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Abstract: Fractional Differential inclusions, the multivalued version of fractional differential equa-
tions, yellow play a vital role in various fields of applied sciences. In the present article, a class of
q-rung orthopair fuzzy (q-ROF) set valued mappings along with q-ROF upper/lower semi-continuity
have been introduced. Based on these ideas, existence theorems for a numerical solution of a distinct
class of fractional differential inclusions have been achieved with the help of Schaefer type and Banach
contraction fixed point theorems. A physical example is also provided to validate the hypothesis
of the main results. The notion of q-rung orthopair fuzzy mappings along with the use of fixed
point techniques and a new-fangled Caputo type fractional derivative are the principal novelty of
this article.
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1. Introduction

From the last five decades, a lot of development has been observed in the field of
fuzzy set theory and its connected branches. Many scientists have initiated various ideas
and applications of fuzzy sets towards decision-making, game theory, control systems
engineering, robotics, image processing and optimization theory, etc. Fuzzy set has been
generalized in different directions such as L-fuzzy set [1], by defining membership on
lattice and intuitionistic fuzzy set [2], by considering membership and nonmembership
grades, Pythagorean fuzzy set [3], having membership grades in the form of orthopairs
and q-rung orthopair fuzzy set [4], have q-rung orthopair membership grades. The main
idea behind all this development is to allow more space to the membership grades. In all
the above mentioned papers, the authors highlighted some important characteristics of the
fuzzy family. The notion of fuzzy mappings was initiated by Weiss [5] and Butnariu [6].
Consequently, Heilpern [7] proved a fixed point result for fuzzy contractive mappings
to generalize Nadler’s result [8]. Afterwards, many mathematicians extended the idea
of fuzzy mappings in various directions (for example, see [9–13]). Fractional calculus
plays an important role in the modelling of physical problems in a more efficient way.
Many fractional derivatives were defined such as Riemman–Liouville, Hadamard, Caputo
and Grunwald–Letnikov [14–16]. The nature of the problem decides which fractional
derivative is useful. In [17], authors define a new type of fractional derivative called a
Caputo–Fabrizio derivative with a non-singular kernel, it was applied in many real world
problems [18–21]. The Caputo–Fabrizio derivative was unable to satisfy some required
properties; for example, it cannot produce the original function if the order approaches
to 1. To overcome these issues, an other derivative with a nonsingular kernel using the
Mittag–Leffler function was introduced [22,23]. Many investigations and applications have
been made using this derivative [24–27]. Differential inclusions are of great importance in
the modelling of optimization problems and game theory. An interesting way to generalize
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the modelling with differential inclusions is with fuzzy differential inclusions. In 2000,
Zhou et al. presented a way to generalize the differential inclusions via fuzzy mappings.
An extension of this idea was made by Min et al. in [28] and proved a result for the
existence of a solution of system of fuzzy differential inclusions using a continuous selection
theorem. This idea was extended for fuzzy partial differential inclusions in [29], and the
system of fuzzy partial differential inclusions in [30]. In this article, we introduce the
notions of q-rung orthopair fuzzy (q-ROF for short) convex, concave functions, q-ROF
upper/lower semicontinuous mappings and q-ROF numbers. Using these notions, we
have presented existence results for fractional differential inclusions of ABC type via q-
rung orthopair fuzzy mappings. We consider two problems related to open and closed
q-rung orthopair fuzzy cuts of q-rung orthopair fuzzy mappings. We use well known
selection theorems to prove these existence results. Finally, the existence results for obtained
fractional differential equations of ABC types are proved using Schaefer type and the
Banach contraction principle.

2. Preliminaries

The following are defined in [2].

Definition 1. Consider X a non-empty set. A pair A = 〈µA, νA〉 where µA, νA : X → [0, 1] are
functions satisfying µA(x) + νA(x) ≤ 1∀ x ∈ X is known as an intuitionistic fuzzy set (IF-set for
short). The functions µA, νA are its membership and non-membership functions.

Remark 1. Every fuzzy set having membership function µ can be considered an IF-set < µ, 1−
µ >. The support of an IF-set A is the crisp set:

supp(A) = {A ∈ X : µA(x) > 0 and νA(x) < 1} (1)

In 2016, Yager introduced the notion of q-rung orthopair fuzzy sets to generalize the
basic idea of fuzzy sets. In the following, we include some basic definitions from [4].

Definition 2. A q-ROF subset A of X, for short a q-ROF set, is an orthopair, A = 〈ζA, ηA〉q
satisfying:

(i) q ≥ 1,
(ii) ζA(x) ∈ [0, 1] and ηA(x) ∈ [0, 1],
(iii) (ζA(x))q + (ηA(x))q ≤ 1,

where ζA, ηA : X → [0, 1] indicates the membership and nonmembership of elements in A, respec-
tively.

The negation of a q− ROF set is given by C(a) = (1− aq)
1
q .

Remark 2. It is clear that IF sets are q− ROF sets with q = 1 and Pythagorean fuzzy sets are
q− ROF sets with q = 2.

Theorem 1. If A is q1 − ROF set on X and if q2 > q1, then A is also q2 − ROF set on X.

Definition 3. For a q − ROF set A = 〈ζA, ηA〉q, the strength of commitment at rung q is
defined as

S(Aq(x)) = (ζA(x))q + (ηA(x))q)
1
q ,

which is actually a Minkowski metric.
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The hesitancy of a q-ROF set membership grade is defined as

HesAq(x) = (1− (SAq(x))q)
1
q

= (1− ((ζA(x))q + (ηA(x))q)
1
q .

Furthermore, if p > q, then SAp(x) ≤ SAq(x) and correspondingly HesAp(x) ≥
HesAq(x).
Let Fq(X) denote the family of all q-ROF sets defined on set X. Yager et al. in 2016 defined
some basic set operations on q-ROF sets.

(i) For A1, A2 ∈ Fq(X) with membership grades A1 =
〈
ζ℘1 , ηA1

〉
q and A2 =

〈
ζA2 , ηA2

〉
q,

then ζ
q
A1

+ η
q
A1

=
(

SAq
1

)q
≤ 1 and ζ

q
A2

+ η
q
A2

=
(

SAq
2

)q
≤ 1.

(ii) Let D = A1 ∩ A2, and the intersection of q-ROF sets is defined as D = 〈ζD, ηD〉q
where ζD = min

{
ζA1 , ζA2

}
and ηD = max

{
ηA1 , ηA2

}
; note that, since ζ

q
D + η

q
D ≤ 1, it

ensures that D ∈ Fq(X).
(iii) Let D = A1 ∩ A2, intersection of q-ROF sets is defined as D = 〈ζD, ηD〉q where

ζD = min
{

ζA1 , ζA2

}
and ηD = max

{
ηA1 , ηA2

}
, note that, since ζ

q
D + η

q
D ≤ 1, it

ensures that D ∈ Fq(X).
(iv) For A, B ∈ Fq(X), A ⊂ B if A(x) 6 B(x) for each x ∈ X, that is, ζA(x) ≤ ζB(x) and

ηA(x) ≥ ηB(x).
(v) For a set A ∈ Fq(X), the complement A is defined as A = 〈ηA, ζA〉q.

Banach [31] in 1922 presented the famous Banach contraction principle.

Theorem 2. Let (X, d) be a complete metric space and T : X → X a contraction mapping
such that:

d(Tx, Ty) ≤ ad(x, y),

for all x, y ∈ X, a ∈ (0, 1).

Schaefer Theorem [32] is as follows.

Theorem 3. Let(X, ‖.‖) be a norm space. H be a continuous mapping of X into X, which is
compact on each bounded subset D of X. Then, either

(i) x = λHx has a solution in x, or
(ii) the set of all such solutions 0 ≤ λ ≤ 1 is unbounded.

The following is defined in [33].

Definition 4. Associate with each real number s a positive measure µs on Rn by setting,

dµs(y) = (1 + |y|2)sdmn(y)

if f ∈ L2(µs) (where Lk is the space of Lebesgue integrable functions), that is, if
∫
| f |2dµs < ∞,

then f is a tempered distribution. Hence, f is the Fourier Transform of a tempered distribution u.
The vector space of all u so obtained will be denoted by Hs, equipped with the norm,

‖u‖s =

(∫
Rn
|û|2dµs

)1/2

These spaces Hs are called Sobolev spaces.
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It is known that the Mittag–Leffler function is the solution of the following fractional
differential equation:

Dt f
Dxt = a f , for 0 < t < 1.

Now, we recall recently a used fractional derivative and integral as given in [22,23].

Definition 5. Considering f ∈ H1(a, b) and t ∈ [0, 1], then Atangana–Baleanu–Caputo frac-
tional derivative (ABC fractional derivative) of order t is given by

ABC
b Dt

`( f (`)) =
B(t)
1− t

∫̀
b

f ′(x)Et

(
−t

(`− x)t

1− t

)
dx, (2)

where B(t) denotes a normalization function satisfying B(0) = B(1) = 1. The associated integral
is defined by

AB
a It

`{ f (`)} = 1− t
B(t)

f (`) +
t

B(t)Γ(t)

∫̀
a

f (s)(`− s)t−1ds. (3)

The following concepts are defined in [34].

Definition 6. Let A ∈ Fq(X) and x ∈ X, then, respectively, the q-rung closed and open α-level
cuts, for α ∈ (0, 1] of A are defined by

[A]qα =
{

x ∈ X : (ζA(x))q ≥ α and (ηA(x))q ≤ 1− α
}

and
[A]qα =

{
x ∈ X : (ζA(x))q > α and (ηA(x))q < 1− α

}
.

Definition 7. Let α, β ∈ (0, 1] and α + β ≤ 1, then, respectively, the q-rung closed and open
(α, β)-cuts of A are defined by

[A]
q
(α,β) =

{
x ∈ X : (ζA(x))q ≥ α and (ηA(x))q ≤ β

}
and

Aq
(α,β) =

{
x ∈ X : (ζA(x))q > α and (ηA(x))q < β

}
.

Definition 8. Consider X be a non-empty set, Y be metric space. A mapping S : X → Fq(Y) is
called q-ROF mapping.

Definition 9. A point x∗ ∈ X is called q-ROF fixed point of a q-ROF mapping S : X → Fq(X) if
there exists α, β ∈ (0, 1] such that x∗ ∈ [Sx∗]q

(α,β).

3. Existence Results

Definition 10. Let∇q
n represent the set of all q-ROF sets defined on set Rn such that, for A ∈ ∇q

n,
the following properties are satisfied:
(i) If there exist x, y ∈ Rn such that (ζA(x))q = 1 and (ηA(y))

q = 0, then A is normal;
(ii) A is q-ROF convex, that is, ζA is q-rung fuzzy convex, and ηA is q-rung fuzzy concave, that is,
for x, y ∈ Rn and 0 < λ < 1,

(ζA(λx + (1− λ)y))q ≥ min
{
(ζA(x))q, (ζA(y))

q},

(ηA(λx + (1− λ)y))q ≤ max
{
(ηA(x))q, (ηA(y))

q};
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(iii) A is upper semicontinuous that is for any α, β ∈ [0, 1], [A]
q
(α,β) is a closed subset of Rn;

(iv) the closure of [A]
q
(0,1) is compact.

In fact ∇q
n denotes the set of all q-ROF numbers. For A, B ∈ ∇q

n, define

H
(
[A]

q
(α,β), [B]

q
(α,β)

)
= max

 sup
b∈[B]q

(α,β)

d
(

b, [A]
q
(α,β)

)
, sup

a∈[A]
q
(α,β)

d
(

a, [B]q
(α,β)

),

the Hausdorff distance, clearly [A]
q
(α,β), [B]

q
(α,β) are compact subsets of Rn. Again, for A, B ∈

∇q
n, we define

H(A, B) = sup
α,β

{
H
(
[A]

q
(α,β), [B]

q
(α,β)

)}
.

Definition 11. Let (X, dX) and (Y, dY) be any two metric spaces. A multivalued map S : X → 2Y

is upper semicontinuous at ε0 ∈ X if and only if, for any neighborhood M of S(ε0), there exists a
neighborhood N of ε0 such that, for each ε > 0 in N, S(ε) ⊂ M. S is called upper semicontinuous
on X if it is upper semicontinuous at any point ε0 ∈ X.

Remark 3. A q-ROF valued map S : X → ∇q
n can generate a vector valued function S̃ : X ×

Rn → [0, 1]2, where, for any x ∈ X, y ∈ Rn, S̃(x, y) = S(x)(y).

Throughout this paper, an open subset in R×Rn is denoted by Φ with (`0, ε0) ∈ Φ.

Lemma 1. Consider Γ a paracompact Hausdorff topological space, E a topological vector space,
S : Γ → 2E a multifunction having nonempty convex values. If S possesses open lower sections,
that is, for any e ∈ E, S−1(e) = {x ∈ Γ : e ∈ S(x)} is open in Γ, then a function f : Γ → E
exists, which is continuous and f (x) ∈ S(x) for any x ∈ Γ.

Definition 12. Let S : Φ → ∇q
n be a q-ROF map. The mapping S is called lower open if

(S(`, ε))(x) is lower semicontinuous at (`, ε) ∈ Φ.

The following lemma is from [28].

Lemma 2. Let Φ ⊂ R × Rn be an open set, (`0, ε0) ∈ Φ and S : Φ → Γ(Rn) an upper
semicontinuous mutivalued operator. Then, there exists an interval L = [`0 − ε, `0 + ε] ⊂ R (for
ε > 0) and J > 0 such that
(i) L× BRn(ε0, εJ) ⊂ Φ;
(ii) ‖S(`, ε)‖ ≤ J on L× BRn(ε0, εJ);
where Γ(Rn) represents the set of all compact and convex subsets of Rn.

Lemma 3. Consider X a Banach space and L a measurable space. Assume that A, B : L −→ Γ(X)
is any two multivalued measurable compact operators. For any measurable selection a(`) ∈ A(`), a
measurable selection b(`) ∈ B(`) exists such that

‖a(`)− b(`)‖ ≤ H(A(`), B(`)),

for all ` ∈ L.

Theorem 4 assures the existence of solution of the following fractional differential
inclusion. Let Rn represent a Banach space having norm ‖.‖∞, and Φ represents an open
subset of [`0 − ε, `0 + ε]×Rn. Suppose S : Φ→ ∇q

n be a q-ROF map and α, β : Rn → [0, 1]
are upper and lower semicontinuous functions. Assume the q-rung fuzzy differential
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inclusions:
for a q-ROF map S : Φ→ ∇q

n, find ε ∈ C(I,Rn) such that(
ζS(`,ε)

(ABCDt
`(ε(`))

))q
> α and

(
ηS(`,ε)

(ABCDt
`(ε(`))

))q
< β,

with initial condition ε(`0) = ε0,

in other words,  ABCDt
`(ε(`)) ∈

(
S(`,ε(`))

)q

(α,β)
,

ε(`0) = ε0.

Theorem 4. Let S : Φ → ∇q
n be a q-ROF map, which is also a bounded and lower open fuzzy

surjection. Suppose ζS is q-rung fuzzy convex, ηS is q-rung fuzzy concave, and α, β : Rn → [0, 1]
are upper and lower semicontinuous functions, respectively, satisfying (S(`, ε(`)))

q
(α,β) is nonempty

for every (`, ε) in Φ. Then, there exists continuous selection f̃ : Φ→ Rn with(
ζ f̃

(
ABCDt

`(ε(`))
))q

> α,
(

η f̃

(
ABCDt

`(ε(`))
))q

< β

and ABCDt
`(ε(`)) ∈ (S(`, ε(`)))

q
(α,β) for all (`, ε) in Φ.

Proof. Define a set-valued function S̃ : Φ→ 2R
n

as

S̃(`, ε(`)) =
(

S(`,ε(`))

)q

(α,β)

where (
S(`,ε(`))

)q

(α,β)
=
{

x ∈ C(I,Rn) : (ζS(x(`)))q > α and (ηS(x(`)))q < β
}

for each (`, ε) ∈ Φ. Obviously S̃(`, ε(`)) is nonempty, for each (`, ε) ∈ Φ. Suppose for
x, y ∈ S̃(`, ε(`)) and λ ∈ [0, 1] :(

ζS(`,ε)
(λx + (1− λ)y)

)q
≥ min

{(
ζS(`,ε)

(x)
)q

,
(

ζS(`,ε)
(y)
)q}

> α,(
ηS(`,ε)

(λx + (1− λ)y)
)q
≤ max

{(
ηS(`,ε)

(x)
)q

,
(

ηS(`,ε)
(y)
)q}

< β.

Then, the q-rung convexity of ζS and the q-rung concavity of ηS ensure λx + (1− λ)y ∈
S̃(`, ε(`)). Thus, (S(`, ε(`)))

q
(α,β) is a convex set on Φ. Next, it is shown that S̃ has open

lower sections. Consider for any υ ∈ Rn

S̃−1(υ) =
{
(`, ε) ∈ Φ : υ ∈ S̃(`, ε(`))

}
,

=
{
(`, ε) ∈ Φ :

(
ζS̃(υ)

)q
> α and

(
ηS̃(υ)

)q
< β

}
.

In order to do so, it will be enough to prove that the complement of S̃−1(υ) that is the set{
(`, ε) ∈ Φ :

(
ζS̃(υ)

)q ≤ α and
(
ηS̃(υ)

)q ≥ β
}

is closed. For this, suppose {(`n, εn)}n∈N

a sequence in
(

S̃−1(υ)
)c

such that (`n, εn) → (`, ε). Since S is lower open, α is upper
semicontinuous and β is lower semicontinuous, we have(

ζ
S̃(`n ,εn)

(υ)

)q
≤ α(`n, εn),

(
η ˜S(`n ,εn)

(υ)

)q
≥ β(`n, εn)
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which implies (
ζ

S̃(`,ε)
(υ)

)q
≤ lim inf

n→∞

(
ζ

S̃(`n ,εn)
(υ)

)q

≤ lim sup
n→∞∞

α(`n, εn)

≤ α(`, ε)

and (
η

S̃(`,ε)
(υ)

)q
≥ lim sup

n→∞∞

(
η ˜S(`n ,εn)

(υ)

)q

≥ lim inf
n→∞

β(`n, εn)

≥ β(`, ε).

Hence, (`, ε) ∈
(

S̃−1(υ)
)c

. Thus, S̃ contains open lower sections. Now, with the help of a

Proposition, a continuous selection f̃ : Φ → Rn exists so that f̃ (`, ε) ∈
(

S(`,ε(`))

)q

(α,β)
for

each (`, ε) ∈ Φ. Since S is surjection and S̃(`, ε(`)) is bounded, therefore ABCDt
`(ε(`)) =

f̃ (`, ε) for each (`, ε) ∈ Φ.

Theorem 5 assures the existence of solution of the following fractional differential inclu-
sion.

Consider the q-rung fuzzy differential inclusions:
for a q-ROF map S : Φ→ ∇q

n evaluating ε ∈ C(I,Rn) such that{ (
ζS(`,ε)

(ABCDt
`(ε(`))

))q
≥ α and

(
ηS(`,ε)

(ABCDt
`(ε(`))

))q
≤ β,

ε(`0) = ε0,

in other words,  ABCDt
`(ε(`)) ∈

(
S(`,ε(`))

)q

(α,β)
,

ε(`0) = ε0.

Theorem 5. Let S : Φ → ∇q
n be a uniformly continuous and q-rung fuzzy integrably bounded

mapping and α, β : Rn → [0, 1] are uniformly continuous. If, for every (`, ε) and (`, ε) in Φ,:

H(S(`, ε), S(`, ε)) ≤ ‖ε− ε‖

and [
1− t
B(t)

+ a
t

B(t)

]
< 1

are satisfied, where a ∈ R. Then, a solution of the above fractional differential inclusion exists.

Proof. Define a set-valued function S̃ : Φ→ 2R
n

as

S̃(`, ε(`)) =
[
S(`,ε(`))

]q

(α,β)
,

where [
S(`,ε(`))

]q

(α,β)
=
{

ς ∈ C(I,Rn) : (ζS(x(`)))q ≥ α and (ηS(x(`)))q ≤ β
}
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for each (`, ε) ∈ Φ. Now, we show that the mapping S̃ is upper semicontinuous. For this,
consider the neighborhood of S̃

(˜̀, ε̃
)

, for
(˜̀, ε̃

)
∈ Φ, as follows:

N S̃(˜̀,ε̃)
r =

{
ε ∈ Rn : d

(
ε, S̃
(˜̀, ε̃

))
< r
}

.

For(`, ε) ∈ Φ and υ ∈ S̃(`, ε), we have

d
(

υ, S̃
(˜̀, ε̃

))
≤ H

(
S̃(`, ε), S̃

(˜̀, ε̃
))

= H

([
S(`,ε)

]q

(α,β)
,
[
S(˜̀,ε̃)

]q

(α̃,β̃)

)

≤ H

([
S(˜̀,ε̃)

]q

(α̃,β̃)
,
[
S(`,ε)

]q

(α̃,β̃)

)
+ H

([
S(`,ε)

]q

(α̃,β̃)
,
[
S(`,ε)

]q

(α,β)

)
≤ H

(
S̃
(˜̀, ε̃

)
, S̃(`, ε)

)
+ H

([
S(`,ε)

]q

(α̃,β̃)
,
[
S(`,ε)

]q

(α,β)

)
.

Since S and α are uniformly continuous, utilizing the above inequality, a small enough
neighborhood ℵ of

(˜̀, ε̃
)

in Φ can be found, satisfying for all (`, ε) ∈ ℵ and δ ∈ S̃(`, ε)

d
(

δ, S̃
(˜̀, ε̃

))
< r,

thus

S̃(ℵ) ⊂ N S̃(˜̀,ε̃)
r ,

which shows S̃ is upper semicontinuous. Thus, utilizing lemma 3, a real constant κ > 0
exists such that

max
(`,ε)

∥∥∥S̃(`, ε)
∥∥∥ ≤ κ.

Let

W =


v ∈ C(I,Rn) : ‖v(`)− v0‖ ≤ κ1,

for all ` ∈ I = [0, a],
where v(`0) = v0


with a metric dW : W ×W → R∪ {+∞} defined by;

dW(v1, v2) = sup
`∈I
{‖v1(`)− v2(`)‖}.

Then, (W, dW) become a complete generalized metric space [28].
Now, define a multivalued mapping T : W −→ 2W by

T(v) =

v : v(`) ∈ v0 +
1− t
B(t)

[
S(τ,v(τ))

]q

(α,β)
+

t
B(t)

`∫
0

[
S(τ,v(τ))

]q

(α,β)
dτ almost everywhere in I

,

provided that
[
S(τ,v(τ))

]q

(α,β)
= {0} at τ = `0, where

`∫
0

[
S(τ,v(τ))

]q

(α,β)
dτ is the multivalued

integral by Aumann [35].
Now, we show that T(v) is nonempty for all v ∈ W. Since the multivalued operator

S̃(`, ε(`)) =
[
S(`,ε(`))

]q

(α,β)
is upper semicontinuous with compact values, therefore accord-

ing to Kuratowski–Ryll–Nardzewski selection, Theorem [36], S̃(`, ε) contains a measurable
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selection f (`, ε) ∈ S̃(`, ε) for all ` ∈ I and, by a given condition f (`, ε(`)), is also Lebesgue
integrable. Let

v̂(`) = v0 +
1− t
B(t)

f (τ, v(τ)) +
t

B(t)

`∫
0

f (τ, v(τ))dτ,

then v̂ ∈ T(v), implying T(v) 6= ∅.
Next, it is claimed that T(v) is closed for each v ∈ W. Assume that (vn) is a sequence in
T(v) which is convergent to v◦ ∈W. Since we know that

vn(`) ∈ v0 +
1− t
B(t)

S̃(τ, v(τ)) +
t

B(t)

`∫
0

S̃(τ, v(τ))dτ almost everywhere in I,

and the set v0 +
1−t
B(t) S̃(τ, v(τ)) + t

B($)

`∫
0

S̃(τ, v(τ))dτ is closed [37], it follows that v◦ ∈ T(v).

Now, we prove that T is a multivalued contraction. For this purpose, choose v2 ∈ T(v1),
which implies the existence of f (`, v1) ∈ S̃(`, v1) such that

v2(`) = v0 +
1− t
B(t)

f (τ, v1(τ)) +
t

B($)

`∫
0

f (τ, v1(τ))dτ.

Then, by Lemma 4, a measurable selection f (`, v2) ∈ S̃(`, v2) exists such that

‖ f (`, v2)− f (`, v1)‖ ≤ H
(

S̃(`, v2), S̃(`, v1)
)

= H
([

S(`,v2)

]q

(α,β)
,
[
S(`,v1)

]q

(α,β)

)
≤ H(S(`, v2), S(`, v1)).

Let v3 ∈ T(v2), then

v3(`) = v0 +
1− t
B(t)

f (τ, v2(τ)) +
t

B(t)

`∫
0

f (τ, v2(τ))dτ.

Consider

‖v3(`)− v2(`)‖ =

∥∥∥∥∥∥
 1−$

B(t) f (τ, v2(τ)) +
t

B(t)

`∫
0

f (τ, v2(τ))dτ


−

 1−t
B(t) f (τ, v1(τ)) +

t
B(t)

`∫
0

f (τ, v1(τ))dτ

∥∥∥∥∥∥
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≤
∥∥∥∥1− t

B(t)
[ f (τ, v2(τ))− f (τ, v1(τ))]

+
t

B(t)

 `∫
0

f (τ, v2(τ))dτ −
`∫

0

f (τ, v1(τ))dτ

∥∥∥∥∥∥dτ

≤
[

1− t
B(t)

+ a
t

B(t)

]
‖ f (τ, v2(τ))− f (τ, v1(τ))‖

≤
[

1− t
B(t)

+ a
t

B(t)

]
H(S(τ, v2), S(τ, v1))dτ

≤
[

1− t
B(t)

+ a
t

B(t)

]
‖v2 − v1‖

≤
[

1− t
B(t)

+ a
t

B(t)

]
d(v1, v2),

consequently, we have

H(T(vn+1), T(vn)) ≤
[

1− t
B(t)

+ a
t

B(t)

]n
d(v1, v2).

Hence, Nadler’s theorem implies the existence of a fixed point v ∈ T(v), which is the
solution of the given Problem 2.

The following example shows the solution of fuzzy fractional differential inclusion
obtained by using Theorem 4.

Example 1. Consider the following fuzzy fractional differential inclusion:

ABCDt f (x, z) + c f (x, z) ∈
[

χ( 1
B(t)+(1−t)c

[
tzt

Γ(t+1)+B(t) sin x
])]q

(a(u(x,y)),β(u(x,y)))
,

where f (x, 0) = sin x,

x, y ∈ R. Suppose that F : Φ → ∇q
n is a q-rung orthopair fuzzy map and α, β : Rn → [0, 1] are

upper and lower semicontinuous functions such that[
F(x,y,u(x,y))

]q

(a(u(x,y)),β(u(x,y)))
:=
[

χ( 1
B(t)+(1−t)c

[
tzt

Γ(t+1)+B(t) sin x
])]q

(a(u(x,y)),β(u(x,y)))

is non-empty for every (x, y, u) ∈ Φ and χ is the characteristic function, defined as

H


[

χ( 1
B(t)+(1−t)c

[
tzt

Γ(t+1)+B(t) sin x
])]q

(a(u(x,y)),β(u(x,y)))
,[

χ( 1
B(t)+(1−t)c

[
tzt

Γ(t+1)+B(t) sin x
])]q

(a(v(x,y)),β(v(x,y)))

 = 0.

Now, Theorem 4 assures the existence of a continuous selection f̃ (x, y, u) ∈
[

F(x,y,u(x,y))

]q

(a(u(x,y)),β(u(x,y)))
for each (x, y, u) ∈ Φ such that(

ζ f̃

(
1

B(t) + (1− t)c

[
tzt

Γ(t + 1)
+ B(t) sin x

]))q

> α,
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and (
η f̃

(
1

B(t) + (1− t)c

[
tzt

Γ(t + 1)
+ B(t) sin x

]))q

< β.

Hence,

1
B(t) + (1− t)c

[
tzt

Γ(t + 1)
+ B(t) sin x

]
∈
[

F(x,y,u(x,y))

]q

(a(u(x,y)),β(u(x,y)))
.

4. Conclusions

The notions of q-rung orthopair fuzzy convex, concave functions, q-rung orthopair
fuzzy mappings, q-rung orthopair fuzzy upper/lower semicontinuous mappings and q-
rung orthopair fuzzy numbers are introduced. On the basis of these notions and by using
Schaefer type and Banach contraction principle, the existence results for special type of
fractional differential inclusions have been proved. An example in support of main results
is also presented. The idea can be extended further in various directions for obtaining fuzzy
fixed points, fuzzy common fixed point and coincidence point results in various metric
spaces under diverse contractive conditions.
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