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Abstract: In this article, the mathematical model of COVID-19 is analyzed in the sense of a fractional
order Caputo operator with the consideration of an asymptomatic class. The suggested model is
comprised of four compartments. The results from fixed point theory are used to theoretically analyze
the existence and uniqueness of solution of the model in fractional perspective. For the numerical
approximation of the suggested problem, a numerical iterative scheme is used, which is based on the
Newton polynomial interpolation. For the efficiency and applicability of the suggested technique
with a fractional Caputo operator, we simulate the results for various fractional orders.
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1. Introduction

Wuhan, China, was the first to be infected with the new virus (2019-nCoV), which is
extremely pathogenic and transmissible. This unique illness has spread over the world,
causing severe acute respiratory syndrome.The COVID-19 epidemic has attracted much
attention, since the first case of COVID-19 was detected. Unfortunately, the globe has
reached a gloomy coronavirus milestone as of 20 December 2021, with 5.36 million fatalities
recorded and confirmed cases of about 275.6 million. The total deaths have far outpaced
that of the other two coronaviruses (severe acute respiratory syndrome coronavirus, SARS-
CoV, and Middle East respiratory syndrome coronavirus, MERS-CoV), according to [1,2].
The worldwide epidemic is ongoing, wreaking havoc on public health and the economy
throughout the world. Despite the country’s collective efforts, China’s COVID-19 pandemic
has not been effectively contained. The influence of international imports and population
movement (particularly among subclinical patients) on contagious control, on other hand,
cannot be overlooked. It is critical to build a model for the contagion as a potent instrument
to study the mechanisms of contagious disease control and transmission, in order to control
contagious diseases and limit their incidence. When COVID-19 was first discovered,
researchers employed epizootic data or dynamic models, as well as the effective times of
COVID-19’s reproduction to predict the epidemic’s peak timing and size both locally and
internationally [3,4]. Researchers also created forecast models on the impact of resuming
work on the progression of the disease in Hubei Province, if not the entire country [5].
Asamoah et al. studied the global stability and cost-effectiveness of COVID-19, with the
consideration of the environmental impact using Ghana’s data [6].

The early research lacked adequate raw data. As a result, the majority of these
researched forecasts of the pandemic scenario differed from the actual reality.

More crucially, these investigations ignored the novel coronavirus’s high conveyance
capability throughout the incubation phase, subclinical infection, and the effect of popula-
tion movement on the epidemic conveyance. After extensive study on the new coronavirus
pneumonia, it was oberved that social distancing had a strong impact on decreasing the
number of infections. For this, several works have been presented; for instance, Qian et al.
worked on COVID-19 and social distancing [7], Mwalili studied an SEIR COVID-19 model
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by incorporating social distancing and environment [8], Elgazzar presented the controling
of COVID-19 through social distancing and awareness [9].

Most academics included the conveyance characteristics of individuals with a latent
period or subclinical diseases into new coronavirus pneumonia models in later investi-
gations [10]. Mandal et al. [11] developed a model that included a quarantine class and
government action. This study found that the most important component in attaining
disease management was minimizing the exposure to exposed and vulnerable individuals.
Khan and Atangana et al. [12] devised a new mathematical model for COVID-19 dynamics
in the presence of quarantine and isolation. Some researchers have proposed mathemat-
ical models to investigate COVID-19’s proliferation and conveyance in the community,
particularly the role of asymptomatic infected persons. The authors of [13] suggested
the COVID-19 spread using a constituent mathematical model in order to concentrate on
super-spreaders’ contagiousness. However, only the infectiousness of exposed people
was included in this model, not the infectiousness of asymptomatic people with illnesses.
Indeed, research employing data from early Chinese reports paired with Bayesian infer-
ence methodology found that asymptomatic illnesses increased the epidemic’s spread [14].
Furthermore, a great number of mathematical models or studies focusing on COVID-19
and other relevant subjects have been established [15]. Yet, it is uncommon to find a model
that takes into account the influence of both asymptomatic infected people’s illness features
and the population’s mobility on COVID-19 conveyance.

Kang et al. [16] provided a simplified mathematical model, which could be utilized to
observe the influence of the mobility of the population and subclinical infected persons
on the development of COVID-19. As opposed to the other models described above,
they took into account the following assumptions. To begin with, because symptomatic
infected people have apparent ailments, they will be segregated and treated as soon as they
are discovered. This indicates that the rate of viral infection in susceptible persons from
symptomatic diseases is relatively low. As a result, the infection rate from symptomatic
illnesses to vulnerable persons was overlooked. Second, since May, the pandemic situation
in the provinces has mostly stabilized. This also suggests that in China, both the medical
issues and the treatment methods have remained relatively steady. As a result, our model
incorporated the constant cure rate. However, when people return to regular life, the chance
of an epidemic re-emerging cannot be overlooked due to the large population, particularly
asymptomatic persons. They then concentrated on the influence of population movement
on the epidemic’s progression. Furthermore, recurrence incidences in people who have
been cured are quite rare. As a result, they believed that there was no transfer of recovery
to the vulnerable population.

In assessing the dynamics of an infectious disease, epidemic models of fractional
order are more informative and reliable than typical integer order models, and they are
being used more frequently [17,18]. For some diseases, fractional order models exhibit a
substantially superior match to the real data. Many fractional operators were suggested
in [19,20]; these fractional operators’ applications were presented in [21–23]. The Caputo
operator has been used by several researchers to analyze a variety of real world phenomena.
For instance, Saifullah et al. investigated a nonlinear wave model in [24], Khan et al. studied
a four dimensional dynamical system with Caputo’s operator [25]. Similarly, Alqahtani
et al. analyzed the bioethanol production model under a generalized nonlocal operator in
the Caputo sense [26]. Furthermore, in [27], for instance, they investigated equations of
fractional diffusion and their analysis. The authors of [28] employed a novel approach for
numerically solving fractional order differential equations. In [29], the authors studied the
nonlinear wave equation with solitary/shock solutions. In [30], the author investigated
coronavirus modeling, simulations, and potential control using a mathematical model.
The authors recently investigated the fractional derivative analysis of the coronavirus
model [31]. The authors of [32] investigated a mathematical model to study COVID-19
and its control analysis. Several authors have conducted work on fractional differential
equations [33–35].
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We reformulated the model [16] in this paper using the Caputo derivative with a
nonlinear incidence rate and fixed input and fixed treatment rates. Fractional order models
provide a deeper grasp of the epidemic and provide additional insights. The remainder of
the paper is organized as follows: Section 2 presents the basic preliminaries, and Section 3
presents the model formulation in terms of the parameter estimates and curve fitting.
Section 4 gives the model derivation. The model’s analysis is presented in Section 5, whereas
numerical simulations are shown in Section 6. Section 7 has brief concluding remarks.

2. Preliminaries

Definition 1. We consider U(t) to be a continuous function; then, the definition of a Caputo
operator of order α, where m− 1 < α ≤ 1 is

C
0 Dα

t U(t) =
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1[U

′
(τ)]dτ.

Definition 2. We consider U(t) to be a continuous function; then, the definition of the Riemann–
Liouville integration with respect to t is

R
0 Iαt U(t) =

1
Γ(α)

∫ t

0
(t− τ)α−1U(ø)dτ, α > 0,

with a converging integral.

3. Classical Integer Order Model Formulation

Here, we examine the SAIR mathematical model, which models COVID-19’s dynamic
conveyance in mobile populations. Susceptible individuals S(t), asymptomatic people A(t),
symptomatic individuals I(t), and recovered individuals R(t) make up the population size
N(t). The following is a system of ordinary differential equations [16].

dS(t)
d(t) = Π− fA(t)S(t)

N(t) − υS(t),
dA(t)
d(t) = fA(t)S(t)

N(t) − υA(t)− q1A(t)− q2A(t),
dI(t)
d(t) = q1A(t)− υI(t)− κI(t)− νI(t)
dR(t)
d(t) = q2A(t) + νI(t)− υR(t).

(1)

The starting state was S(0) > 0, A(0) ≥ 0, I(0) ≥ 0, and R(0) ≥ 0. The comprehensive
input rate was represented by the parameter Π > 0, and υ > 0 represented the natural
death rate. The death rate owing to disease was denoted by κ > 0. Vertical conveyance
was not taken into account in this model; therefore, all babies were at risk. Asymptomatic
infections, according to clinical practice, are not in need of therapy; yet, this population is
a main infection source. The rate of asymptomatic people who have recovered becoming
symptomatic was determined by the parameter q1. f represented the transmission rate
between asymptomatic and susceptible people. The rate at which asymptomatic people
recover was determined by parameter q2 > 0. The rate at which symptomatic people
recover was ν > 0. In clinical terms, the recurrence in treated patients is uncommon. As a
result, from recovered people, no conveyance to the vulnerable class was envisaged in this
model. The authors in [16] studied the local and global stability based on the disease-free as
well as the endemic equilibrium points by constructing an appropriate Lyapunov function
under appropriate parameter conditions. Moreover, some important results have been
presented and verified by numerical simulations.

4. Model Derivation in the Caputo Operator

We used a Caputo fractional derivative to reformulate the COVID-19 model (1) to
study the memory effects and learn more about the epidemic. The following is a system of
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Caputo fractional differential equations. Moreover, to obtain the same dimension on both
sides of the coefficient, we included one auxiliary parameter Λ [36–38]

1
Λ1−α

C
Dα
t S(t) = Π− fA(t)S(t)

N(t) − υS(t),
1

Λ1−α

C
Dα
t A(t) = fA(t)S(t)

N(t) − υA(t)− q1A(t)− q2A(t),
1

Λ1−α

C
Dα
t I(t) = q1A(t)− υI(t)− κI(t)− νI(t)

1
Λ1−α

C
Dα
t R(t) = q2A(t) + νI(t)− υR(t),

(2)

with S(0) > 0, A(0) ≥ 0, I(0) ≥ 0, and R(0) ≥ 0.

5. Analysis of the Model
5.1. Existence Results

Here, the existence and uniqueness of the solution of Model (2) are presented using
some fixed point results. For this purpose, Model (2) can be written as

1
Λ1−α

CDα
t S(t) = G1(t, S),

1
Λ1−α

CDα
t A(t) = G2(t, A),

1
Λ1−α

CDα
t I(t) = G3(t, I),

1
Λ1−α

CDα
t R(t) = G4(t, R).

(3)

System (3) may be expressed as{
1

Λ1−α

CDα
tF (t) = H(t,F (t))

F (0) = F0
, (4)

where

F (t) =


S(t),
A(t),
I(t),
R(t).

H(t,F (t)) =


G1,
G2,
G3,
G4.

Now, to define an orbitally complete metric space, let (H, d) represent the metric space
and T : H→ H; if x0 ∈ H, then the orbit of x0 is the set

O(x0) = {Tnx0 : n = 0, 1, 2, 3 . . .},

where Tn is the nth iteration of T, and D(x0) is the diameter of O(x0). If all Cauchy
sequences belonging to O(x) converge in H for some x ∈ H, then (H, d) is known as
T-orbitally complete metric space.

Theorem 1 ([39]). Let (H, d) represent T-orbitally complete metric space, T : H → H, and
θ : H→ N ; if ∃ ν > 0 and x0 ∈ H, with 0 < D < ∞, such as

d(Tθ(x)(p),Tθ(x)(q)) ≤ eνd(p, q),

then T has a unique fixed point.

Let H = C×C×C, where C([0, T],R) represents space containing continuous map-
pings, and d(p, q) = supt∈[0,T] |p− q| is the metric on H.
The existence and uniqueness of the solution of the problem (4) are presented and proved
in the following theorem.
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Theorem 2. Let T : H→ H be defined by T(F (t)) = F0 +
1−α
Γ(α)

∫ t
0 (t− τ)α−1H(τ,F(τ))dτ and

|H(t,F (t))−H(t,K(t))| ≤ Γ(α + 1)
αT̂α

e−ν|
√
|F | −

√
|K||

|H(t,F (t))−H(t,K(t))| ≤ Γ(α + 1)
αT̂α

e−ν|
√
|F |+

√
|K||.

Then, there must be a unique solution to problem (4).

Proof. By applying the integral on Equation (4), we obtain

F (t) = F0 +
1− α

Γ(α)

∫ t

0
(t− τ)α−1H(τ,F (t))dτ = TF . (5)

To prove that there exists a unique fixed point of T,

|TF − TK| =

∣∣∣∣1− α

Γ(α)

∫ t

0
(t− τ)α−1(H(τ,F ))dτ

∣∣∣∣
≤ 1− α

Γ(α)

∫ t

0
(t− τ)α−1|H(τ,F )−H(τ,K))|dτ

≤ Γ(α + 1)e−ν

Γ(α)T̂α

∫ t

0
(t− τ)α−1|

√
|F | −

√
|K||dτ

=
αe−ν

T̂α
sup
t∈[0,T]

|
√
|F | −

√
|K||

∫ t

0
(t− τ)α−1dτ

≤ e−ν sup
t∈[0,T]

|
√
|F | −

√
|K||.

Moreover,

|TF|+ |TK| =

∣∣∣∣1− α

Γ(α)

∫ t

0
(t− τ)α−1(H(τ,F ))dτ|+ | 1

Γ(α)

∫ t

0
(t− τ)α−1(H(τ,K))dτ

∣∣∣∣
≤ 1− α

Γ(α)

∫ t

0
(t− τ)α−1(|H(τ,F )|+ |H(τ,K)|)dτ

≤ Γ(α + 1)e−ν

Γ(α)T̂α

∫ t

0
(t− τ)α−1|

√
|F |+

√
|K||dτ

=
αe−ν

T̂α
sup
t∈[0,T]

|
√
|F |+

√
|K||

∫ t

0
(t− τ)α−1dτ

≤ e−ν sup
t∈[0,T]

|
√
|F |+

√
|K|| ≤ sup

t∈[0,T]
|
√
|F |+

√
|K||.
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Now,

d(T2F ,T2K) = sup
t∈[0,T]

|T2F − T2K|

= sup
t∈[0,T]

|TF − TK| × sup
t∈[0,T]

|TF + TK|

≤ sup
t∈[0,T]

|TF − TK| × sup
t∈[0,T]

(|TF|+ |TK|)

≤ e−ν sup
t∈[0,T]

|
√
|F | −

√
|K|| × sup sup

t∈[0,T]
|
√
|F |+

√
|K||

= e−ν sup
t∈[0,T]

||F | − |K||

≤ e−ν sup
t∈[0,T]

|F − K|

= e−νd(F ,K).

If we take θ : H → N , such that θ(F ) = 2 for each F ∈ H, then all conditions of
Theorem 1 hold; therefore, there exists a fixed point of T, which is unique, and consequently,
problem (4) has a unique solution.

5.2. Ulam–Hyers Stability

Here, we present the U-H and the generalized U-H stability [40,41] of the suggested
system. Let us assume ε, with the following inequality

|CDpf̃(t)−X (t, f̃(t))| ≤ ε, t ∈ J , ε = max(εi)
T , i = 1, 2, 3, 4. (6)

Definition 3. System (2) is UH stable, if there exist UX > 0 for all ε > 0; then the solution of
f̃ ∈ Y holds for (6); there is a unique solution f ∈ Y for Equation (4), such that

|f̃(t)−f(t)| ≤ UX ε, t ∈ J , UX = max(UXj)
T .

Definition 4. System (2) is generalized UH stable, if there exists a continuous function Φ : R+ →
R+ and Φ(0) = 0, so that for all solutions f̃ ∈ Y of (6), there is a unique solution f ∈ Y for (4),
with the following

|f̃(t)−f(t)| ≤ ΦX ε, t ∈ J , ΦX = max(ΦXj)
T .

Remark 1. A function f̃ ∈ Y satisfies (6), if and only if there exists a function Φ ∈ Y with the
following properties:

(I) |Φ(t)| ≤ ε, Φ = max(Φj), t ∈ J .
(II) CDpf̃(t) = X (t, f̃(t)) + Φ(t), t ∈ J .

Lemma 1. If f̃ ∈ Y holds for Equation (6), then f̃ also holds for the following∣∣∣∣f̃(t)− f̃0(t)−
1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ, f̃(ϑ))dϑ

∣∣∣∣ ≤ ε. (7)

Proof. Using (II), we have

CDpf̃(t) = X (t, f̃(t)) + Φ(t),

and along with Lemma 1, we obtain

f̃(t) = f̃0(t) +
1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ, f̃(ϑ))dϑ +

1− α

Γ(α)

∫ t

0
(t− ϑ)α−1Φ(ϑ)dϑ. (8)
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Next, using (I) gives∣∣∣∣f̃(t)− f̃0(t)−
1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ, f̃(ϑ))dϑ

∣∣∣∣ ≤ 1− α

Γ(α)

∫ t

0
(t− ϑ)α−1∣∣Φ(ϑ)

∣∣dϑ ≤ ε. (9)

Therefore, the proof is finished.

Theorem 3. For all f ∈ Y, X : J ×R4 → R with the assumption (C1) holds, and 1− pLX > 0.
Equation (4) is equal to Equation (2) and is UH stable and, consequently, generalized UH stable.

Proof. Suppose that f, f̃ ∈ Y is a unique solution of (4); therefore, for all ε > 0, t ∈ J ,
along with Lemma 1, we have

|f̃(t)−f(t)| = max
t∈J

∣∣∣∣f̃(t)−f0 −
1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ,f(ϑ))dϑ

∣∣∣∣
≤ max

t∈J

∣∣∣∣f̃(t)− f̃0 −
1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ,f(ϑ))dϑ

∣∣∣∣
+ max

t∈J

1− α

Γ(α)

∫ t

0
(t− ϑ)α−1∣∣X (ϑ, f̃(ϑ))−X (ϑ,f(ϑ))

∣∣dϑ

≤
∣∣∣∣f(t)− f̃0 −

1− α

Γ(α)

∫ t

0
(t− ϑ)α−1X (ϑ, f̃(ϑ))dϑ

∣∣∣∣+ LXΓ(α)

∫ t

0
(t− ϑ)α−1∣∣f̃(ϑ)−f(ϑ)

∣∣dϑ

≤ αε + αLX
∣∣f̃(t)−f(t)

∣∣,
which gives

‖f̃−f‖ ≤ UX ε. (10)

From (10), we may write

UX =
α

1− αLX . (11)

Hence, equating ΦX (ε) = UX ε, so that ΦX (0) = 0, we conclude that the solution of
(2) is stable for both the UH and the generalized UH.

5.3. Numerical Algorithm

Next, we establish a numerical scheme for the proposed model (2). We consider the
first equation of System (3)

1
Λ1−α

C
Dα

t S(t) = G1(t, S). (12)

Equation (12) can also be rearranged in the following way:

S(t)− S(0) =
1− α

Γ(α)

∫ t

0
G1(τ, S(τ))(t− τ)α−1dτ. (13)

We can write the following at point tı+1 = (ı + 1)∆t:

S(tı+1)− S(0) =
1− α

Γ(α)

∫ tı+1

0
G1(τ, S(τ))(tı+1 − τ)α−1dτ. (14)

As a result,

S(tı+1) = S(0) +
1− α

Γ(α)

ı

∑
`=2

∫ t`+1

t`
G1(τ, S(τ))(tı+1 − τ)α−1dτ. (15)
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By substituting Equation (15) for the Newton polynomial, we obtain

Sı+1 = S0 +
1− α

Γ(α)

ı

∑
`=2

∫ t`+1

t`



G1(t`−2, S`−2)

+
G1(t`−1, S`−1)− G1(t`−2, S`−2)

∆t
(τ − t`−2)

+
G1(t`, S`)− 2G1(t`−1, S`−1)(G1(t`−2, S`−2))

2(∆t)2

× (τ − t`−2)(τ − t`−1)


(16)

×(tı+1 − τ)α−1dτ.

As a result, the preceding equation may be rearranged in the following manner:

Sı+1 = S0 +
1− α

Γ(α)

ı

∑
`=2



∫ t`+1
t`
G1(t`−2, S`−2)(tı+1 − τ)α−1dτ

+
∫ t`+1
t`

G1(t`−1,S`−1)−G1(t`−2,S`−2 )

∆t
(τ − t`−2)(tı+1 − τ)α−1dτ

+
∫ t`+1
t`

G1(t` ,S`)−2G1(t`−1,S`−1)(G1(t`−2,S`−2))
2(∆t)2

(τ − t`−2)(τ − t`−1)(tı+1 − τ)α−1dτ


. (17)

Consequently,

Sı+1 = S0 +
1− α

Γ(α)

ı

∑
`=2
G1(t`−2, S`−2)

∫ t`+1

t`
(tı+1 − τ)α−1dτ

+
1

Γ(α)

ı

∑
`=2

G1(t`−1, S`−1)− G1(t`−2, S`−2)

∆t

×
∫ t`+1

t`
(τ − t`−2)(tı+1 − τ)α−1dτ (18)

+
1

Γ(α)

ı

∑
`=2

G1(t`, S`)− 2G1(t`−1, S`−1) + (G1(t`−2, S`−2))

2(∆t)2

×
∫ t`+1

t`
(τ − t`−2)(τ − t`−1)(tı+1 − τ)α−1dτ.

In Equation (18), we may compute the aforementioned integrals as follows:

∫ t`+1

t`
(tı+1 − τ)α−1dτ =

(∆t)α

α

[
(ı− `+ 1)α − (ı− `)α

]
, (19)

∫ t`+1

t`
(τ − t`−2)(tı+1 − τ)α−1dτ =

(∆t)α+1

α(α + 1)

×
[
(ı− `+ 1)α(ı− `+ 3 + 2α)

− (ı− `)α(ı− `+ 3 + 3α)

]
,

∫ t`+1

t`
(τ − t`−2)(τ − t`−1)(tı+1 − τ)α−1dτ =

(∆t)α+2

α(α + 1)(α + 2)

×


(ı− `+ 1)α

[
2(ı− `)2 + (3α + 10)(ı− `)

+ 2α2 + 9α + 12

]

− (ı− `)α

[
2(ı− `)2 + (5α + 10)(ı− `)

+ 6α2 + 18α + 12

]
.
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We may see the following strategy, if we insert these values into Equation (18):

Sı+1 = S0 +
(∆t)α

Γ(α + 1)

ı

∑
`=2
G1(t`−2, S`−2)

×
[
(ı− `+ 1)α − (ı− `)α

]
+

(∆t)α

Γ(α + 2)

ı

∑
`=2

[
G1(t`−1, S`−1)− G1(t`−2, S`−2)

]

×
[
(ı− `+ 1)α(ı− `+ 3 + 2α)

− (ı− `)α(ı− `+ 3 + 3α)

]
(20)

× +
(∆t)α

2Γ(α + 3)

ı

∑
`=2

[G1(t`, S`)− 2G1(t`−1, S`−1)

+ (G1(t`−2, S`−2))

]

×


(ı− `+ 1)α

[
2(ı− `)2 + (3α + 10)(ı− `)

+ 2α2 + 9α + 12

]

− (ı− `)α

[
2(ı− `)2 + (5α + 10)(ı− `)

+ 6α2 + 18α + 12

]
.

Similarly from the second, third, and fourth equations of system (12), we can write

Aı+1 = A0 +
(∆t)α

Γ(α + 1)

ı

∑
`=2
G2

(
t`−2, A`−2

)[
(ı− `+ 1)α − (ı− `)α

]
+

(∆t)α

Γ(α + 2)

ı

∑
`=2

[
G2

(
t`−1, A`−1

)
− G2

(
t`−2, A`−2

)]

×
[
(ı− `+ 1)α(ı− `+ 3 + 2α)

− (ı− `)α(ı− `+ 3 + 3α)

]
(21)

+
(∆t)α

2Γ(α + 3)

ı

∑
`=2

[G2

(
t`, A`

)
− 2G2

(
t`−1, A`−1

)
+ G2

(
t`−2, A`−2

) ]

×


(ı− `+ 1)α

[
2(ı− `)2 + (3α + 10)(ı− `)

+ 2α2 + 9α + 12

]

− (ı− `)α

[
2(ı− `)2 + (5α + 10)(ı− `)

+ 6α2 + 18α + 12

]
,
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and

Iı+1 = I0 +
(∆t)α

Γ(α + 1)

ı

∑
`=2
G3

(
t`−2, I`−2

)[
(ı− `+ 1)α − (ı− `)α

]
+

(∆t)α

Γ(α + 2)

ı

∑
`=2

[
G3

(
t`−1, I`−1

)
− G3

(
t`−2, I`−2

)]

×
[
(ı− `+ 1)α(ı− `+ 3 + 2α)

− (ı− `)α(ı− `+ 3 + 3α)

]
(22)

+
(∆t)α

2Γ(α + 3)

ı

∑
`=2

[G3

(
t`, I`

)
− 2G3

(
t`−1, I`−1

)
+ G3

(
t`−2, I`−2

) ]

×


(ı− `+ 1)α

[
2(ı− `)2 + (3α + 10)(ı− `)

+ 2α2 + 9α + 12

]

− (ı− `)α

[
2(ı− `)2 + (5α + 10)(ı− `)

+ 6α2 + 18α + 12

]
.

Moreover,

Rı+1 = R0 +
(∆t)α

Γ(α + 1)

ı

∑
`=2
G4

(
t`−2, R`−2

)[
(ı− `+ 1)α − (ı− `)α

]
+

(∆t)α

Γ(α + 2)

ı

∑
`=2

[
G4

(
t`−1, R`−1

)
− G4

(
t`−2, R`−2

)]

×
[
(ı− `+ 1)α(ı− `+ 3 + 2α)

− (ı− `)α(ı− `+ 3 + 3α)

]
(23)

+
(∆t)α

2Γ(α + 3)

ı

∑
`=2

[G4

(
t`, R`

)
− 2G4

(
t`−1, R`−1

)
+ G4

(
t`−2, R`−2

) ]

×


(ı− `+ 1)α

[
2(ı− `)2 + (3α + 10)(ı− `)

+ 2α2 + 9α + 12

]

− (ı− `)α

[
2(ı− `)2 + (5α + 10)(ı− `)

+ 6α2 + 18α + 12

]
.

Hence (20), (21), (22), and (23) are the required numerical solutions of the proposed
Model (2).

6. Simulation and Discussion

The purpose of this section is to provide the simulations of the results obtained in
the above section via the Newton polynomial interpolation scheme. The values of the
parameters present in the suggested system were considered in two different sets, as
presented in Table 1. The parameters in set 1 were used for Figures 1–3, while the parameter
values of set 2 were used for Figures 4–6. The initial values were considered in three
different sets. The initial conditions in set 1 were S = 8000, A = 1400, I = 2400, and
R = 2400; in set 2, they were S = 10000, A = 200, I = 1200, and R = 1200, and in set 3, the
initial conditions were considered as S = 60,000, A = 800, I = 1800, and R = 1800. In the
figures, the initial values of set 1 were used in Figures 1 and 4, that of set 2 were used in
Figures 2 and 5, and finally the values of set 3 were used in Figures 3 and 6.
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Table 1. The parameters and their values for model (2).

Parameters Set 1 Set 2

Π 2600 2600
f 0.6 0.3
υ 0.065 0.065
q1 0.3 0.3
q2 0.1 0.1
κ 0.3 0.3
ν 0.1 0.1

In Figures 1a–6a, the population behavior of the susceptible population is presented.
We see in Figures 1a–3a that when the value of f was large, there were oscillations in the
behavior, which moved towards stability when t = 60. Further, Figures 1b–6b show the
dynamics of the asymptomatic individuals, where it can be seen that the asymptomatic
population increased as the time passed, while the individuals in this class became constant
as t = 70 at lower fractional orders. Similarly, Figures 1c–6c and Figures 1d–6d show
the population dynamics in the infected and recovered individuals, respectively. From
Figures 1c and 2c, we observed that the infected population increased at the beginning,
which showed a decrease as the time passed, while a fast decrease was observed in the
infected population in Figure 3c, when the fractional order was 0.96. Further, the recovered
population kept increasing and then became stable at t = 60, it was also observed that the
recovered population was very large when compared to the those infected with the virus.
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Figure 1. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.

Figures 4–6 are projected to show the dynamics in various state variables where the
basic reproductive number was less than zero or where the disease died out. For this
purpose, we considered the parameter f = 0.3. Here, the fractional orders were considered
to be (blue, 0.99), (red, 0.98), (black, 0.97), and (green, 0.96). From all of the following, we
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see that the state variables became stable at lower fractional orders as compared to the
high orders.
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Figure 2. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.
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Figure 3. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.
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Figure 4. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.
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Figure 5. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.
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Figure 6. The dynamics of the state variables’ SAIR in model (2) with different fractional orders α vs.
time t with initial conditions.

7. Conclusions

In this article, we studied the fractional order COVID-19 (SAIR) model in the sense
of a Caputo operator. This model had a nonlinear incidence rate, constant input rate,
and constant treatment rate. The existence and uniqueness of the associated solution was
studied through the tools from fixed point theory. Numerically, the solution of the model
was approximated with the Newton Polynomial interpolation scheme. Simulations of the
results were presented, where it was observed that when the value of f was large, there
were oscillations in the behaviors of the state variables, which moved toward stability
faster at lower fractional orders. Similarly, the recovered population was observed to
be increasing as time passed and then became stable at t = 60; we also observed that
the recovered population was very large as compared to those who were infected with
the virus.
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