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Abstract: The control of processes with time delays is crucial in process industries such as petrochem-
ical, hydraulic, and manufacturing. It is a challenging task for automation engineers, as it may affect
both phase and gain margins. In this case, a robust control system is preferred. This article presents a
novel controller structure combining computational intelligence (CI) and fractional-order control. A
fractional-order PID (FOPID) controller based on a bio-inspired immune feedback mechanism (IFM)
is developed for controlling processes described as first-order plus time-delay systems (FOPTD). A ge-
netic algorithm (GA) is used to optimize the controller parameters. Fractional-order control has been
used to give extra flexibilities and an immune feedback mechanism for its self-adaptability. Numerical
simulations are presented to validate the proposed control strategy in terms of reference tracking and
disturbance rejection. Comparative simulation results with an immune integer-order PID controller
are also included to demonstrate the efficiency of the proposed fractional-order method.

Keywords: fractional-order PID; immune feedback mechanism; genetic algorithm; time-delay system

1. Introduction

The control of time-delay systems is a key aspect in industrial applications, such
as remote control, high-speed network communications, distillation units, and so on.
Regarding process control technology, time delay is used to reflect systems with aftereffects,
time lags, or to approximate higher-order systems. Quite frequently, FOPTD models are
used to approximate the dynamics of nonlinear and complex systems. Due to unmodeled
dynamics, the control of such systems can be challenging and robustness is usually sought.

The most widely used controller in the process industry, including those that exhibit
FOPDT dynamics, is the classical PID controller. To determine the parameters of the
controller, simple approaches such as the Ziegler–Nichols or Cohen–Coon tuning rules
are used [1,2]. The PID controller is the staple industrial controller due to its well-known
characteristics such as simplicity in the design, giving the possibility to adjust the dynamics
of the control system, the availability of numerous model-based tuning techniques, and
easy implementation. Overall, these controllers provide an excellent cost/benefit ratio,
which makes the PID the first choice for automation engineers in the industry. Nevertheless,
the performance of a PID is limited, especially when modeling errors occur. To ensure the
robustness of the control algorithm, various techniques can be used.

In this paper, a novel approach is considered that combines fractional calculus and
immune feedback systems. Fractional calculus has gained a lot of attention and became
a powerful mathematical tool in science and engineering, since many dynamic systems
are properly described by fractional-order (FO) dynamics [3–5]. Fractional calculus is a
generalization of the classical integer-order calculus and consists of integro-differential
operators of non-integer orders [6]. Researchers have proven that FO controllers can
replace their integer-order counterparts [7,8]. This has led to a significant number of
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studies regarding the design and analysis of these controllers [9]. The only disadvantage of
such controllers consists in the need to approximate their dynamics for implementation
purposes. In control practice, the fractional-order controllers are approximated to integer-
order transfer functions of high orders. Various techniques can then be used to lessen the
order of the approximation [10].

Several studies presented in the literature attempted to find an optimum setting for
the fractional controller parameters that meet the design requirements [11–16]. Modern
optimization search techniques called “evolutionary algorithms”, including the genetic
algorithm (GA) and the particle swarm optimization (PSO), have been extensively applied
to enhance the performance of fractional-order controllers [17,18]. Numerous tools have
also been proposed for fractional-order system analysis, modeling, and controller synthesis.
Several tools have been developed to enable the design and analysis of fractional-order
control systems, mainly in MATLAB, such as the Ninteger toolbox [19] and Fomcon tool-
box [20], to name just a few. However, the hardware realization of FOPID controllers is
more challenging.

The improved performance and increased robustness of fractional-order controllers is
enhanced in this paper through the use of artificial immune systems, which represent a
nature-inspired mechanism. Due to their adaptive and self-organized features, artificial
immune systems are considered to be powerful techniques for controlling a wide range
of systems, including non-linear or time-delayed ones [21–23]. This artificial intelligence
control is a promising technique that can be associated with other control laws such as
fractional-order control.

In the literature, researchers proposed different techniques to control time-delay
systems [24–26], including those using fractional-order controllers (FOC) [27–31]. A lot
of tuning methods have been developed for FOC for time-delay systems, some of them
based on the classical closed loop system, which require a process model, such as Ziegler–
Nichols-based methods [32], Hermite–Biehler and Pontryagin theorems in [33], using linear
programming formulation [34], techniques based on a frequency-domain approach [35,36],
and others based on optimizing a certain performance index such as Integral of Square
Error (ISE) and Integral of Time Absolute Error (ITAE) [37,38]. Another type of tuning of
FOC for time-delay systems is based on Internal Model Control (IMC) approach [39,40]
and Smith Predictor control [41–44]. Several control algorithms that combine fractional
calculus and advanced control strategies [45–48] have been also developed.

In this paper, a significant contribution that has not yet been reported in the literature
is presented that also combines advanced control algorithms with fractional calculus. A
new controller structure is designed and the sensitivity analysis is performed. The new
controller consists of a fractional-order PID (FOPID) based on an immune feedback system
(IFM). This approach is novel to the state of the art. Both the FOPID and the IFM parameters
are tuned by the genetic algorithms (GA). To demonstrate the performance of our proposed
control technique, we applied it to control the FOPTD system.

This paper consists of six sections. Following the Introduction, Section 2 describes
the fundamentals of FO controllers and briefly discusses their implementation. Section 3
presents the bio-inspired immune feedback controller. Section 4 focuses on the design of
a new controller structure: the FOPID controller based on IFM. The simulation results
are shown in Section 5, demonstrating the effectiveness of the proposed methodology. A
comparative evaluation with other techniques is executed and presented there as well.
Finally, in Section 6, the main conclusions of the paper are summarized, as well as further
research ideas on the topic.

2. Fractional-Order PID Controller
2.1. Fractional-Order PID Control

The fractional-order PID (FOPID) controller is a generalization of the standard PID
controller. The transfer function of a FOPID controller can be described in Laplace domain as [6]:
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CFOPID =
U(s)
E(s)

= Kp + Kis−λ + Kdsµ; (λ, µ > 0) (1)

The result in (1) can be used to determine the time-domain representation of the
control signal of a FOPID:

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t) (2)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, while λ and µ are
the fractional orders of integration and differentiation, usually λ, µ ∈ (0, 2). Using (2), the
block diagram of the FOPID can be derived as indicated in Figure 1. Because of the two
supplementary tuning parameters, λ and µ, the FOPIDs have increased flexibility in the
design and can be tuned to be more robust compared to their integer-order counterparts.
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2.2. Integer-Order Approximations

The most common approach to implement fractional-order systems is to approxi-
mate them with usual (integer-order) transfer functions, possibly of high orders. Several
approximation methods exist, among which the Oustaloup filter approximation for FO
operator is the most popular [49]. The integer-order approximation takes the form of a
ratio of two polynomials with subsequent poles and zeros. The approximation is accurate
enough in a certain frequency range, which is selected a priori. Although popular among
researchers, several other approximation methods have emerged, such as the Modified
Oustaloup Filter method [50]. Continued Fraction Expansion (CFE) is also an available
option for continuous-time approximations of the fractional-order operator. However,
the user cannot specify the desired frequency range. The method provides accurate low
frequencies approximation [51]. A similar method to the CFE is Matsuda’s method. This is
based on manipulating the approximated frequency points using logarithmically spaced
set points [52]. Carlson’s method uses Newton’s iterative solution within a fixed frequency
range, but other methods have been developed to allow the selection of the frequency
range [53]. Some recent good review papers on the approximation of fractional-order PIDs
are available [54,55].

2.3. Oustaloup’s Recursive Approximation

In this manuscript, the Oustaloup recursive approximation method is used. The
Oustaloup recursive approximation is a filter that produces good fitting of the fractional-
order differentiator within a frequency range (wb,wh). It can be described mathematically
using the following equation [56]:

G f = K
N

∏
k=−N

s + w
′
k

s + wk
(3)

where the poles, zeros, and gain of the filter can be evaluated from:
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w
′
k = wb

(
wh
wb

) k+N+ 1
2 (1−γ)

2N+1
, wk = wb

(
wh
wb

) k+N+ 1
2 (1−γ)

2N+1
, K = wγ

h (4)

where γ is the order of the differentiation of the differentiation, 2N + 1 is the order of the
filter, and the frequency fitting range is given by (wb,wh).

To implement the fractional-order PIDs designed in this paper, a frequency range of
ω∈{10−2, 102} rad/s was selected, with 4th order.

3. Immune Feedback Mechanism

Humans survive against illness and hostile environments thanks to natural IFM in the
human system. However, the dynamic equilibrium of the immune system can be disrupted
by an antigen. The fundamental cells that are concerned in the process of immunology are
antigen Ag, antibodies Ab, B-cells B, helper T cells (Th), and suppressor T cells (Ts).

Figure 2 shows the principle of the feedback mechanism. Once the antigen enters the
body, it is identified by antigen-presenting cells (APC) then the information is transmitted
to the T cells. In the wake of receiving the message, B cells are stimulated by T cells
and promptly produce antibodies to wipe out the antigen. Once the number of antigens
increases, the quantity of Th cells will also increase and the human body can make more
B cells to safeguard itself. Alongside the decrease in antigens, the number of Ts cells in the
body increases and the number of B cells consequently reduces. After a while, the immune
system tends to equilibrium.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 4 of 15 
 

 

order differentiator within a frequency range (𝑤௕,𝑤௛). It can be described mathematically 
using the following equation [56]: 

𝐺௙ = 𝐾 ෑ 𝑠 + 𝑤௞ᇱ𝑠 + 𝑤௞
ே

௞ୀିே  (3)

where the poles, zeros, and gain of the filter can be evaluated from: 

𝑤௞ᇱ = 𝑤௕ ൬𝑤௛𝑤௕൰௞ାேାଵଶ(ଵିఊ)ଶேାଵ , 𝑤௞ = 𝑤௕ ൬𝑤௛𝑤௕൰௞ାேାଵଶ(ଵିఊ)ଶேାଵ  , 𝐾 = 𝑤௛ఊ (4)

where 𝛾 is the order of the differentiation of the differentiation, 2N + 1 is the order of the 
filter, and the frequency fitting range is given by (𝑤௕,𝑤௛). 

To implement the fractional-order PIDs designed in this paper, a frequency range of 𝜔∈{10−2, 102} rad/s was selected, with 4th order. 

3. Immune Feedback Mechanism 
Humans survive against illness and hostile environments thanks to natural IFM in 

the human system. However, the dynamic equilibrium of the immune system can be dis-
rupted by an antigen. The fundamental cells that are concerned in the process of immu-
nology are antigen Ag, antibodies Ab, B-cells B, helper T cells (𝑇௛), and suppressor T cells 
(𝑇௦). 

Figure 2 shows the principle of the feedback mechanism. Once the antigen enters the 
body, it is identified by antigen-presenting cells (APC) then the information is transmitted 
to the T cells. In the wake of receiving the message, B cells are stimulated by T cells and 
promptly produce antibodies to wipe out the antigen. Once the number of antigens in-
creases, the quantity of 𝑇௛ cells will also increase and the human body can make more B 
cells to safeguard itself. Alongside the decrease in antigens, the number of 𝑇௦ cells in the 
body increases and the number of B cells consequently reduces. After a while, the immune 
system tends to equilibrium. 

 
Figure 2. Immune-regulating system. 

The immune feedback theory can be described by the following equations [21]: 𝐵(𝑘) = 𝑇௛(𝑘) − 𝑇௦(𝑘) (5)

Figure 2. Immune-regulating system.

The immune feedback theory can be described by the following equations [21]:

B(k) = Th(k)− Ts(k) (5)

Th(k) = k1ε(k) (6)

Ts(k) = k2{ f [∆B(k− d]}ε(k) (7)

where ε(k) is the consistency of the antigen at the kth generation, k1 is the stimulation factor,
k2 is the suppression factor, ∆B(k− d) is the change of B cells consistency, and d is the delay
time of the immune response.

From (6) and (7), the relational expression for the consistency of B cells and the antigen
is as follows:
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B(k) = k1ε(k)− k2{ f [∆B(k− d]}ε(k)

= k{1− η f [∆B(k− d)]}ε(k)
(8)

The control of the response speed is ensured by k = k1 and the stabilization effect is
controlled by η = k2/k1. Thus, the performance of the immune feedback methods rely
heavily on how these factors are chosen.

A bio-inspired feedback mechanism controller of the immune system is developed
in this paper. Table 1 shows the comparison between an immune system and the general
control system.

Table 1. Immune system vs. control system.

Immune System Control System

The k generation reproduction of antigens and antibodies. The k sampling time of discrete system.

Ag(k) is the antigen concentration of k generation. e(k) is the difference between setpoint value and output value
at the k sampling time.

B(k) is the B cell concentration of the k generation. µ(k) is the output value of controller at the k sampling instant.

Equation (8) can be assumed as a discrete-time feedback control law. When this
analogy is applied directly to design a feedback controller, the resulting immune feedback
looks like a proportional controller with the gain adjusted using its own output. Therefore,
the proportional IFM control method is as follows:

µ(k) = k{1− n f [∆µ(k− d)]}e(k) = kpIe(k) (9)

where kpI = k{1− n f [∆µ(k− d)]} is the nonlinear proportional gain of the immune controller.
We assume that the change of T cells consistency based on the antigen entering to the

body is described by the following nonlinear function [57]:

f (x) = 1− 2
1 + exp(−cx)

(10)

where−1 < f (x) < 1 and the value of parameter c determines the zone of action of variable x.
The immune feedback controller can be described as follows:

u(k) = k
[

1− n
(

1− 2
1 + exp(−cx)

)]
e(k) (11)

A list of the all symbols used in this section to ddetail the immune feedback mechanism
is given in Table 2.

Table 2. Interpretation of immune system symbols.

Symbol Interpretation in the Immune System

ε(k) Amount of antigens at the kth generation
Th(k) Output from Th stimulated by the antigens
Ts(k) Effect of Ts on B cells
B(k) Total stimulation of B cells

k1 Stimulation factor
k2 Suppression factor

η = k2/k1 Stabilization factor
f (x) The effect of the reaction of B cells and the antigens
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4. Design of Fractional-Order PID Controller Based on Immune Feedback Mechanism
4.1. Principle

As shown in (11), it is clear that the immune feedback controller is a nonlinear propor-
tional controller. Since it cannot correct errors due to noise and nonlinear interference, it
is not used alone. On the other hand, FOPID can comprehensively consider past, present,
and future deviation information, having more degrees of freedom for the integral and
derivative actions. Thus, it is possible to improve the performance of the control system by
connecting the immune feedback controller with FOPID controller.

The algorithm is as follows:

U(k) = kpI(k)·CFOPID(k)· e(k) (12)

where kpI(k) is the immune controller and CFOPID is the transfer function of the FOPID,
which can be expressed as indicated in (1).

FOPID based on IFM using GA is presented in Figure 3.
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4.2. Tuning

The tuning of the parameters is a requirement for intelligent controllers, therefore
FOPID based on IFM is tuned using GA.

GA is a method based on the evolution of chromosomes. High efficiency can be
achieved by searching for the global optimal solution in the problem space. It does not
suffer from the old optimization drawbacks, such as getting stuck in local minima.

First, the appropriate set of values for the FOPID and immune parameters is considered
as the parent. Then, a crossover operation is performed between two appropriate values
to obtain a new set of parameters. This is how first-generation offspring are formed. The
total population will increase and selection operations will be performed on the population.
Good chromosomes are preserved, while the worst chromosomes are excluded. Next, the
chromosomes are evaluated using the Integral Time Absolute Error (ITAE) performance
index. If the ITAE value is not satisfactory, a chromosomal crossover will be performed
again between the best ones. The mutation process continues to achieve more optimal
results until the ITAE value falls within the threshold. Optimal values are achieved by
following the steps above for each GA cycle applied.

5. Simulation Results

The proposed control structure is validated on FOPTD processes. Many industrial
systems can be approximated to such models. To demonstrate the efficiency of the proposed
method, a comparison with an immune PID control algorithm is performed. Time-delay
variations are challenging for control systems, since without a properly designed controller,
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the closed loop system can become unstable. Then, to evaluate the robustness of the
proposed method, modeling uncertainties regarding time-delay variations are considered.
Robustness is also tested considering time constant variations.

The transfer function of the process is given by:

P(s) =
1

2.5s + 1
e−1.8s (13)

To find a search space of the genetic algorithm and initialize the FOPID parameters,
the classical Ziegler–Nichols (ZN) tuning method is applied, yielding the controller gains
listed in Table 3.

Table 3. Initial PID parameters computed according to the ZN tuning rules.

Kp Ki Kd

1.7152 0.5848 1.2576

GA is then used for fine optimization, with ITAE used as the fitness function. The
search space for the FOPID parameters is set between [0, 500] for the controller gains and
[0, 1] for the fractional orders. The resulting FOPID controller is approximated using the
Oustaloup recursive approximation method with N = 4 within [10−2, 102] rad/s. For the
immune feedback mechanism, the parameters are as indicated next: the range of n (Steady
gene) and c (Coefficient) is [0, 50], while the k (Immune gain) is [0, 200].

The optimal parameters obtained from GA are listed in Table 4 for the FOPID and
Table 5 for the IFM. These were obtained after 10,660 function evaluations and 55 genera-
tions, resulting in the best function value of 14.13. A maximum number of 800 iterations
was chosen for the GA.

Table 4. Optimal parameters of the FOPID for the first numerical example.

Kp Ki Kd λ µ

401.5 65.1 0.016 0.48 0.06

Table 5. Optimal parameters of the IFM for the first numerical example.

k n c

9.77 × 10−5 0.0001 20.47

Figure 4 presents the results of the genetic algorithm. The upper plot shows the best
and mean score of the fitness function at every generation. The lower plot shows the
percentage of stop criteria that are met.

To evaluate the closed loop performance, a unit step reference signal is supplied at the
input of the control system. The numerical simulation results obtained using the optimal
FOPID with IFM are given in Figure 5. An immune PID controller was also designed and
the closed loop results are also indicated in Figure 5. The comparative simulation results
show that the proposed algorithm ensures a good settling time without overshoot and a
zero steady state error. The FOPID with IFM achieves similar performance to the immune
PID controller, with the latter achieving a faster settling time, but also exhibiting some small
oscillatory dynamics. However, as indicated in Figure 6, the proposed algorithm requires
less control effort compared to the immune PID controller, an important advantage of the
FOPID. Comparisons of various time domain specifications obtained using the immune
PID controller and the proposed control algorithm are given in Table 6.
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Table 6. Comparison of various time domain specifications.

Controller Used Peak
(%)

Settling Time
(s)

Rise Time
(s)

Steady State
Error (%)

Immune PID 1.4 5.7 2.76 1

FOPID based on IFM No overshoot 9.8 5.44 0

To test the robustness of the proposed control algorithm time constant variations of
±20% are considered and the results regarding setpoint tracking are indicated in Figure 7,
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while the corresponding control signals are given in Figure 8. The results demonstrate the
efficiency of the proposed algorithm. The required control effort is significantly smaller
compared to the immune PID controller. At the same time, there is no overshoot in the
case of the proposed FOPID with IFM, in contrast to the immune PID. The drawback of the
FOPID is its smaller settling time.
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Figure 9 shows the reference tracking results when considering−44%, as well as +122%
time-delay variations. For −44% time-delay variations (time delay = 1 s), both control
algorithms achieve zero overshoot and a similar settling time. In the case of the +122%
variation, corresponding to a time delay of 4 s, the proposed FOPID with IFM ensures
a faster settling time without any overshoot compared to the immune PID controller,
where an overshoot of 17% is obtained. The corresponding control signals are indicated in
Figure 10, with a smaller control effort required by the FOPID with IFM in comparison to
the immune PID.
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The immune PID controller exhibits increased oscillations and overshoot when in-
creasing the time constant and time delay, whereas the FOPID based on the IFM controller
reaches the desired setpoint with excellent results in terms of overshoot and rise time. The
comparison of the control signals shows that the FOPID based on IFM has less effort in all
cases than the immune PID controller. Consequently, overall, the FOPID based on IFM is
more robust and exhibits superior performance.

To evaluate load disturbance rejection, an input disturbance of a random number with
variance = 1 was applied at the process input. Figure 11 shows that the fractional-order
based on IFM ensures a fast setting time when rejecting a random disturbance compared
with the immune PID controller.
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To study the strength of the new approach, a delay-dominant process was also consid-
ered, where the time delay is taken to be twice as much as the process time constant.

The transfer function of the process is given by:

P(s) =
1

2s + 1
e−4s (14)

The optimal parameters obtained from GA are as listed in Table 7 for the FOPID and
Table 8 for the IFM. These were obtained after 21,300 function evaluations and 111 genera-
tions, resulting in the best function value of 19.3689. A maximum number of 800 iterations
was chosen for the GA.

Table 7. Optimal parameters of the FOPID for the second numerical example.

Kp Ki Kd λ µ

1.8257 0.0079346 3.1803 0.066297 0.99368
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Table 8. Optimal parameters of the IFM for the second numerical example.

k n c

0.257 4.427 0.093956

Figure 12 shows the reference tracking results. The corresponding control signals
are indicated in Figure 13. The proposed FOPID with IFM ensures similar closed loop
performance compared to the immune PID. However, much like in the previous case, the
FOPID with IFM requires less control effort in comparison to the immune PID. Comparisons
of various time domain specifications obtained using the immune PID controller and the
proposed control algorithm are given in Table 9.
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Table 9. Comparing various time domain specifications.

Controller Used Peak
(%)

Settling Time
(s)

Rise Time
(s)

Steady State
Error (%)

Immune PID No overshoot 8.6 8.0 0

FOPID based on IFM No overshoot 8.6 8.0 0

The robustness to time-delay variations is tested in Figure 14, with corresponding
control signals given in Figure 15. A ±50% time-delay variation was considered. The
closed loop results show that similar performance is obtained with the proposed method
compared to a traditional immune PID controller. Nonetheless, the required control effort
is slightly smaller for the proposed FOPID with IFM in comparison to the immune PID, as
indicated in Figure 15.
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6. Conclusions

In this paper, a new control structure based on a FOPID controller and an IFM is
developed. The proposed controller is validated on FOPDT processes, both lag- and
delay-dominant ones, but could be easily extended to other types of processes. Numerical
simulations have been presented to demonstrate the efficiency of the proposed controller.
The robustness to delay variations was especially considered to showcase the advantages
of the proposed algorithm. Comparative simulation results with an immune PID con-
troller demonstrate the effectiveness of the proposed control algorithm, especially for
lag-dominant processes. In this case, the proposed FOPID with IFM manages to achieve
better robustness despite delay variations. In both situations, the required control effort is
smaller compared to that of the immune PID controller, which also represents an advantage
of the proposed method.

Several other delay- and lag-dominant processes have been tested and similar results
as indicated in this manuscript have been obtained. Further research includes testing the
proposed control algorithm on various other types of processes. At the same time, the tun-
ing of the FOPID with IFM could be modified to use particle swarm optimization (PSO) and
Cuckoo Search. An online adaptation rule is also considered as a further research possibility.
Further research includes the experimental validation of the proposed algorithm.
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