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Abstract: In the study of heat transfer in tree-like branching network, neither the heat convection
caused by fluid flow in the tree-like branching network nor the asymmetric structure of the tree-
like branching network can be ignored. In this work, we assume the porous media is embedded
with a tree-like branching network that are characterized by damaged pipes. We investigated the
effects of surface roughness on heat conduction and heat convection in the porous media embedded
with the damaged tree-like branching network based on the fractal features of tree-like branching
networks and the basic theory of thermodynamics. The proposed model for thermal conductivity
can be expressed as a function of micro-structural parameters of the composite, such as the relative
roughness, the ratio of thermal conductivity of the wall to that of the fluid in the micro-channel,
the diameter ratio, the length ratio, the branching level, the number of damaged channels, the total
number of branching levels, and the main tube porosity of the porous media. The effects of the
micro-structural parameters of the model on its effective thermal conductivity have been analyzed in
detail. It is believed that the joint expression of heat conduction and heat convection could enrich
and develop the physical study of heat transport in porous media.

Keywords: thermal conductivity; damaged tree-like branching network; roughness; heat convection

1. Introduction

The tree-like branching network is widely found in nature, such as plant trunks and
leaves, river basins, biological tissues and organs, and in engineering fields, such as the
world wide web, the internet, microelectronic chip cooling system, petroleum exploration
and production engineering [1–5]; these have self-similar fractal characteristic. Therefore, it
is important to study heat transport in tree-like branching networks. In 1926, after sum-
marizing the previous research results, Murray [6] proposed the famous Murray law: In
the biological bifurcation network, the third power of the parent tube radius should be
equal to the sum of the third power of each sub-tube radius. The theory provides experi-
mental data and theoretical research for the optimal relationship between the diameters of
parent branches and sub-branches in tree bifurcation networks. After that, many scholars
have used fractal theory to explore the heat transfer mechanism in tree-like branching net-
works [7–10]. For example, by establishing a tree-like branching network model to simulate
fluid flow, Pence [11] explored the heat transfer characteristics between the fractal-like flow
and the parallel-flow network. Alharbi et al. [12] studied the three-dimensional tree-like
branching network application in a microelectronic cooling system using the computational
fluid dynamics method. They found that the tree-like branching network structure can
improve heat dissipation efficiency by reducing the pressure drop of the radiator. By com-
paring the traditional parallel pipeline with the rectangular tree-like branching network,
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Chen and Cheng [13] explored the differences between the traditional parallel pipeline and
rectangular tree-like branching network in the process of thermal convection. They found
that the rectangular tree-like branching network had a larger transmission capacity than
the traditional parallel pipeline, leading to a significant increase in the heat dissipation
performance of pipes. Yu and Li [14] studied the effective thermal conductivity of compos-
ites embedded with a tree-like branching network. It was found that the effective thermal
conductivity of the composites embedded with a tree-like branching network would vary
with the ratio of the thermal conductivity of each component.

Significantly, although much research on heat conduction in tree-like branching net-
works has been progressively carried out, the heat convection caused by the fluid flow in
this network and the influence of the rough surfaces of the pores on the heat transport is
still under-studied. On the one hand, the heat convection between the wall and the fluid is
widely distributed in each branch layer of the porous media in the heat transport process of
the tree-like branching network [15]. The flow of fluid in porous media will change the tem-
perature difference of each branch layer. If the fluid flow in porous media is not considered
during calculation of the effective thermal conductivity of porous media, the calculated
effective thermal conductivity will be inaccurate. Peng et al. [16] found that heat convection
plays a leading role in the heat transfer process when there is a temperature difference
between each branch wall and the fluid by establishing the thermal conductivity coefficient
model of heat convection. By measuring the thermal conductivity of dead and living
snakes respectively, Liang et al. [17] found that the thermal conductivity of living snakes
was significantly more extensive than that of the dead ones. Valvano et al. [18] studied the
thermal conductivity of rat liver and found that blood flow could significantly improve the
thermal conductivity of the liver. On the other hand, the influence of the rough surfaces of
the pores on heat transport can also not be ignored. At present, some researchers [19–21]
have concluded that the roughness of the capillary surfaces will significantly impact the
heat conduction of porous media. Kandlikar et al. [22] studied the influence mechanism
of roughness on heat transfer in the small diameter range. Shen et al. [23] studied laminar
heat transfer in microchannels with rough surfaces based on fractal theory. Xiao et al. [24]
proposed an effective thermal conductivity model with a micro-scale effect. Several investi-
gators [25–27] have studied the effects of surface roughness on other aspects, such as gas
diffusion in a tree-like branching network. Therefore, the influence of roughness should
be considered in studies of the heat transport of a damaged tree-like branching network.
Based on the above two aspects, Xia et al. [28] respectively studied heat conduction and
heat convection in tree-like branching networks with rough surfaces and established the
corresponding fractal model.

However, the above briefly reviewed works were only involved in symmetric tree-like
branching networks without involving the asymmetry structure of the network. For differ-
ent structures, there will be great differences in their internal heat transport. Recently, some
scholars have also studied the heat transport of materials with different structure using
numerical simulations [29,30] or theoretical models [31–33]. For example, by using the sec-
ond law of thermodynamics and Catteneo–Christov dual theory, Eswaramoorthi et al. [34]
established an equation considering energy and concentration to analyze the heat transport
process through heat consumption/generation. Therefore, it is very important to study
the asymmetric tree-like branching network structure. It is a common phenomenon that
a branch layer of the tree-like branching network is damaged, such as leaf vein damage,
cardiovascular and cerebrovascular blockage, and obstructive pulmonary disease [35].
Therefore, it is of great significance to study the heat transfer in the damaged tree-like
branching network. As a result, construction of a model that considers rough surfaces
of a damaged tree-like branching network and that includes both heat conduction and
convection turns out to be essential for related studies and becomes the concentration of
our work. To explore the influence of asymmetric structure and the heat convection caused
by fluid flow on the heat transport in the tree-like branching network, we consider the
construction of the damaged tree-like branching network as shown in Figure 1a,b. Then,
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the thermal conductivity model of porous media embedded with a damaged tree-like
branching network considering the influence of roughness is presented based on the theory
of fractals and the self-similar fractal characteristic of tree-like branching network. In this
work, the influence of heat convection between fluid and wall and the rough surfaces
of the pores on the effective thermal conductivity of tree-like branching networks will
be our main research object. We systematically analyzed the effect of micro-structural
parameters of porous media on the dimensionless thermal conductivity of this model by
fractal scaling law. The results can correctly reveal the heat transfer mechanism of tree-
like branching networks with rough surfaces and provide a theoretical basis for applying
tree-like branching networks.
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and each tube of the network bifurcates into N tubes at the next level. (The meaning of all 

Figure 1. (a) Schematic of porous media embedded with an undamaged tree-like branching network;
(b) Schematic of porous media embedded with a damaged tree-like branching network; (c) Schematic
diagram of the tree-like branching network; (d) Schematic diagram of an intermediate branching
level structure.

2. Fractal Characteristics of Tree-like Branching Network with Rough Surface

Tree-like branching networks are continuously generated by the main pipe through
simple bifurcation rules. The main pipe in the tree-like branching network divides into
two or more sub-pipes according to a certain bifurcation angle, and then each sub-pipe
divides into a new sub-pipe with the same branch angle. Finally, by repeating this process,
a complete tree-like branch network is formed. As shown in Figure 1c, the main pipe only
divides into two sub-pipes and each sub-pipe divides into two new sub-pipes. It is a typical
branching fractal network, and we also call it a dichotomous branching network. In the
present work, we assume that each branch of the tree-like network is a cylindrical tube
whose wall thickness can be ignored. The maximum network bifurcation number is m,
and each tube of the network bifurcates into N tubes at the next level. (The meaning of
all symbols is given in Nomenclature). As shown in Figure 1d, dk and lk are respectively
used to represent the diameter and length of the kth branching level (k = 0, 1, 2, 3, . . . , m).
Murray et al. [6] found that there is an optimum ratio between the diameter of the main pipe
dk and that of two sub pipes dk+1 is dk+1/dk = 2−1/3 in a dichotomous branching network.
This relationship is also an expression of Murray’s law. On this basis, Bejan [36] found that
for a fixed total flow, the optimal diameter ratio is 2−1/3 and 2−3/7, respectively, by studying
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the tree-like branching networks with T-shaped and Y-shaped structures. Although both
Murray and Bajan have explored the optimal proportion of the tree-like branching network,
they have not clarified the relationship between the heat transfer properties and geometric
characteristics of the network structure. Therefore we use a more general model to study
the heat transfer characteristics in the tree-like branching network.

To describe the geometric structure of a tree-like branching network, we introduce
two essential scale factors to stand for the length and diameter ratio of adjacent two-
stage bifurcation [37]:

α =
lk+1

lk
(1)

β =
dk+1

dk
(2)

where lk and dk is the length of the kth branching level and diameter of the kth branching
level. Thus, we have:

lk = l0αk (3)

dk = d0β
k (4)

where l0 and d0 are the length and diameter of the 0th branching level, respectively.
In this work, we will introduce the rough surfaces into the tree-like branching network

for considering the effect of roughness on effective thermal conductivity in the tree-like
branching network. We assume that the rough elements are a set of conical elements
with a constant ratio of height to bottom diameter, As shown in Figure 2, which can be
expressed as [38,39]:

ξ =
h
r

(5)

where h is the height of the cone and r is bottom circle diameter of the cone.

Fractal Fract. 2023, 7, 5 4 of 19 
 

 

symbols is given in Nomenclature). As shown in Figure 1d, d୩ and l୩ are respectively 
used to represent the diameter and length of the kth branching level (k = 0, 1, 2, 3,…, m). 
Murray et al. [6] found that there is an optimum ratio between the diameter of the main 
pipe d୩ and that of two sub pipes d୩ାଵ is dk+1/dk = 2−1/3 in a dichotomous branching net-
work. This relationship is also an expression of Murray’s law. On this basis, Bejan [36] 
found that for a fixed total flow, the optimal diameter ratio is 2ିଵ/ଷ and 2ିଷ/, respec-
tively, by studying the tree-like branching networks with T-shaped and Y-shaped struc-
tures. Although both Murray and Bajan have explored the optimal proportion of the tree-
like branching network, they have not clarified the relationship between the heat transfer 
properties and geometric characteristics of the network structure. Therefore we use a 
more general model to study the heat transfer characteristics in the tree-like branching 
network. 

To describe the geometric structure of a tree-like branching network, we introduce 
two essential scale factors to stand for the length and diameter ratio of adjacent two-stage 
bifurcation [37]: α = l୩ାଵl୩  (1)

β = d୩ାଵd୩   (2)

where  l୩ and d୩ is the length of the kth branching level and diameter of the kth branch-
ing level. Thus, we have: l୩ = lα୩ (3)d୩ = dβ୩ (4)

where l and d are the length and diameter of the 0th branching level, respectively. 
In this work, we will introduce the rough surfaces into the tree-like branching net-

work for considering the effect of roughness on effective thermal conductivity in the tree-
like branching network. We assume that the rough elements are a set of conical elements 
with a constant ratio of height to bottom diameter, As shown in Figure 2, which can be 
expressed as [38,39]: ξ = hr (5)

where h is the height of the cone and r is bottom circle diameter of the cone.  

 
Figure 2. Rough element classical model and basic morphology of rough element in pores [38]. 

The bottom diameter distribution of the rough elements satisfies the fractal scaling 
law [38,39]: n(L ≥ r) = ቀr୫ୟ୶r ቁୈ 

 (6)

where r୫ୟ୶ is the maximum bottom diameter of rough elements. D is the fractal dimen-
sion of the rough surfaces in the porous media, and its range is 0 < D < 2. It can be deter-
mined by [38,39]: 

Figure 2. Rough element classical model and basic morphology of rough element in pores [38].

The bottom diameter distribution of the rough elements satisfies the fractal scaling
law [38,39]:

n(L ≥ r) =
( rmax

r

)D
(6)

where rmax is the maximum bottom diameter of rough elements. D is the fractal dimen-
sion of the rough surfaces in the porous media, and its range is 0 < D < 2. It can be
determined by [38,39]:

D = DE −
lnω
ln ζ

(7)

where DE is Euclidean dimension,ω is the ratio of the total bottom area of all cone units to
the surface area in the unit pore and ζ is the ratio of the minimum bottom circle diameter to
the maximum bottom diameter of the cones. By taking the derivative of r in Equation (6), it
can be found that the number of rough elements in the infinitesimal range from r to r + dr is:

− dn = DrD
maxr−(D+1) dr (8)
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To quantify the role of surface roughness of capillaries, the effective average roughness
height of the kth branching level in the tree-like branching network, hk, can be given by [38,39]:

hk =
ωh0,maxβ

k

3
2−D
3−D

1− ζ 3−D

1−ω (9)

where h0,max is the maximum height of the cone at the 0th branching level. The maximum
height of the conical elements at distinct branching levels is also assumed to satisfy the
proportional relationship between the diameters due to a tree-like branching network.
Therefore, the maximum height of the cone in the kth branching level, hk,max, can be
written as [40]:

hk,max = h0,maxβ
k (10)

So, the relative roughness, ε, of the kth branching level in the tree-like branching
network can be defined as the ratio of the average roughness height to the radius of the
kth channel [38]:

ε =
2hk
dk

=
2ωh0,max

3d0

2−D
3−D

1− ζ 3−D

1−ω (11)

3. The Thermal Conductivity Model of Porous Media with Rough Surfaces
3.1. Heat Conduction

In this section, the effective thermal conductivity model of heat conduction of porous
media is derived. We assume that one channel of the kth branching level of a network has
been destroyed, but the other part of the network has not failed. As shown in Figure 3,
when the network structure is destroyed, the tree-like branching network will become
asymmetric. The thermal transport characteristics of the tree-like branching network will
be different from those of the undamaged normal network.
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According to the Fourier’s law and the thermal-electrical analogy technique, the
thermal resistance of a single channel of the kth level channel with smooth surfaces, Rk,s,
can be modified as:

Rk,s =
lk

Aλl
=

4l0αk

λlπd02β2k (12)

where A is the cross-sectional area of branching channels, and λl is the thermal conductivity
of the fluid part. So, the thermal resistance of a single channel in the kth level channel with
rough surfaces, Rk, can be written as [40]:

Rk =
lk

Aλl
=

4l0αk

λlπ(dk − 2hk)
2 =

4l0αk

λlπdk
2
(

1− 2hk
dk

)2 =
4l0αk

λlπd02β2k(1− ε)2 (13)
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Then, we can obtain the total thermal resistance of the undamaged tree-like branching
network with rough surfaces, R, as follows:

R =
m

∑
k=0

Rk

Nk =
4l0

λlπd2
0(1− ε)

2

1−
(
α

Nβ2

)m+1

1− α
Nβ2

(14)

Next, we assume that p tubes in the kth branching level are completely destroyed. So,
the thermal resistance of the damaged tree-like branching network of the kth branching
level can be expressed as [35]:

Rk

Nk − p
=

4l0αk

λlπd02(1− ε)2
(

Nk − p
)
β2k

(15)

Then, the thermal resistance of the damaged tree-like branching network of the (k+1)th
branching level is obtained as [35]:

Rk+1

Nk+1 −Np
=

4l0αk+1

λlπd02(1− ε)2
(

Nk+1 −Np
)
β2(k+1)

(16)

where N is the branching number of the tree-like branching network. Similarly, the thermal
resistance of the damaged tree-like branching network of the (k+j)th branching level is
obtained as [35]:

Rk+j

Nk+j −Njp
=

4l0αk+j

λlπd02(1− ε)2
(

Nk+j −Njp
)
β2(k+j)

(17)

Then, based on Equations (14) and (17), the thermal resistance of the undamaged part
of the damaged tree-like branching network before the kth branching level, ∆R1,d, can be
modified as:

∆R1,d =
k−1

∑
i=0

Ri

Ni =
4l0

(1− ε)2λlπd2
0

1−
(
α

Nβ2

)k

1− α
Nβ2

(18)

The thermal resistance of the damaged part of the damaged tree-like branching net-
work, ∆R2,d, can be modified as:

∆R2,d = ∑m
i=k

Ri

Ni −Ni−kp
=

4l0
(1− ε)2λlπd2

0

(
α

Nβ2

)k

1−N−kP

1−
(
α

Nβ2

)m−k+1

1− α
Nβ2

(19)

With the aid of Equations (18) and (19), the total thermal resistance of the damaged
tree-like branching network, Rd,a, can be calculated as:

Rd,a = ∑k−1
i=0

Ri
Ni + ∑m

i=k
Ri

Ni−Ni−kp

= 4l0
(1−ε)2λlπd2

0

1−
(
α

Nβ2

)k

1− α

Nβ2
+ 4l0

(1−ε)2λlπd2
0

(
α

Nβ2

)k

1−N−kP
1−(α/Nβ2)

m−k+1

1− α

Nβ2

= 4l0
(1−ε)2λlπd2

0(1−α/Nβ2)
{[1− (α/Nβ2)

k
] + (α/Nβ2)

k

1−N−kP
[1− (α/Nβ2)

m−k+1
]}

= 4l0
(1−ε)2λlπd2

0
× Z1

(20)
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where Z1 =
{[1−(α/Nβ2)

k
]+ (α/Nβ2)

k

1−N−kP
[1−(α/Nβ2)

m−k+1
]}

(1−α/Nβ2)
. Then, the equivalent length of the

damaged tree-like branching network, le, can be written as [35]:

le =
m

∑
k=0

lk = l0
1− αm+1

1− α (21)

The total volume of the damaged tree-like branching network, V, can be expressed as [35]:

V = ∑k−1
i=0 NiVi + ∑m

i=k

(
Ni −Ni−kp

)
Vi

=
πd2

0l0
4

1−(Nβ2α)
k

1−Nβ2α
+
πd2

0l0
4 (Nβ2α)

k
(

1−N−kP
)

1−(Nβ2α)
m−k+1

1−Nβ2α

=
πd2

0l0
4 × Z2

(22)

where Z2 =

[
1−(Nβ2α)

k]
+(Nβ2α)

k
(1−N−kP)[1−(Nβ2α)

m−k+1
]

(1−Nβ2α)
, where Vi is the volume of the

single pipe in ith branching level. In this work, we suppose that the damaged tree-like
branching network is equivalent to an ideal model with only a single channel under
constant volume. The thermal conductivity of the equivalent single channel is defined as
the effective thermal conductivity of the network. With the help of Equations (21) and (22),
the effective cross-sectional area of the damaged tree-like branching network, Ae, is:

Ae =
V
le

=
πd2

0
4

1− α
1− αm+1 × Z2 (23)

The cross-sectional area of the main pipe of the damaged tree-like branching network,
A0, is:

A0 =
πd2

0
4

(24)

We assume that the porosity of the cross-section of the media is φa and according to
the definition of porosity, the area of the entire cross-section of the media, Aa, is:

Aa =
A0

φa
=
πd2

0
4φa

(25)

Accordingly, the equivalent porosity of porous media embedded with the damaged
tree-like branching network, φc, is:

φc =
Ae

Aa
= φa

1− α
1− αm+1 × Z2 (26)

According to the Fourier’s law and the series parallel model, the effective thermal
conductivity of porous media embedded with a damaged tree-like branching structure can
be composed of the damaged tree-like branching network part and the media matrix part,
which can be described as:

Ka = Ka,1 + Ka,2 =
le

Aa

(
1

Rs
+

1
Rd,a

)
(27)

where Ka,1 is the effective thermal conductivity of the media matrix part, Ka,2 is the effective
thermal conductivity of the damaged tree-like branching network part and Rs is the thermal
resistance of the media matrix. It can be written as:

Rs =
le

Aaλs(1−φc)
(28)



Fractal Fract. 2023, 7, 5 8 of 19

where λs is the thermal conductivity of the media matrix. Inserting Equations (20), (21),
(25), (26) and (28) into Equation (27), the effective thermal conductivity of heat conduction
of porous media embedded with a damaged tree-like branching structure, Ka, can be
defined as:

Ka = (1−φc)λs +
le

AaRd,a

= (1−φa
1−α

1−αm+1 × Z2)λs

+φaλl
1−αm+1

1−α
(1−ε)2

Z1

(29)

3.2. Heat Convection

In the previous section, we only considered the heat conduction of the tree-like branch-
ing network, ignoring the heat convection between the fluid and the wall. However, the
heat convection between the fluid and the wall cannot be ignored. So, this section mainly
derives the effective thermal conductivity of heat convection kcv.

According to Fourier’s law, the thermal conductivity of heat convection caused by
fluid flow, kcv, is [28]:

kcv =
Qr

Sr,a
∆T
δT

(30)

where Qr is the flow of the heat convection of the whole tree-like branching network
with rough surfaces, Sr,a is the heat convection area of the whole tree-like branching
network with rough surfaces, δT is the thickness of the thermal boundary layer of thermal
convection caused by fluid flow is mainly related to the characteristics of the fluid, ∆T is
temperature difference.

It can be seen from Equation (30) that the thermal conductivity of heat convection
caused by fluid flow is jointly determined by the flow of the heat convection Qr, the heat
convection area Sr,a and the temperature difference ∆T in this damaged tree-like branching
network. Therefore, the derivation of Sr,a and Qr in this model will be introduced in detail
below.

According to Newton’s cooling formula, the flow of the heat convection of a single
main pipe with rough surfaces, qr,0, can be written as:

qr,0 = Hr,0Sr,0∆T (31)

where Hr,0 is the coefficient of heat convection of a single main pipe with rough surfaces,
and Sr,0 is the heat convection area of the single main pipe with rough surfaces. It consists
of the heat convection area of all the rough elements in the fractal elements in a single main
pipe Sr,a and the area of the smooth part without rough elements coverage in a single main
pipe Sr,b. That is to say, the heat convection area of a single main pipe with rough surfaces,
Sr,0, can be expressed as [28]:

Sr,0 = Sr,a + Sr,b (32)

According to Equation (6), the bottom diameter distribution of the rough elements
satisfies the fractal scaling law, hence the total bottom area of all rough elements in a fractal
set unit, Sb, is [39]:

Sb = −
∫ rmax

rmin

π

4
ri

2dn =
π

4
D r2

max
2−D

(1−φd) (33)

where φd is porosity of rough element distribution.
Since all the rough elements have the same height diameter ratio, the heat convection

area of all the rough elements in the fractal elements in a single main pipe, Sr,a, can be
expressed as [28]:

Sr,a =

√
1 + 4ξ2Sb (34)
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Accordingly, the area of the smooth part without rough elements coverage in a single
main pipe, Sr,b, is [28]:

Sr,b =
Sb
φd

(1−φd) (35)

Inserting Equations (34) and (35) into Equation (32), the heat convection area of a
single main pipe with rough surfaces can be defined as:

Sr,0 =
√

1 + 4ξ2Sb +
Sb
φd

(1−φd)

= π
4

D r2
max

2−D (1−φd )
(√

1 + 4ξ2 + 1−φd
φd

) (36)

Chen and Cheng [13] assumed that the flow through the tree-like branching network
of each channel is laminar and fully developed, and the Nusselt number of each level
remains constant. Therefore, the coefficient of heat convection, Hr, can be expressed as [13]:

Hr =
Nu · λl

d
(37)

where d is the characteristic length of the pipe equal to the diameter of the pipe, Nu is the
Nusselt number which means the ratio of heat convection to heat conduction. Therefore,
the heat convection coefficient of the ith branching level of the tree-like branching network,
Hi, can be obtained as [13]:

Hi = H0β
−i (38)

where H0 is the heat convection coefficient of the single main pipe of the tree-like branching
network. Thus, the coefficient of heat convection of a single main pipe with rough surfaces,
Hr,0, can be written as [28]:

Hr,0 =
Nu · λl

d0 − 2h0
(39)

where h0 is the effective average roughness height of a single main pipe of the tree-like
branching network.

Inserting Equations (36) and (39) into Equation (31), the flow of the heat convection of
a single main pipe with rough surfaces, qr,0, can be written as [28]:

qr,0 =
Nuλl

d0 − 2h0
Sr,0∆T =

Nuλl
d0(1− ε)

Sr,0∆T (40)

Similarly, the flow of the heat convective of the same main pipe with smooth surface,
qs,0, is [28]:

qs,0 = H0Ss,0∆T =
Nuλl

d0
Ss,0∆T (41)

where Ss,0 is the heat convection area of a single main pipe of the tree-like branching
network with smooth surfaces, which can be determined by:

Ss,0 = πd0l0 (42)

Chen and Cheng [13] also assumed that the temperature difference between the differ-
ent levels of tree-like branching networks is constant. Then, by means of Equations (38),
(41) and (42), the flow of the heat convection of the undamaged part of the damaged
tree-like branching network with smooth surfaces before the kth branching level, ∆Q1,s,
can be modified as:

∆Q1,s = ∑k−1
i=0 NiHiss,i∆T

= πd0l0H0∆T ∑k−1
i=0 Niβ−iαiβi

= qs,0
1−(Nα)k

1−Nα

(43)
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where ss,i is the heat convection area of the ith branching level in the tree-like branching
network with smooth surfaces.

Likely, the flow of the heat convection of the damaged part of the damaged tree-like
branching network with smooth surfaces, ∆Q2,s, can be modified as:

∆Q2,s = ∑m
i=k

(
Ni −Ni−kp

)
Hiss,i∆T

= πd0l0H0∆T ∑m
i=k

(
Ni −Ni−kp

)
β−iαiβi

= qs,0(Nα)
k
(

1−N−kP
)

1−(Nα)m−k+1

1−Nα

(44)

With the aid of Equations (43) and (44), the flow of the heat convection of the whole
damaged tree-like branching network with smooth surfaces, Qs, can be calculated as:

Qs = ∑k−1
i=0 NiHiss,i∆T + ∑m

i=k

(
Ni −Ni−kp

)
Hiss,i∆T

= πd0l0H0∆T ∑k−1
i=0 Niβ−iαiβi + πd0l0H0∆T ∑m

i=k

(
Ni −Ni−kp

)
β−iαiβi

= qs,0
1−(Nα)k

1−Nα + qs,0(Nα)
k
(

1−N−kP
)

1−(Nα)m−k+1

1−Nα

(45)

In this model, the micro-channels at all levels have the same relative roughness ε for
the tree-like branching network with rough surfaces. Imitating the work of Xia et al. [28], we
also assume that the length ratio and the diameter ratio of the tree-like branching network
with rough surfaces are equal to those of smooth surfaces. Therefore, the derivation of
Equation (45) is also applicable to the tree-like branching network with rough surfaces.
Then, the flow of the heat convection of the whole tree-like branching network with rough
surfaces, Qr, is:

Qr = ∑k−1
i=0 NiHiss,i∆T + ∑m

i=k

(
Ni −Ni−kp

)
Hiss,i∆T

= qr,0
1−(Nα)k

1−Nα + qr,0(Nα)
k
(

1−N−kP
)

1−(Nα)m−k+1

1−Nα

(46)

Similarly, the heat convection area of the whole tree-like branching network with
rough surfaces, Sr,a, is:

Sr,a = ∑k−1
i=0 Nisr,i + ∑m

i=k

(
Ni −Ni−kp

)
sr,i

= π
4

D r2
max

2−D (1−φd )
(√

1 + 4ξ2 + 1−φd
φd

){
1−(Nαβ)k

1−Nαβ + (Nαβ)k
(

1−N−kP
)

1−(Nαβ)m−k+1

1−Nαβ

} (47)

Inserting Equations (46) and (47) into Equation (30), the thermal conductivity of heat
convection caused by fluid flow, kcv, is:

kcv = NuδTλl × Z3 × 1
d0(1−ε) (48)

where Z3 = 1−Nαβ
1−Nα

1−(Nα)k+(Nα)k(1−N−kP)
[
1−(Nα)m−k+1

]
1−(Nαβ)k+(Nαβ)k(1−N−kP)

[
1−(Nαβ)m−k+1

] .

3.3. Joint Expression of the Thermal Conductivity of Heat Conduction and Heat Convection

In Sections 3.1 and 3.2, we derived the thermal convection of heat conduction and heat
convection in this porous medium model. In this paper, we assume that the heat transfer in
the tree-like branching network is composed of these two common parts. That is to say,
the effective thermal conductivity of porous media embedded with a damaged tree-like
branching network, Keff, be expressed as:

Keff = Ka + Kcv (49)
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where Kcv is the thermal conductivity of heat convection of porous media embedded with
a damaged tree-like branching network.

With respect to Equations (29), (48) and (49), the thermal conductivity of porous media
embedded with a damaged tree-like branching network can be written as:

keff = (1−φa
1− α

1− αm+1 ∗ Z2)λs +φaλl
1− αm+1

1− α
(1− ε)2

Z1
+ NuδTλl × Z3 ×

1
d0(1− ε)

(50)

The dimensionless thermal conductivity of porous media embedded with a damaged
tree-like branching network is defined by K+ = Keff/λl, and it can be expressed as:

K+ =

(
1−φa

1− α
1− αm+1 × Z2

)
λs

λl
+φa

1− αm+1

1− α
(1− ε)2

Z1
+NuδT×Z3×

1
d0(1− ε)

(51)

It can be noted from Equations (50) and (51) that the thermal conductivity of porous
media embedded with a damaged tree-like branching network is an explicit function of the
porosity φa, the thermal conductivity of porous media matrix λs, the thermal conductivity
of fluid λl, the relative roughness ε, structural parameters of tree-like branching network
(d0, α, β, N, m, P, k) and the characteristics of the fluid. This fractal model takes into
account the influence of heat convection in porous media embedded with a damaged tree-
like branching network. This model can better represent the effective thermal conductivity
of porous media with a damaged tree-like branching network. Therefore, the model is
more reasonable and can reveal the heat transfer characteristics and mechanism of porous
media with damaged tree-like branching networks.

4. Results and Discussion

Figure 4 shows the dimensionless thermal conductivity versus the diameter ratio for
different length ratios for different numbers of damaged channels based on Equation (51).
It is found from the figure that the dimensionless effective conductivity decreases with the
increase of the diameter ratio, and it decreases with the increase of the number of damaged
channels. This result can be explained by the fact that the channel number will decrease
with the increase of damaged channels. The decrease of channels will lead to a decrease
of the effective cross-sectional area and the heat convection area, so the dimensionless
effective conductivity decreases with the increase of the number of damaged channels.
When the channels are seriously damaged, the heat transport in porous media is basically
completed by the heat conduction of matrix part, so its dimensionless thermal conductivity
is low.

Figure 5 compares the dimensionless thermal conductivity versus the total number
of branching levels for different numbers of damaged channels. The figure indicates that
dimensionless thermal conductivity rises along with an increase in the total number of
branching levels. This is because with the increase of bifurcation times, the heat convection
area of the branching network pipeline will increase, increasing thermal conductivity. We
also find from Figure 5 that dimensionless thermal conductivity decreases with the increase
of the number of damaged channels. This is the same as the conclusion in Figure 4.

Figure 6 presents the dimensionless thermal conductivity versus the branching num-
ber for different total numbers of branching levels. We can find from the figure that the
dimensionless conductivity increases with the increase of the branching number and the
total number of branching levels. It is worth noting that the change of the dimensionless
thermal conductivity with the branching number is relatively gentle when the branching
number N is equal to 3, but the change rate becomes higher and higher when the total num-
ber of branching levels m gradually increases. With the increase of the branching number,
the thermal resistance of the tree-like branching network structure will increase rapidly.
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Figure 4. The dimensionless thermal conductivity K+ versus β and p at α = 0.6, m = 5, N = 2,
k = 2, φa = 0.1,λs/λl = 0.3, ε = 0.01, d0 = 1× 10−3 m, Nu = 4.93, δT = 5× 10−5 m.
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Figure 5. The dimensionless thermal conductivity K+ versus m and p at α = 0.6,β = 0.7, N = 2,
k = 2, φa = 0.1,λs/λl = 0.3, ε = 0.01, d0 = 1× 10−3 m, Nu = 4.93, δT = 5× 10−5 m.

Figure 7 shows the effective thermal conductivity, the thermal conductivity of the
damaged tree-like branching network part, the thermal conductivity of the media part,
and the heat convection thermal conductivity versus the main tube porosity of porous
media for different relative roughness. It is found that the effective thermal conductivity
increases with the increase of the main tube porosity of porous media, and the damaged
tree-like branching network part thermal conductivity decreases with the increases of the
main tube porosity. The thermal conductivity caused by heat convection is not affected by
the main tube porosity of porous media. The matrix partial thermal conductivity increases
with the increase of the main tube porosity. The change in the overall effective thermal
conductivity of the final media is determined by the combination of the three factors.
Under the conditions shown in the figure, the matrix partial thermal conductivity plays a
dominant role. Compared with the same smooth media, the effective thermal conductivity
of the porous media considering the influence of roughness is larger.
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Figure 6. The dimensionless thermal conductivity K+ versus m and N at α = 0.6,β = 0.7, k = 2,
P = 2, φa = 0.1,λs/λl = 0.3, ε = 0.01, d0 = 1× 10−3 m, Nu = 4.93, δT = 5× 10−5 m.
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Figure 7. The thermal conductivity Keff versus φa at ε = 0.3, α = 0.6,β = 0.7, N = 2, k = 2, P = 2,
m = 5, λs/λl = 0.3, d0 = 1× 10−3 m, Nu = 4.93, δT = 5× 10−5 m.

Figure 8 plots the effect of the relative roughness on the effective thermal conductivity,
the thermal conductivity of the damaged tree-like branching network part, the thermal
conductivity of the media part, and the heat convection thermal conductivity. We can see
that the larger relative roughness corresponds to the higher effective thermal conductivity.
It is also found that the increase of the thermal conductivity of the damaged tree-like
branching network part and the thermal conductivity of the media part is relatively gentle,
but the thermal conductivity caused by heat convection increases rapidly with the increase
of relative roughness within a certain range. We also found that the overall effective thermal
conductivity curve of the media also has a similar trend. It shows that under this condition,
the main effect of the rough wall on the heat transfer in the microchannel in the porous
media is reflected in the enhancement of heat convection, which is more significant than
the effect of heat conduction.
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Figure 8. The thermal conductivity Keff versus ε at α = 0.6,β = 0.7, k = 2, P = 2, φa = 0.1,
λs/λl = 0.3, m = 5, N = 2, d0 = 1× 10−3 m, Nu = 4.93, δT = 5× 10−5 m.

The effect of the ratio of thermal conductivity of the wall to that of the fluid for
different relative roughness on the dimensionless conductivity is analyzed in Figure 9. We
can conclude from Figure 9 that the higher the ratio of thermal conductivity of the wall to
that of the fluid, the higher the dimensionless effective thermal conductivity. This can be
explained as the cross-sectional area and heat convection area of the media part is larger
than those of the damaged tree-like branching network part, which has a greater impact on
the thermal conductivity of the whole porous media.
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Figure 10 shows the dimensionless thermal conductivity, the dimensionless thermal
conductivity of the damaged tree-like branching network part, the dimensionless thermal
conductivity of the media part, and the dimensionless heat convection thermal conductivity
versus the diameter ratio of porous media embedded with an undamaged tree-like branch-
ing network. In the figure, Ka1

+, Ka2
+ and Kcv

+ represent the dimensionless thermal
conductivity of the media part, the dimensionless thermal conductivity of the damaged
tree-like branching network part and the dimensionless heat convection thermal conduc-
tivity, respectively. It is found that the dimensionless thermal conductivity of the media
part is almost unaffected by the diameter ratio. The dimensionless thermal conductivity
of the damaged tree-like branching network part slight increases with the increase of the
diameter ratio of porous media and the dimensionless thermal conductivity caused by
heat convection reduces along with an increase in the diameter ratio. Under the conditions
shown in the figure, the heat convection plays a dominant role. The change in the overall
dimensionless thermal conductivity of the final media is determined by the combination of
the three factors, which is similar to the conclusion in Figure 8. Interestingly, we find that
when β is around 0.42, the dimensionless thermal conductivity of the damaged tree-like
branching network part will increases slightly. We guess that there is a critical diameter
ratio in the network for heat conduction which is similar to the conclusion of the optimal
diameter ratio mentioned in the research of Miao et al. [24].
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5. Conclusions

In this paper, a new thermal conductivity model embedded with a damaged tree-like
branching network considering the influence of roughness is established based on the
theory of thermoelectric simulation and the characteristics of damaged tree-like branching
networks. In this work, we not only established the joint expression of heat conduction and
heat convection but also considered the damage of the tree-like branching network. It is
found that the length ratio and the number of damaged channels of a damaged tree-like
branching network have a significant impact on the dimensionless thermal conductivity. It
decreases with the increase of length ratio, number of damaged tubes and total bifurcation
layers. It is also found that relative roughness is an important parameter for heat con-
duction in porous media with damaged tree-like branching networks. The dimensionless
thermal conductivity of the tree-like branching network increases with the increase of
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heat convection area because of the existence of internal rough elements. Compared with
the previous thermal conductivity models, this model could manifest more heat transfer
mechanisms than empirical correlations, but it cannot fully reveal the complexity of porous
media only by considering a single damaged tree-like branching network. The proposed
model can enrich and develop understanding of the mechanism of heat transport in porous
media, and can guide the development and improvement of heat transport devices in
the engineering field. In real life, there are many tree-like branching networks, so our
next work will be devoted to further explore the heat transfer in a damaged tree-like
branching network.
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Nomenclature

Symbols Description
m total numbers of branching levels Ae the effective cross-sectional area

N
the branching number of the tree-like

A0
the cross-sectional area of the main pipe of

branching network the damaged tree-like branching network
lk the length of the kth branching level Aa the area of the entire cross-section of the media

dk the diameter of the kth branching level φc

the equivalent porosity of porous media
embedded with the damaged tree-like
branching network

α the length ratio Ka the effective thermal conductivity of porous media

β the diameter ratio Ka,1
the effective thermal conductivity of the media ma-
trix part

ξ the ratio of height to bottom diameter Ka,2
the effective thermal conductivity of the damaged
tree-like branching network part

h the height of the cone Rs the thermal resistance of the media matrix

r bottom circle diameter of the cone kcv
the thermal conductivity of heat convection caused
by fluid flow

n the total number of rough elements Qr
the flow of the heat convection of the whole tree-
like branching network with rough surfaces

D fractal dimension Sr,a
the heat convection area of the whole tree-like
branching network with rough surfaces

DE Euclidean dimension ∆T temperature difference

ω
the ratio of the total bottom area of all cone

δT

the thickness of the thermal boundary layer of ther-
mal convection caused by fluid flow is mainly re-
lated to the characteristics of the fluidunits to the surface area in the unit pore
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ζ

the ratio of the minimum bottom circle
Hr the coefficient of heat convectiondiameter to the maximum bottom diameter

of the cones

h0,max
the maximum height of the cone at the 0th

Sr,0
the heat convection area of a single main

branching level pipe with rough surfaces

ε the relative roughness Sr,a
the heat convection area of all the rough elements
in the fractal elements in a single main pipe

Rk,s
the thermal resistance of a single channel

Sr,b
the area of the smooth part without rough

with smooth surfaces elements coverage in a single main pipe

Rk
the thermal resistance of a single channel

Sb
the total bottom area of all rough elements

in the kth level channel with rough surfaces in a fractal set unit

A the cross-sectional area of branching channels qr,0
the flow of the heat convection of a single main
pipe with rough surfaces

λl the thermal conductivity of the fluid part qs,0
the flow of the heat convective of the same main
pipe with smooth surface

λs the thermal conductivity of the media matrix Nu the Nusselt number

∆R1,d the thermal resistance of the undamaged part Ss,0
the heat convection area of a single main pipe of the
tree-like branching network with smooth surfaces

∆R2,d the thermal resistance of the damaged part ∆Q1,s

the flow of the heat convection of the undamaged
part of the damaged tree-like branching network
with smooth surfaces before the kth branching level

φa that the porosity of the cross-section of the media ∆Q2,s

the flow of the heat convection of the damaged part
of the damaged tree-like branching network with
smooth surfaces

Rd,a
the total thermal resistance of the damaged tree-like
branching network

Qs
the flow of the heat convection of the whole dam-
aged tree-like branching network with smooth sur-
faces

le
the equivalent length of the damaged tree-like

Keff
the effective thermal conductivity of porous media

branching network embedded with a damaged tree-like branching net-
work

V
the total volume of the damaged tree-like

k+ The dimensionless thermal conductivity
branching network
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