0‖2 −

∫
R

v(ς, sZ0(ς))dς =
s2

2
‖Z0‖2 −

∫
J

v(ς, sZ0(ς))dς

≤ s2

2
‖Z0‖2 − ηsγ3

∫
J
|Z0|γ3 dς, 0 < s < 1. (24)
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Since 1 < γ3 < 2, it follows from (24) that I(sZ0) < 0 for s > 0 small enough. Hence
I(Z∗) = c < 0, and thus Z∗ is nontrivial critical point of I. Therefore, Z∗ = Z(ς) is
nontrivial solution of (2).

3.2. Proof of Theorem 2

By Lemma 5 and the proof of Theorem 1, I ∈ C1(Xα,R) is bounded below and satisfies
the (PS) condition. It is clear that I is even and I(0) = 0. In order to apply the Lemma 6,
we show that

∀ n ∈ N ∃ ε > 0 such that γ(I−ε) ≥ n. (25)

For any natural n, take n disjoint open sets Ji such that
n⋃

i=1

Ji ⊂ J. For i = 1, 2, . . . , n, choose

Zi ∈
(
W1,2

0 (Ji) ∩ Xα
)
\{0} such that ‖Zi‖ = 1. Letting

En := span{Z1, Z2, . . . , Zn} and Sn := {Z ∈ En : ‖Z‖ = 1}.

For each Z ∈ En, there exist λi ∈ R, i = 1, 2, . . . , n such that

Z(ς) =
n

∑
i=1

λiZi(ς) for ς ∈ R. (26)

Hence,

‖Z‖γ3
=

(∫
R
|Z(ς)|γ3 dς

) 1
γ3

=

(
n

∑
i=1
|λi|γ3

∫
Ji

|Zi(ς)|γ3 dς

) 1
γ3

, (27)

and hence

‖Z‖2 =
∫
R
(|−∞Dα

ς Z(ς)|2 + (A(ς)Z(ς), Z(ς)))dς

=
n

∑
i=1

λ2
i

∫
R
(|−∞Dα

ς Zi(ς)|2 + (A(ς)Zi(ς), Zi(ς)))dς =
n

∑
i=1

λ2
i . (28)

There exists a constant c > 0 such that all norms of a finite dimensional normed space
are similar

c‖Z‖ ≤ ‖Z‖γ3
for Z ∈ En. (29)

So, by (Λ1), (Λ3), (27)–(29), we have

I(sZ) =
s2

2
‖Z‖2 −

∫
R

v(ς, sZ(ς))dς =
s2

2
‖Z‖2 −

n

∑
i=1

∫
Ji

v(ς, sλiZi(ς))dς

≤ s2

2
‖Z‖2 − ηsγ3

n

∑
i=1
|λi|γ3

∫
Ji

|Zi(ς)|γ3 dς

=
s2

2
‖Z‖2 − ηsγ3‖Z‖γ3

γ3
≤ s2

2
‖Z‖2 − η(cs)γ3‖Z‖γ3

=
s2

2
− η(cs)γ3 , for all Z ∈ Sn, with 0 < s ≤ 1. (30)

From (30), it follows that there exists ε > 0 and σ > 0 such as

I(σZ) < −ε for Z ∈ Sn. (31)

Letting

Sσ
n := {σZ : Z ∈ Sn} and Ω :=

{
(λ1, λ2, · · · , λn) ∈ Rn :

n

∑
i=1

λ2
i < σ2

}
.
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Thus, from (31), is results that I(Z) < −ε for Z ∈ Sσ
n . In addition, we have I ∈ C1(Xα,R)

and even. This implies that
Sσ

n ⊂ I−ε ∈ Σ. (32)

From (26) and (28) we deduce that there exists ψ ∈ C(Sσ
n , ∂Ω) an odd homeomorphism

mapping ([14]), we obtain
Γ(I−ε) ≥ Γ(Sσ

n) = n, (33)

Let cn = inf
A∈∑n

sup
Z∈A

I(Z). Since I is bounded below on E, from (33) we obtain

−∞ < cn ≤ −ε < 0, and so cn ∈ R+. We know that I has infinitely many nontrivial
critical points (by using Lemma 3). Thus, the system 2 possesses infinitely many non
trivial solutions.

Next, we show that cn → 0− as n→ +∞. Define

Xn := span{en}, Zn =
∞⊕

k=n

Xk,

where {en}∞
n=1 the standard orthogonal basis of Xα, and let

βn = sup
Z∈Zn ,‖Z‖=1

‖Z‖L2 . (34)

We claim that βn → 0 as n→ +∞. Indeed, 0 < βn+1 ≤ βn, and so βn → β ≥ 0 as n→ +∞.
Now, for all n ≥ 1, there exists Zn ∈ Zn as such ‖Zn‖ = 1 and ‖Zn‖ ≥ βn

2 . By definition of
Zn, it follows that Zn → 0 in Xα. Thus, by Lemma 3, we obtain Zn → 0 in L2(R), and so
β = 0. This proves our claim. Moreover, we have

I(Z) ≥ 1
2
‖Z‖2 − Cγ1

2 ‖a1‖ 2
2−γ1
‖Z‖γ1 − Cγ1

2 Cγ2−γ1
∞ ‖a2‖ 2

2−γ1
‖Z‖γ2 .

This implies that I(Z) is coercive and I(Z) → +∞ as ‖Z‖ → +∞. Hence, there exists a
τ > 0 such that I(Z) → 0 for ‖Z‖ ≥ τ. Moreover, for any A ∈ Σn, Γ(A) ≥ n, and so
A ∩ Zn 6= ∅. Thus, (34), yields

sup
Z∈A

I(Z) ≥ inf
Z∈Zn ,‖Z‖≤τ

I(Z)

≥ inf
Z∈Zn ,‖Z‖≤τ

(
1
2
‖Z‖2 − β

γ1
n ‖a1‖ 2

2−γ1
‖Z‖γ1 − β

γ1
n Cγ2−γ1

∞ ‖a2‖ 2
2−γ1
‖Z‖γ2

)
≥ −β

γ1
n ‖a1‖ 2

2−γ1
τγ1 − β

γ1
n Cγ2−γ1

∞ .

Therefore,

cn = inf
A∈∑n

sup
Z∈A

I(Z) ≥ −β
γ1
n ‖a1‖ 2

2−γ1
τγ1 − β

γ1
n Cγ2−γ1

∞ ‖a2‖ 2
2−γ1

τγ2 .

Combining this with cn < 0 and βn → 0, we obtain cn → 0− as n→ +∞ as desired.

4. Example

Consider system (2) with A(ς) = (1 + ς2)IN , where IN is the identity matrix of order
N and

v(ς, Z) =
e−ς2

cos(ς)
1 + |ς| |Z|

4
3 +

e−ς2
sin(ς)

1 + |ς| |Z|
3
2 .
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Then, we obtain

∇v(ς, Z) =
4e−ς2

cos(ς)
3(1 + |ς|) |Z|

−2
3 Z +

3e−ς2
sin(ς)

2(1 + |ς|) |Z|
−1
2 Z,

|v(ς, Z)| ≤ 2e−ς2

1 + |ς| |Z|
4
3 , ∀ (ς, Z) ∈ R×RN , |Z| ≤ 1,

|v(ς, Z)| ≤ 2e−ς2

1 + |ς| |Z|
3
2 , ∀ (ς, Z) ∈ R×RN , |Z| ≥ 1,

|∇v(ς, Z)| ≤ 2e−ς2 |Z|
1
3 + 9|Z|

1
2

6(1 + |ς|) , ∀ (ς, Z) ∈ R×RN ,

and

v(ς, Z) ≥ 3e−
π2
9 |Z|

4
3

2(3 + π)
, ∀ (ς, Z) ∈ (0,

π

3
)×RN , |Z| ≤ 1.

Therefore, the conditions of Theorem 2 are satisfied, where

4
3
= γ1 = γ3 < γ2 =

3
2

, a1(ς) = a2(ς) = b(ς) =
2e−ς2

1 + |ς| , ϕ(s) =
8s

1
3 + 9s

1
2

12
.

Thus, by applying Theorem 2, we conclude that the system (2) has infinitely many
nontrivial solutions.

Remark 5. In light of the above example, one can easily figure out that Z and v are not periodic
in ς. Moreover, v is of sub-quadratic. Therefore, System (2) with the above parameters can not be
commented by the results obtained in [14]. In contrast to the outcome and conditions suggested
in [15], our assumptions in the present paper are more effective. The resulting example supports the
validity of the proposed hypotheses.

5. Conclusions

We investigated in this research, the existence of infinitely many homoclinic solutions
for fractional Hamiltonian systems (2). The present method is different from those consid-
ered in the literature in the sense that it provides less restrictive assumptions and assumes
that A is coercive at infinity, v is of sub-quadratic growth as |Z| → ∞, and that Z and v
are not periodic in ς. The properties of the critical point theory have been employed to
prove the main results. The findings in this paper not only generalize but also improve the
recent results on fractional Hamiltonian systems (2). We provide a concrete example that
demonstrates the advantage of our theorems over the previous results.
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