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Abstract: In this paper, we consider a time fractional diffusion system with a nonlinear memory
term in a bounded domain. We mainly prove some blow-up and global existence results for this
problem. Moreover, we also give the decay estimates of the global solutions. Our proof relies on
the eigenfunction method combined with the asymptotic behavior of the solution of a fractional
differential inequality system, the estimates of the solution operators and the asymptotic behavior of
the Mittag–Leffler function. In particular, we give the critical exponents of this problem in different
cases. Our results show that, in some cases, whether one of the initial values is identically equal to
zero has a great influence on blow-up and global existence of the solutions for this problem, which is
a remarkable property of time fractional diffusion systems because the classical diffusion systems can
not admit this property.
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memory
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1. Introduction

In recent years, many research studies have focused on time fractional diffusion
equations and systems since they are useful to model phenomena such as viscoelasticity,
anomalous diffusion phenomena, quantum mechanics, etc.(see, e.g., [1–7]). For example,
time fractional diffusion equations can often be used to model physical systems exhibiting
anomalous diffusion (see, e.g., [1,4,7]). In many complex dynamical systems, the diffusion
processes do not follow Gaussian statistics, and then the related transport behavior can
not be described by the Fick second law. The mean squared displacement of a diffusive
particle usually follows the power type law, i.e., 〈x2(t)〉 ∼ const · tα, which is linear in t in
the classical diffusion process. Since the mean squared displacement describes how fast
particles diffuse, the diffusion process is called the sub-diffusion process when 0 < α < 1
and is called the sup-diffusion process when 1 < α < 2, see, e.g., [1,7]. Hence, recently,
there have been a lot of literature studies studying time fractional differential equations and
systems, see, e.g., [1,8–34]. For instance, in [20], the authors considered the blow-up and
global existence of the solution to a Cauchy problem for a time-space fractional diffusion
equation, where the time derivative is taken in the sense of the Caputo–Hadamard type
and the spatial derivative is taken by the fractional Laplace operator. They also verified the
blow-up results by numerical simulations. In [23], the authors generalized some theorems
of counting zeros for analytical functions, and obtained an algebraic test to determine the
stability of fractional order systems by the matrix inequalities. In [15], an initial-boundary
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value problem for the Caputo time fractional diffusion equation was studied, and the
equivalence of viscosity solutions and distributional solutions for this problem was proved.

The goals of this paper are to prove blow-up and global existence results and give
the decay estimates of the global solutions for the following Caputo time fractional
diffusion system:

C
0 Dα

t u−4u = 0 I1−γ1
t (|v|p−1v), (t, x) ∈ (0, T)×Ω

C
0 Dβ

t v−4v = 0 I1−γ2
t (|u|q−1u), (t, x) ∈ (0, T)×Ω,

u(t, x) = 0, v(t, x) = 0, (t, x) ∈ (0, T)× ∂Ω,
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1)

where Ω ⊂ RN is a smooth bounded domain, 0 < α, β ≤ 1, 0 ≤ γ1, γ2 < 1, p, q ≥ 1, pq > 1
and u0, v0 ∈ C0(Ω). Here, C

0 Dα
t u = ∂

∂t [0 I1−α
t (u(t, x)− u0(x))] is the Caputo derivative of u

with respect to t.
Firstly, let us dwell on some known results on blow-up and global existence of the

solution for time fractional diffusion systems. In [32], Zhang et al. discussed the semilinear
time fractional diffusion system

C
0 Dα

t u−4u = |v|p−1v, x ∈ RN , t > 0,
C
0 Dα

t v−4v = |u|q−1u, x ∈ RN , t > 0,
u(0, x) = u0(x), x ∈ RN ,
v(0, x) = v0(x), x ∈ RN ,

(2)

where 0 < α < 1, p, q > 1, u0, v0 6≡ 0 with u0, v0 ∈ C0(RN), and gave the Fujita critical
exponent of (2), which is the same as that of the classical diffusion system (i.e., (2) with
α = 1). They showed that problem (2) can admit global nontrivial solutions in the critical
case, whereas for a classical diffusion system (i.e., (2) with α = 1), all positive solutions
blow up in finite time in the critical case. In [8], a time fractional diffusion system on
RN with two different fractional powers was considered and some blow-up and global
existence results were proved.

Let us now turn to the study of time fractional diffusion equations with nonlinear
memory terms on both RN and a domain Ω ⊂ RN . There have been many papers on
existence and nonexistence of global solutions for these problems (see, e.g., [10,13,22,33–35]).
For the time fractional diffusion equation

C
0 Dα

t u−4u = 0 I1−γ
t (|u|p−1u), (3)

on both RN and a bounded domain Ω ⊂ RN , where α ∈ (0, 1], γ ∈ [0, 1) and p > 1,
Cazenave et al. [35] obtained the critical exponents of this problem with α = 1. For the case
0 < α < 1, Zhang and Li [22,33,34] generalized the results of [35] and obtained the Fujita
critical exponents for the case α < γ and α ≥ γ, respectively. The results indicate that the
properties of solutions for problem (3) on both RN and a bounded domain Ω ⊂ RN can be
different for these two cases.

In [13], the authors studied the blow-up of solution for the following semilinear
fractional diffusion equation in a bounded domain:

ut = ∂t(gα ∗ 4u)(t, x) + |u|ρ−1u x ∈ Ω, t > 0,
u(t, x) = 0, x ∈ ∂Ω, t > 0,
u(0, x) = u0(x), x ∈ Ω,

(4)

where 0 < α < 1, ρ > 1, gα(t) = tα−1

Γ(α) and gα ∗4u =
∫ t

0 gα(s)4u(t− s, x)ds. They obtained
that, if αρ < 1, u0 ≥ 0 and u0 6≡ 0, then any solution of (4) blows up in L∞ norm.
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Fixed R > 0, Asogwa et al. [10] considered
C
0 Dβ

t V = −(−4)α/2V + 0 I1−β
t (V1+η), x ∈ B(0, R), t > 0,

V(t, x) = 0, x ∈ B(0, R)C, t > 0,
V(0, x) = V0(x), x ∈ B(0, R),

(5)

where β ∈ (0, 1), α ∈ (0, 2). They obtained that, if 0 < η < 1
β − 1 and

∫
B(0,R) V0(x)φ1(x)dx >

0, where φ1 is the first eigenfunction of the above Dirichlet fractional Laplace operator, then
all nonzero solutions of (5) can not exist globally in time.

For the diffusion systems with nonlinear memory terms, to our knowledge, there
were only a few papers investigating the blow-up and global existence of solutions. In
the limiting case α = β = 1, Loayza and Quinteiro [36] proved that, if max{1− pγ2 +
p(1− qγ1), 1− qγ1 + q(1− pγ2)} ≥ 0 and u0, v0 ≥ 0, u0 + v0 > 0, then the correspondent
solution of (1) blows up in finite time, while if max{1− pγ2 + p(1− qγ1), 1− qγ1 + q(1−
pγ2)} < 0 and the L∞ norms of u0 and v0 are sufficiently small, then (1) admits a global
solution.

Motivated by the aforementioned results, in this paper, we study global existence and
blow-up of solutions of (1) in six different situations (see Section 3), and extend the results
in [34,36].

Comparing with the results of [34,36], our conclusions of (1) show that the time
fractional diffusion system (1) is more delicate. When we consider problem (1), some new
cases appear and need to be studied. For example, we have to consider the case that one
of the initial values identically equals zero. Indeed, in some cases, our conclusions show
that the solutions of (1) can globally exist in the case u0, v0 6≡ 0, but all nontrivial solutions
must blow up in finite time for the case u0 6≡ 0, v0 ≡ 0 (see Section 3). The main reason for
making such difference is due to the nonlocality of time fractional derivatives. Thus, initial
values have a great influence on the properties of the solution for problem (1). On the other
hand, since the orders of time fractional derivatives for problem (1) can be different and
time fractional derivatives are nonlocal, some methods and arguments used in [36] can not
be directly applied to the study of problem (1).

This paper is organized as follows: In Section 2, we first present some definitions
and properties of Riemann–Liouville fractional integrals, Caputo fractional derivatives,
Mittag–Leffler function, and Wright type function. Secondly, we recall some properties of
solution operators Pα(t) and Sα(t). Finally, some properties of the solution for a fractional
differential inequality system are provided. The main results are given and proved in
Section 3. Section 4 is devoted to a brief summary of this paper.

For simplicity of presentation, in the following sections, we use C to denote a positive
constant, whose value may be not the same in different parts.

2. Preliminaries

In this section, we are ready to give some preliminaries that will be used in the
following sections.

For T > 0, α ∈ (0, 1], the Riemann–Liouville fractional integrals are defined by [5,37]

0 Iα
t f =

1
Γ(α)

∫ t

0

f (s)
(t− s)1−α

ds, t Iα
T f =

1
Γ(α)

∫ T

t

f (s)
(s− t)1−α

ds,

and the Caputo fractional derivatives are defined by [5]

C
0 Dα

t f =
d
dt 0 I1−α

t [ f (t)− f (0)], C
t Dα

T f = − d
dt t I1−α

T [ f (t)− f (T)].

When α = 1, we define C
0 Dα

t f = −C
t Dα

T f = f ′(t). Moreover, if f ∈ AC([0, T]), then
C
0 Dα

t f and C
t Dα

T f exist almost everywhere on [0, T] and C
0 Dα

t f = 0 I1−α
t f ′(t),

C
t Dα

T f = −t I1−α
T f ′(t) (see [5]).
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Let p, q ≥ 1 and 1
p + 1

q = 1. Assuming that f ∈ Lp(0, T), g ∈ Lq(0, T), we have [5]

∫ T

0
(0 Iα

t f )g(t)dt =
∫ T

0
(t Iα

T g) f (t)dt. (6)

Furthermore, the following formula of integration by parts is valid [33]∫ T

0
g(t)(C

0 Dα
t f )dt =

∫ T

0
( f (t)− f (0))C

t Dα
T gdt, (7)

provided that f ∈ C([0, T]), C
0 Dα

t f exists almost everywhere on [0, T], C
0 Dα

t f ∈ L1(0, T) and
g ∈ AC([0, T]) with g(T) = 0.

Next, we recall some properties of the Mittag–Leffler function. The Mittag–Leffler
function is defined by

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β ∈ C, Re(α) > 0, Eα(z) = Eα,1(z). (8)

Eα,β(z) is an entire function and has the asymptotic behavior at infinity for 0 < α < 1,

Eα,β(z) = −
N

∑
k=1

1
Γ(β− αk)

1
zk + O(

1
zN+1 ) (9)

with |z| → +∞ and µ ≤ | arg(z)| ≤ π, where µ ∈ (πα
2 , πα) is a constant (see, e.g., [5,37]).

The Wright type function

φα(z) =
∞

∑
k=0

(−z)k

k!Γ(−αk + 1− α)
, 0 < α < 1, z ∈ C (10)

is an entire function and a probability density function, i.e., φα(θ) ≥ 0 for θ ≥ 0,∫ ∞
0 φα(θ)dθ = 1. Moreover,∫ ∞

0
φα(θ)e−zθdθ = Eα(−z) and α

∫ ∞

0
θφα(θ)e−zθdθ = Eα,α(−z) (11)

for z ∈ C (see, e.g., [6,11,29]).
Denote A = 4. Let T(t) be the heat semigroup generated by A on C0(Ω). Similar

to [11,29,34], we define the operators Pα(t) and Sα(t) as

Pα(t)u0 =
∫ ∞

0
φα(θ)T(tαθ)u0dθ, t ≥ 0, (12)

Sα(t)u0 = α
∫ ∞

0
θφα(θ)T(tαθ)u0dθ, t ≥ 0. (13)

Next, we collect some properties of the operators Pα(t) and Sα(t).

Lemma 1 ([31]). The operators Pα(t) and Sα(t) have the following properties:
(i) For u0 ∈ C0(Ω), we have Pα(t)u0 ∈ C([0, T + ∞), C0(Ω)), Pα(t)u0 ∈ D(A) for all

t > 0 and
C
0 Dα

t Pα(t)u0 = APα(t)u0,
d
dt

Pα(t)u0 = tα−1 ASα(t)u0, t > 0,

‖APα(t)u0‖L∞(Ω) + ‖ASα(t)u0‖L∞(Ω) ≤
C
tα
‖u0‖L∞(Ω), t > 0

for some constant C > 0.



Fractal Fract. 2023, 7, 56 5 of 16

(ii) Let h ∈ Lq((0, T), C0(Ω)), q > 1, w =
∫ t

0 (t− s)α−1Sα(t− s)h(s)ds. Then, w(0) = 0

and w ∈ Cα− 1
q ([0, T], C0(Ω)) if qα > 1. Furthermore, if h ∈ Cβ([0, T], C0(Ω)) for some

β ∈ (0, 1), then
C
0 Dα

t w = Aw + h(t), t ∈ [0, T].

In order to prove our main results, we shall borrow the idea in [35] to study proper-
ties of the solution of a fractional differential inequality system. We need to extend the
Proposition 2.2 in [35].

Lemma 2. Let T > 0, 0 < α, β ≤ 1, 0 ≤ γ1, γ2 < 1, β1 = 1− γ1, β2 = 1− γ2, p, q ≥ 1,
pq > 1 and a, b, c, d > 0. Suppose that (u, v) satisfies u, v ∈ C([0, T]), u, v > 0 for t ∈ (0, T],
u(0), v(0) ≥ 0, 0 I1−α

t (u− u(0)) ∈ AC([0, T]), 0 I1−β
t (v− v(0)) ∈ AC([0, T]) and{

C
0 Dα

t u + au ≥ b(0 I1−γ1
t vp),

C
0 Dβ

t v + cv ≥ d(0 I1−γ2
t uq)

(14)

for almost every t ∈ [0, T]. Then,

(i) There exists a positive constant M independent of T such that

u(0) ≤ M[Tα+β1−
pβ2

pq−1−
pqβ1
pq−1 + Tα+β1−

p(β+β2)
pq−1 −

pqβ1
pq−1 + T−

pβ2
pq−1−

(α+β1)
pq−1 + T−

p(β+β2)
pq−1 −

(α+β1)
pq−1 ],

v(0) ≤ M[Tβ+β2−
qβ1

pq−1−
pqβ2
pq−1 + Tβ+β2−

q(α+β1)
pq−1 −

pqβ2
pq−1 + T−

qβ1
pq−1−

(β+β2)
pq−1 + T−

q(α+β1)
pq−1 −

(β+β2)
pq−1 ].

(ii) If T = +∞, then lim inft→+∞ u(t) = 0 and lim inft→+∞ v(t) = 0.
(iii) If T = +∞, then lim inft→+∞ tγ1 u(t) > 0 and lim inft→+∞ tγ2 v(t) > 0.

(iv) If T = +∞, then lim inft→+∞ t
pβ2+β1

pq−1 u(t) < +∞ and lim inft→+∞ t
qβ1+β2

pq−1 v(t) < +∞.
(v) If max{1− pγ2 + p(1− qγ1), 1− qγ1 + q(1− pγ2)} ≥ 0, then T < +∞.

Proof. (i) From (14), (6) and (7), we deduce that∫ T

0
[u(C

t Dα
T ϕ) + auϕ]dt ≥ b

∫ T

0
vp(t I1−γ1

T ϕ)dt + u(0)
∫ T

0

C
t Dα

T ϕdt, (15)

∫ T

0
[v(C

t Dβ
T ϕ) + cvϕ]dt ≥ d

∫ T

0
uq(t I1−γ2

T ϕ)dt + v(0)
∫ T

0

C
t Dβ

T ϕdt, (16)

where ϕ ∈ AC([0, T]) is nonnegative and ϕ(T) = 0. By the results in [5], we know that, for
α, β > 0 and l ≥ α + β,

C
t Dβ

T(1−
t
T
)l =

Γ(l + 1)
Γ(l + 1− β)

T−β(1− t
T
)l−β,

C
t Dα

T [
C
t Dβ

T(1−
t
T
)l ] =

Γ(l + 1)
Γ(l + 1− α− β)

T−α−β(1− t
T
)l−α−β.

Let ψT = (1 − t
T )

m (m ≥ max{ pq(α+β1)
pq−1 , pq(β+β2)

pq−1 }). It should be illustrated that
choosing the test function of the type ψT to prove the nonexistence of global solutions to
fractional differential equations firstly appeared in [18]. Here, taking ϕ(t) = C

t Dβ1
T ψT in (15)

and ϕ(t) = C
t Dβ2

T ψT in (16), we deduce from Hölder’s inequality that
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b
∫ T

0
vpψTdt + u(0)

∫ T

0

C
t Dα

T(
C
t Dβ1

T ψT)dt ≤ C(T
q−1

q −β1 + T
q−1

q −(α+β1))
( ∫ T

0
uqψTdt

) 1
q
,

d
∫ T

0
uqψTdt + v(0)

∫ T

0

C
t Dβ

T(
C
t Dβ2

T ψT) ≤ C(T
p−1

p −β2 + T
p−1

p −(β+β2))
( ∫ T

0
vpψTdt

) 1
p

for some constant C > 0, where we have used the fact that t Iβ1
T (C

t Dβ1
T ψT) = ψT and

t Iβ2
T (C

t Dβ2
T ψT) = ψT . This and Young’s inequality with ε yield

b
2

∫ T

0
vpψTdt + u(0)

∫ T

0

C
t Dα

T(
C
t Dβ1

T ψT)dt ≤C
(

T1− pβ2
pq−1−

pqβ1
pq−1 + T1− p(β+β2)

pq−1 −
pqβ1
pq−1

+ T1− pβ2
pq−1−

pq(α+β1)
pq−1 + T1− p(β+β2)

pq−1 −
pq(α+β1)

pq−1
)

, (17)

d
2

∫ T

0
uqψTdt + v(0)

∫ T

0

C
t Dβ

T(
C
t Dβ2

T ψT) ≤C
(

T1− qβ1
pq−1−

pqβ2
pq−1 + T1− q(α+β1)

pq−1 −
pqβ2
pq−1

+ T1− qβ1
pq−1−

pq(β+β2)
pq−1 + T1− q(α+β1)

pq−1 −
pq(β+β2)

pq−1
)

. (18)

Then, the estimates (17) and (18) imply that there exists a constant M > 0 such that

u(0) ≤ M[Tα+β1−
pβ2

pq−1−
pqβ1
pq−1 + Tα+β1−

p(β+β2)
pq−1 −

pqβ1
pq−1 + T−

pβ2
pq−1−

(α+β1)
pq−1 + T−

p(β+β2)
pq−1 −

(α+β1)
pq−1 ],

v(0) ≤ M[Tβ+β2−
qβ1

pq−1−
pqβ2
pq−1 + Tβ+β2−

q(α+β1)
pq−1 −

pqβ2
pq−1 + T−

qβ1
pq−1−

(β+β2)
pq−1 + T−

q(α+β1)
pq−1 −

(β+β2)
pq−1 ].

(ii) Suppose that there exist η1, η2 > 0 such that u(t) ≥ η1 or v(t) ≥ η2 for all t ≥ 1.
Then, using (17) and (18), we derive that, for T ≥ 1

bT(1− 1
T )

m+1

2(m + 1)
η

p
2 ≤

b
2

∫ T

1
vpψTdt ≤C(T1− pβ2

pq−1−
pqβ1
pq−1 + T1− p(β+β2)

pq−1 −
pqβ1
pq−1

+ T1− pβ2
pq−1−

pq(α+β1)
pq−1 + T1− p(β+β2)

pq−1 −
pq(α+β1)

pq−1 ), (19)

or

cT(1− 1
T )

m+1

2(m + 1)
η

q
1 ≤

c
2

∫ T

1
uqψTdt ≤C(T1− qβ1

pq−1−
pqβ2
pq−1 + T1− q(α+β1)

pq−1 −
pqβ2
pq−1

+ T1− qβ1
pq−1−

pq(β+β2)
pq−1 + T1− q(α+β1)

pq−1 −
pq(β+β2)

pq−1 ). (20)

Consequently, we know η1 = 0 or η2 = 0 by letting T → +∞, which contradicts
η1 > 0 and η2 > 0. Therefore, lim inft→+∞ u(t) = lim inft→+∞ v(t) = 0.

(iii) Since Eα(−λtα) ≥ 0 and Eα,α(−λtα) ≥ 0 for 0 < α < 1, λ > 0 and t ≥ 0 (see,
e.g., [38]), we deduce from (14) that

u(t) ≥ Eα(−atα)u(0) +
b

Γ(β1)

∫ t

0
(t− s)α−1Eα,α(−a(t− s)α)

∫ s

0
(s− τ)−γ1 vp(τ)dτds,

v(t) ≥ Eβ(−ctβ)v(0) +
d

Γ(β2)

∫ t

0
(t− s)β−1Eβ,β(−c(t− s)β)

∫ s

0
(s− τ)−γ2 uq(τ)dτds.
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Hence, for t ≥ 3,

u(t) ≥ b
Γ(β1)

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)

∫ s

0
(s− τ)−γ1 vp(τ)dτds

≥ b
Γ(β1)

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)

∫ 2

1
(s− τ)−γ1 vp(τ)dτds

≥ b
Γ(β1)

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)(s− 1)−γ1 ds inf

1≤s≤2
vp(s)

≥ b(t− 1)−γ1

Γ(β1)
inf

1≤s≤2
vp(s)

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)ds

=
b(t− 1)−γ1

Γ(β1)
inf

1≤s≤2
vp(s)

∫ 1

0
τα−1Eα,α(−aτα)dτ,

which proves lim inft→+∞ tγ1 u(t) > 0 by the fact that
∫ 1

0 τα−1Eα,α(−aτα)dτ > 0. Similarly,
we can prove lim inft→+∞ tγ2 v(t) > 0.

(iv) In terms of Property (ii), there exist nondecreasing sequences {tn} and {sn} such
that u(tn) = min1≤t≤tn u(t), v(sn) = min1≤t≤sn v(t) and tn → +∞, sn → +∞. It follows
from (19) and (20) that

bsn(1− 1
sn
)m+1

2(m + 1)
vp(sn) =

b
2

vp(sn)
∫ sn

1
ψsn(t)dt ≤C(s

1− pβ2
pq−1−

pqβ1
pq−1

n + s
1− p(β+β2)

pq−1 −
pqβ1
pq−1

n

+ s
1− pβ2

pq−1−
pq(α+β1)

pq−1
n + s

1− p(β+β2)
pq−1 −

pq(α+β1)
pq−1

n ), (21)

ctn(1− 1
tn
)m+1

2(m + 1)
uq(tn) =

c
2

uq(tn)
∫ tn

0
ψtn(t)dt ≤C(t

1− qβ1
pq−1−

pqβ2
pq−1

n + t
1− q(α+β1)

pq−1 −
pqβ2
pq−1

n

+ t
1− qβ1

pq−1−
pq(β+β2)

pq−1
n + t

1− q(α+β1)
pq−1 −

pq(β+β2)
pq−1

n ). (22)

Thus, lim inft→+∞ t
pβ2+β1

pq−1 u(t) < +∞ and lim inft→+∞ t
qβ1+β2

pq−1 v(t) < +∞.
(v) Suppose the conclusion is not true. Then, T = +∞. If max{1 − pγ2 + p(1 −

qγ1), 1− qγ1 + q(1− pγ2)} > 0, without loss of generality, we may assume 1− pγ2 + p(1−
qγ1) > 0. Property (iii) implies that there exists a constant C > 0 such that u(t) ≥ Ct−γ1

for t ≥ 2. Then,

β1+pβ2 upq−1(t) ≥ Ct1−pγ2+p(1−qγ1) → +∞, t→ +∞,

which contradicts Property (iv). If max{1− pγ2 + p(1− qγ1), 1− qγ1 + q(1− pγ2)} = 0,
without loss of generality, we may assume 1− pγ2 + p(1− qγ1) = 0. According to Property
(iii), there exists a constant C > 0 such that, for t ≥ 3,

v(t) ≥ C
∫ t

t−1
(t− s)β−1Eβ,β(−c(t− s)β)

∫ s

1
(s− τ)−γ2 τ−qγ1 dτds

≥ Ct−qγ1

∫ t

t−1
(t− s)β−1Eβ,β(−c(t− s)β)

∫ s

1
(s− τ)−γ2 dτds

≥ Ct−qγ1(t− 2)1−γ2

∫ t

t−1
(t− s)β−1Eβ,β(−c(t− s)β)ds

= Ct−qγ1(t− 2)1−γ2

∫ 1

0
τβ−1Eβ,β(−cτβ)dτ.
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This implies that for t ≥ 4

u(t) ≥ Ct−γ1

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)

∫ s

3
τ−pqγ1(τ − 2)p(1−γ2)dτds

≥ Ct−γ1

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)

∫ s

3
τ−pqγ1+p(1−γ2)dτds

= Ct−γ1

∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)

∫ s

3
τ−1dτds

≥ Ct−γ1 [ln(t− 1)− ln 3]
∫ t

t−1
(t− s)α−1Eα,α(−a(t− s)α)ds

= Ct−γ1 [ln(t− 1)− ln 3]
∫ 1

0
τα−1Eα,α(−aτα)dτ.

Hence

tβ1+pβ2 upq−1(t) ≥ Cpq−1tβ1+pβ2−(pq−1)γ1 [ln(t− 1)− ln 3]pq−1

= Cpq−1[ln(t− 1)− ln 3]pq−1 → +∞, t→ ∞.

This contradicts Property (iv). Therefore, T < +∞.

Remark 1. (i) In [33], for the fractional differential inequality, the authors generalized Proposition
2.2 in [35]. On the other hand, in [36], the authors extended Proposition 2.2 in [35] to the differential
system. Lemma 2 further extends Lemma 5 in [33] and Proposition 6 in [36].

(ii) When α = β = 1, the key point of proving Proposition 6 in [36] is to shift the time.
However, this method could not be used for our problem owing to the nonlocality of time fractional
derivatives. Comparing with Lemma 5 in [33], the results of Lemma 2 are more delicate since we are
dealing with a system. Moreover, some arguments used in [33] can not be directly applied.

Finally, we introduce definitions of the mild solution and weak solution of (1) and
clarify their relation.

Definition 1. Let T > 0, u0, v0 ∈ C0(Ω) and u, v ∈ C([0, T], C0(Ω)). (u, v) is called a mild
solution of problem (1) if

u(t) = Pα(t)u0 +
∫ t

0
(t− s)α−1Sα(t− s)|v|p−1v(s)ds, t ∈ [0, T],

v(t) = Pβ(t)v0 +
∫ t

0
(t− s)α−1Sβ(t− s)|u|q−1u(s)ds, t ∈ [0, T].

Definition 2. Let T > 0, p, q ≥ 1. Assume that u0, v0 ∈ L1(Ω). We say that (u, v) is a weak
solution of (1) if u ∈ Lq((0, T)×Ω) and v ∈ Lp((0, T)×Ω) and∫

Ω

∫ T

0
[0 I1−γ1

t (|v|p−1u)ϕ + u0(
C
t Dα

T ϕ)]dtdx =
∫

Ω

∫ T

0
u(−4ϕ)dtdx +

∫
Ω

∫ T

0
u(C

t Dα
T ϕ)dtdx,

∫
Ω

∫ T

0
[0 I1−γ2

t (|u|q−1u)ψ + v0(
C
t Dβ

Tψ)]dtdx =
∫

Ω

∫ T

0
v(−4ψ)dtdx +

∫
Ω

∫ T

0
v(C

t Dβ
Tψ)dtdx

for every ϕ, ψ ∈ C1,2([0, T]× Ω̄) with ϕ = ψ = 0 on ∂Ω and ϕ(T, x) = ψ(T, x) = 0 for x ∈ Ω̄.

The following Lemma asserts that, for problem (1), a mild solution is a weak solution.
We omit the proof of this result because it is similar to that in [22,33].

Lemma 3. Let T > 0 and p, q ≥ 1. Assume that u0, v0 ∈ C0(Ω) and u, v ∈ C([0, T], C0(Ω)). If
(u, v) is a mild solution of problem (1), then (u, v) is also a weak solution of problem (1).
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3. Blow-Up and Global Existence

Firstly, we can establish the following local solvability result for problem (1) by an
analogous argument to that in [32,33].

Theorem 1. Let 0 < α, β ≤ 1, 0 ≤ γ1, γ2 < 1 and p, q ≥ 1, pq > 1. For given u0, v0 ∈
C0(Ω), there exists T = T(u0, v0) > 0 such that (1) has a unique mild solution (u, v) ∈
C([0, T], C0(Ω)) × C([0, T], C0(Ω)). The solution (u, v) can be uniquely continued up to a
maximal existence interval [0, T∗), where either T∗ = +∞ or

lim sup
t→T−∗

[‖u‖L∞(Ω) + ‖v‖L∞(Ω)] = +∞.

In addition, if u0, v0 ≥ 0, u0 + v0 6≡ 0, then u(t, x), v(t, x) > 0 for (t, x) ∈ (0, T∗)×Ω.

We say that (u, v) blows up in a time T∗ if

lim sup
t→T−∗

‖u(t)‖L∞(Ω) = lim sup
t→T−∗

‖v(t)‖L∞(Ω) = +∞.

In the case γ1 ≤ α, we can prove the following results.

Theorem 2. Let p, q ≥ 1, pq > 1, β1 = 1− γ1, β2 = 1− γ2, γ1 ≤ α and γ2 ≤ β. Assume that
u0, v0 ∈ C0(Ω).

(i) If β1+pβ2
pq−1 ≥ γ1 or β2+qβ1

pq−1 ≥ γ2, and u0, v0 ≥ 0, u0 + v0 6≡ 0, then the mild solution of (1)
blows up in a finite time.

(ii) If β1+pβ2
pq−1 < γ1, β2+qβ1

pq−1 < γ2 and ‖u0‖L∞(Ω), ‖v0‖L∞(Ω) are sufficiently small, then
problem (1) has a global solution (u, v). Moreover, there exists a constant C > 0 such that

‖u(t)‖L∞(Ω) ≤ C(1 + t)−
β1+pβ2

pq−1 , ‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for t > 0.

Proof. (i) We denote by λ1 the first eigenvalue of −4 in H1
0(Ω) and by ϕ1 the correspond-

ing eigenfunction. We choose ϕ1 > 0 and
∫

Ω ϕ1(x)dx = 1. It is easy to see that ϕ1 ∈ C2(Ω̄)
and ϕ1(x) = 0, x ∈ ∂Ω. Suppose that (u, v) is the mild solution of (1) obtained by Theo-
rem 1 and the maximal existence time T∗ = +∞. Then, it follows from Theorem 1 and
Lemma 3 that u, v > 0 for (t, x) ∈ (0,+∞)×Ω, and (u, v) is also a weak solution of (1)
for every T > 0. Next, we choose ϕ(t, x) = ψ(t, x) = ϕ1(x)ψT(t) in Definition 2, where
ψT ∈ C1([0, T]) satisfies ψT ≥ 0 and ψT(T) = 0, and then∫

Ω

∫ T

0
[0 I1−γ1

t (vp)ϕ1ψT + u0 ϕ1(
C
t Dα

TψT)]dtdx =
∫

Ω

∫ T

0
[λ1uϕ1ψT + uϕ1(

C
t Dα

TψT)]dtdx. (23)

∫
Ω

∫ T

0
[0 I1−γ2

t (uq)ϕ1ψT + v0 ϕ1(
C
t Dβ

TψT)]dtdx =
∫

Ω

∫ T

0
[λ1vϕ1ψT + vϕ1(

C
t Dβ

TψT)]dtdx. (24)

Denote f (t) =
∫

Ω uϕ1dx and g(t) =
∫

Ω vϕ1dx. It is easy to confirm that f , g ∈
C([0, T]), f (0), g(0) ≥ 0 and f (t), g(t) > 0 for t ∈ (0, T]. Using (23), (24), (6) and Jensen’s
inequality, we can obtain that∫ T

0
gp(t Iβ1

T ψT)dt + f (0)
∫ T

0

C
t Dα

TψTdt ≤ λ1

∫ T

0
f ψTdt +

∫ T

0
f (C

t Dα
TψT)dt, (25)

∫ T

0
f q(t Iβ2

T ψT)dt + g(0)
∫ T

0

C
t Dβ

TψTdt ≤ λ1

∫ T

0
gψTdt +

∫ T

0
g(C

t Dβ
TψT)dt. (26)

In addition, Lemma 1 yields 0 I1−α
t ( f − f (0)) ∈ AC([0, T]) and 0 I1−β

t (g − g(0)) ∈
AC([0, T]). Thus, we deduce from (25), (26), (6) and (7) that
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∫ T

0
(0 Iβ1

t gp)ψTdt ≤ λ1

∫ T

0
f ψTdt +

∫ T

0
[ f (t)− f (0)]Ct Dα

TψTdt = λ1

∫ T

0
f ψTdt +

∫ T

0

C
0 Dα

t f ψTdt,

∫ T

0
(0 Iβ2

t f q)ψTdt ≤ λ1

∫ T

0
gψTdt +

∫ T

0
[g(t)− g(0)]Ct Dβ

TψTdt = λ1

∫ T

0
gψTdt +

∫ T

0

C
0 Dβ

t gψTdt.

Due to the arbitrariness of ψT , we obtain

C
0 Dα

t f + λ1 f ≥ 0 Iβ1
t gp, C

0 Dβ
t g + λ1g ≥ 0 Iβ2

t f q, t ∈ [0, T]. (27)

Note that max{1 − pγ2 + p(1 − qγ1), 1 − qγ1 + q(1 − pγ2)} ≥ 0 if and only if
max{ pβ2+β1

pq−1 − γ1, β2+qβ1
pq−1 − γ2} ≥ 0. We can obtain a contradiction by (27) and

Lemma 2(v). Hence, T∗ < +∞ and by Theorem 1, we know

lim sup
t→T−∗

[‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)] = +∞.

Furthermore, it is easy to show that lim supt→T−∗
‖u(t)‖L∞(Ω) =

lim supt→T−∗
‖v(t)‖L∞(Ω) = +∞. In fact, if u is bounded on [0, T∗) × Ω, then the sec-

ond equation would lead to a uniform bound on v, which yields a contradiction. The proof
is completed.

(ii) Set

X = {(u, v) ∈ L∞((0, ∞), L∞(Ω))× L∞((0, ∞), L∞(Ω)) | ‖(u, v)‖ < ∞},

where

‖(u, v)‖ = max
{

sup
t>0

(1 + t)
β1+pβ2

pq−1 ‖u(t)‖L∞(Ω), sup
t>0

(1 + t)
β2+qβ1

pq−1 ‖v(t)‖L∞(Ω)

}
.

We define the operator Φ on X as Ψ(u, v)(t) = (Ψ1(v), Ψ2(u)),

Ψ1(v)(t) = Pα(t)u0 +
1

Γ(β1)

∫ t

0
(t− s)α−1Sα(t− s)

∫ s

0
(s− τ)−γ1 |v|p−1v(τ)dτds,

Ψ2(u)(t) = Pβ(t)u0 +
1

Γ(β2)

∫ t

0
(t− s)β−1Sβ(t− s)

∫ s

0
(s− τ)−γ1 |u|q−1u(τ)dτds.

Fix K > 0 and let BK = {(u, v) ∈ X | ‖(u, v)‖ ≤ K}. Note that p(β2+qβ1)
pq−1 < 1 if and

only if pβ2+β1
pq−1 < γ1, and q(β1+pβ2)

pq−1 < 1 if and only if qβ1+β2
pq−1 < γ2. Hence, it follows from

(9) and (11) that there exists a constant C > 0 such that, for u0, v0 ∈ C0(Ω),

(1 + t)
β1+pβ2

pq−1 ‖Pα(t)u0‖L∞(Ω) ≤ C(1 + t)
β1+pβ2

pq−1

∫ +∞

0
φα(θ)e−λ1tαθdθ‖u0‖L∞(Ω)

= C(1 + t)
β1+pβ2

pq−1 Eα(−λ1tα)‖u0‖L∞(Ω)

≤ C(1 + t)
β1+pβ2

pq−1 −α‖u0‖L∞(Ω), (28)

(1 + t)
β2+qβ1

pq−1 ‖Pβ(t)v0‖L∞(Ω) ≤ C(1 + t)
β2+qβ1

pq−1 −β‖v0‖L∞(Ω). (29)

Moreover, for any (u, v) ∈ BK, we deduce from (11) that
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(1 + t)
β1+pβ2

pq−1 ‖Ψ1(v))− Pα(t)u0‖L∞(Ω)

≤C(1 + t)
β1+pβ2

pq−1

∫ t

0

∫ s

0
(t− s)α−1(s− τ)−γ1

∫ +∞

0
θφα(θ)e−λ1(t−s)αθdθ‖v(τ)‖p

L∞(Ω)
dτds

≤C(1 + t)
β1+pβ2

pq−1

∫ t

0

∫ s

0
(t− s)α−1(s− τ)−γ1 Eα,α(−λ1(t− s)α)‖v(τ)‖p

L∞(Ω)
dτds

≤CKp(1 + t)
β1+pβ2

pq−1

∫ t

0

∫ s

0
(t− s)α−1(s− τ)−γ1 Eα,α(−λ1(t− s)α)(1 + τ)

− p(β2+qβ1)
pq−1 dτds

≤CKp(1 + t)
β1+pβ2

pq−1

∫ t

0
(t− s)α−1Eα,α(−λ1(t− s)α)

∫ s

0
(s− τ)−γ1 τ

− p(β2+qβ1)
pq−1 dτds

=CKp(1 + t)
β1+pβ2

pq−1

∫ t

0
(t− s)α−1Eα,α(−λ1(t− s)α)sβ1−

p(β2+qβ1)
pq−1 ds, (30)

(1 + t)
β2+qβ1

pq−1 ‖Ψ2(u))− Pβ(t)u0‖L∞(Ω)

≤CKq(1 + t)
β2+qβ1

pq−1

∫ t

0
(t− s)β−1Eβ,β(−λ1(t− s)β)sβ2−

q(β1+pβ2)
pq−1 ds. (31)

For any (u1, v1), (u2, v2) ∈ BK, using some arguments analogous to those used above,
we derive that there exists a constant C > 0 such that

(1 + t)
β1+pβ2

pq−1 ‖Ψ1(v1))−Ψ1(v2))‖L∞(Ω)

≤CKp−1(1 + t)
β1+pβ2

pq−1

∫ t

0
(t− s)α−1Eα,α(−λ1(t− s)α)

∫ s

0
(s− τ)−γ1 τ

− p(β2+qβ1)
pq−1 dτds‖u− v‖

≤CKp−1(1 + t)
β1+pβ2

pq−1

∫ t

0
(t− s)α−1Eα,α(−λ1(t− s)α)sβ1−

p(β2+qβ1)
pq−1 ds‖u− v‖, t > 0, (32)

(1 + t)
β2+qβ1

pq−1 ‖Ψ2(u1))−Ψ2(u2))‖L∞(Ω)

≤CKq−1(1 + t)
β2+qβ1

pq−1

∫ t

0
(t− s)β−1Eβ,β(−λ1(t− s)β)sβ2−

q(β1+pβ2)
pq−1 ds‖u− v‖, t > 0. (33)

Since max{ p(β2+qβ1)
pq−1 , q(β1+pβ2)

pq−1 } < 1 and Eα,α(z), Eβ,β(z) are entire functions, we know
that, for given t > 0,

(t− s)α−1Eα,α(λ1(t− s)α)sβ1−
p(β2+qβ1)

pq−1 ∈ L1(0, t),

(t− s)β−1Eβ,β(λ1(t− s)β)sβ2−
q(β1+pβ2)

pq−1 ∈ L1(0, t).

Thus, the dominated convergence theorem and (8) imply that∫ t

0
(t− s)α−1Eα,α(−λ1(t− s)α)sβ1−

p(β2+qβ1)
pq−1 ds

=
∞

∑
k=0

∫ t

0

(−λ1)
k(t− s)αk+α−1sβ1−

p(β2+qβ1)
pq−1

Γ(αk + α)
ds

= Γ(1 + β1 −
p(β2 + qβ1)

pq− 1
)tα− β1+pβ2

pq−1 E
α,α+1+β1−

p(β2+qβ1)
pq−1

(−λ1tα),

∫ t

0
(t− s)β−1Eβ,β(−λ1(t− s)β)sβ2−

q(β1+pβ2)
pq−1 ds

= Γ(1 + β2 −
q(β1 + pβ2)

pq− 1
)tβ− β2+qβ1

pq−1 E
β,β+1+β2−

q(β1+pβ2)
pq−1

(−λ1tβ). (34)
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Note that γ1 ≤ α, γ2 ≤ β. Then, β1+pβ2
pq−1 < γ1 ≤ α and β2+qβ1

pq−1 < γ2 ≤ β. Hence,
it follows from (9) and (28)–(33) that we can choose ‖u0‖L∞(Ω), ‖v0‖L∞(Ω) and K small
enough so that Ψ is a contraction on BK. As a result, Ψ possesses a unique fixed point
(u, v) ∈ BK. Evidently, u, v ∈ C([0, ∞), C0(Ω)). We have thus proved the theorem.

Theorem 3. Let p, q ≥ 1, pq > 1, γ1 ≤ α, γ2 > β and u0, v0 ∈ C0(Ω).

(i) If β1+pβ2
pq−1 ≥ γ1 or β2+qβ1

pq−1 > β, and u0, v0 ≥ 0, v0 6≡ 0, then the corresponding mild solution
(u, v) of (1) blows up in a finite time.

(ii) If β1+pβ2
pq−1 < γ1 and β2+qβ1

pq−1 ≤ β, then problem (1) admits a global solution (u, v) when

‖u0‖L∞(Ω) and ‖v0‖L∞(Ω) are sufficiently small. Moreover, ‖u(t)‖L∞(Ω) ≤ C(1+ t)−
β1+pβ2

pq−1 ,

‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for some constant C > 0.

Proof. (i) Suppose that the maximal existence interval of (u, v) is [0, T∗). According to the
proof of Theorem 2(i), we find that inequality (27) still holds in this case. Then, Lemma 2(i)
implies g(0) = 0 if β2+qβ1

pq−1 − β > 0. In addition, β1+pβ2
pq−1 ≥ γ1 if and only if 1− pγ2 + p(1−

qγ1) ≥ 0. Hence, it follows from Lemma 2(v) that T∗ < +∞.
(ii) In this case, our assumptions imply that β1+pβ2

pq−1 < γ1 ≤ α and β2+qβ1
pq−1 ≤ β < γ2.

Then, p(β2+qβ1)
pq−1 < 1, q(β1+pβ2)

pq−1 < 1. Proceeding as in the proof of Theorem 2(ii), we can
carry out the proof of this theorem.

When γ1 ≤ α and v0 ≡ 0, we can obtain that Theorem 2 remains true for every
β ∈ (0, 1) and γ2 ∈ [0, 1).

Theorem 4. Let p, q ≥ 1, pq > 1, γ1 ≤ α and u0 ∈ C0(Ω), v0 ≡ 0.

(i) If β1+pβ2
pq−1 ≥ γ1 or β2+qβ1

pq−1 ≥ γ2, and u0 ≥ 0, u0 6≡ 0, then the corresponding mild solution
(u, v) of (1) blows up in a finite time.

(ii) If β1+pβ2
pq−1 < γ1 and β2+qβ1

pq−1 < γ2, then problem (1) admits a global solution (u, v) providing
that ‖u0‖L∞(Ω) and ‖v0‖L∞(Ω) are sufficiently small. Moreover, ‖u(t)‖L∞(Ω) ≤ C(1 +

t)−
β1+pβ2

pq−1 , ‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for some constant C > 0.

Proof. (i) The result follows from Theorem 2(i).
(ii) In this case, the estimate (29) holds for 0 < β ≤ 1 due to v0 ≡ 0. Moreover,

our assumptions imply β1+pβ2
pq−1 < γ1 ≤ α, p(β2+qβ1)

pq−1 < 1 and q(β1+pβ2)
pq−1 < 1. Then, when

β ≥ β2+qβ1
pq−1 , we can obtain the desired conclusion by some arguments analogous to those in

Theorem 2(ii). For the case β < β2+qβ1
pq−1 , we can estimate (31) and (33) for t > 1 by using (34).

When 0 ≤ t ≤ 1, we can easily see that the term of the right hand of (31) is less than CMq

and the term of the right hand of (34) is less than CKq−1‖u− v‖Y. Thus, the conclusion of
this theorem also holds in the case β < β2+qβ1

pq−1 .

Remark 2. (i) We deduce from the proof of Theorem 4 that the conclusions remain true for the case
γ2 ≤ β, α ∈ (0, 1) and u0 ≡ 0, v0 6≡ 0.

(ii) It follows from Theorem 2 that our results coincide with those in [36] when α = β = 1.
Hence, our results extend those in [36].

(iii) Theorems 3 and 4 imply that, for the case γ1 ≤ α and γ2 > β, the properties of solutions
of (1) can be different if one of the initial values is identically vanishing. This is impossible for the
classical reaction diffusion system (i.e., (1) with α = β = 1) because of γ2 < 1 = β.

Finally, we consider the case γ1 > α, and have the following results.
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Theorem 5. Let p, q ≥ 1, pq > 1, γ1 > α, γ2 > β and u0, v0 ∈ C0(Ω).

(i) If β1+pβ2
pq−1 > α or β2+qβ1

pq−1 > β and u0, v0 ≥ 0, u0, v0 6≡ 0, then the corresponding mild
solution (u, v) of (1) blows up in a finite time.

(ii) If β1+pβ2
pq−1 ≤ α, β2+qβ1

pq−1 ≤ β and ‖u0‖L∞(Ω), ‖v0‖L∞(Ω) are sufficiently small, then prob-
lem (1) has a global solution (u, v). Moreover, there exists a constant C > 0 such that

‖u(t)‖L∞(Ω) ≤ C(1 + t)−
β1+pβ2

pq−1 , ‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for t > 0.

Proof. (i) Suppose that the maximal existence interval of (u, v) is [0,+∞). In terms of the
proof of Theorem 2(i), we see that inequality (27) remains valid for every T > 0 in this case.
Note that Lemma 2(i) implies that f (0) = 0 or g(0) = 0 if max{ β1+pβ2

pq−1 − α, β2+qβ1
pq−1 − β} > 0.

This yields a contradiction. The proof is completed.
(ii) From our assumptions, we have β1+pβ2

pq−1 ≤ α < γ1, β2+qβ1
pq−1 ≤ β < γ2 and

p(β2+qβ1)
pq−1 < 1, q(β1+pβ2)

pq−1 < 1. Then, by proceeding as in the proof of Theorem 2(ii), the
conclusion holds.

Theorem 6. Let p, q ≥ 1, pq > 1, γ1 > α, γ2 ≤ β and u0, v0 ∈ C0(Ω). Assume that (u, v) is
the corresponding mild solution of (1).

(i) If β1+pβ2
pq−1 > α or β2+qβ1

pq−1 ≥ γ2 and u0, v0 ≥ 0, u0 6≡ 0, then (u, v) blows up in a finite time.

(ii) If β1+pβ2
pq−1 ≤ α, β2+qβ1

pq−1 < γ2 and ‖u0‖L∞(Ω), ‖v0‖L∞(Ω) are sufficiently small, then the
maximal existence time T∗ = +∞ and there exists a constant C > 0 such that ‖u(t)‖L∞(Ω) ≤

C(1 + t)−
β1+pβ2

pq−1 , ‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for t > 0.

Proof. (i) Suppose that the maximal existence time T∗ = +∞. In view of the proof of
Theorem 2(i), we see that inequality (27) remains true for every T > 0 in this case. Hence,
it follows from Lemma 2(i) that f (0) = 0 if β1+pβ2

pq−1 > α, which contradicts u0 6≡ 0. On the

other hand, if β2+qβ1
pq−1 ≥ γ2, we can obtain a contradiction by Lemma 2(v).

(ii) Since our assumptions imply that β1+pβ2
pq−1 ≤ α < γ1, β2+qβ1

pq−1 < γ2 ≤ β and
p(β2+qβ1)

pq−1 < 1, q(β1+pβ2)
pq−1 < 1. Then, we obtain the desired conclusion by some arguments

similar to the proof of Theorem 2(ii).

Theorem 7. Let p, q ≥ 1, pq > 1, γ1 > α and u0 ∈ C0(Ω), v0 ≡ 0. Assume that (u, v) is the
corresponding mild solution of (1).

(i) If β1+pβ2
pq−1 > α or β2+qβ1

pq−1 ≥ γ2, and u0 ≥ 0, u0 6≡ 0, then (u, v) blows up in a finite time.

(ii) If β1+pβ2
pq−1 ≤ α and β2+qβ1

pq−1 < γ2, then (u, v) is a global solution of problem (1) when

‖u0‖L∞(Ω) and ‖v0‖L∞(Ω) are sufficiently small. Moreover, ‖u(t)‖L∞(Ω) ≤ C(1+ t)−
β1+pβ2

pq−1 ,

‖v(t)‖L∞(Ω) ≤ C(1 + t)−
β2+qβ1

pq−1 for some constant C > 0.

Proof. (i) The result follows from the proof of Theorem 6(i).
(ii) In this case, the estimate (29) holds for every 0 < β ≤ 1. In addition, our as-

sumptions imply β1+pβ2
pq−1 ≤ α < γ1, p(β2+qβ1)

pq−1 < 1 and q(β1+pβ2)
pq−1 < 1. Hence, we obtain

the desired conclusion by repeating some arguments in the proof of Theorem 2(ii) and
Theorem 4(ii).

Remark 3. Our results coincide with those in [34] when α = β, γ1 = γ2 and p = q > 1, and
those in [36] when α = β = 1. Thus, we extend the results in [34,36]. Comparing the classical
diffusion system (i.e., (1) with α = β = 1), some new cases appear for problem (1). Moreover, we
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obtain some results, which are different from the classical diffusion system. Hence, our results are
not just direct generalizations of the case α = β = 1.

Remark 4. For every p, q ≥ 1, pq > 1 and T > 0, we deduce from Lemma 2 and the proof of
Theorem 2(i) that if u0, v0 ≥ 0 satisfy

∫
Ω

u0(x)ϕ1(x)dx ≤ M[Tα+β1−
pβ2

pq−1−
pqβ1
pq−1 + Tα+β1−

p(β+β2)
pq−1 −

pqβ1
pq−1 + T−

pβ2
pq−1−

(α+β1)
pq−1 + T−

p(β+β2)
pq−1 −

(α+β1)
pq−1 ],

or

∫
Ω

v0(x)ϕ1(x)dx ≤ M[Tβ+β2−
qβ1

pq−1−
pqβ2
pq−1 + Tβ+β2−

q(α+β1)
pq−1 −

pqβ2
pq−1 + T−

qβ1
pq−1−

(β+β2)
pq−1 + T−

q(α+β1)
pq−1 −

(β+β2)
pq−1 ],

where M is a positive constant given in Lemma 2, then the maximal existence time T∗ of the mild
solution satisfies T∗ < T.

4. Conclusions

The main aim of this paper is to investigate the blow-up and global existence of the
solution of the initial boundary value problem (1). We firstly prove Lemma 2, where some
properties of the solutions for a fractional differential inequality system are studied. Our
result extends Lemma 5 in [36]. The proof of these estimates is based on the test function
method, the representation of solutions of the nonhomogeneous fractional differential
equations with constant coefficients, and the nonnegativity of the Mittag–Leffler functions
Eα,α(t) and Eα(t) for the case 0 < α < 1. Due to the memory effect of time fractional
derivative, the standard method by shifting the time could not be available for our problem.
We overcome this technical difficulty by the test function method. Moreover, since the
orders of time fractional derivatives for problem (1) can be different, some methods and
arguments used in [36] can not be directly applied to the study of problem (1). Secondly,
we assert that the mild solution is the weak solution and give the local solvability result for
problem (1). Finally, the blow-up results for problem (1) in different situations are proved
by the eigenfunction method combined with the estimates in Lemma 2. Furthermore, by
using the estimates of the solution operators Pα(t) and Sα(t), the asymptotic behavior of
the Mittag–Leffler function and a fixed point argument, we obtain the existence of global
solutions and the decay estimates of the solutions in the space L∞(Ω) when ‖u0‖L∞(Ω)

and ‖v0‖L∞(Ω) are sufficiently small. As a result, we determine the critical exponents of
parameters α, β, γ1 and γ2 in six different situations.

Our results extend ones in [34,36]. Some new results different from the ones of classical
diffusion systems are obtained. Comparing with the results of classical diffusion system
and time fractional diffusion equation, we find that the critical exponents of problem (1)
are more delicate. Our results show that, in some cases, whether one of the initial values
is identically equal to zero has a great influence on blow-up and global existence of the
solutions for problem (1). However, this conclusion is false for the classical diffusion system
because we can shift the time for the classical diffusion system. This indicates that the
nonlocality of time fractional derivatives really affect properties of the solutions for time
fractional diffusion systems.

In terms of practical applications and theoretical interests, ones may be more concerned
with the space-time fractional diffusion system than what we have studied in the current
paper. However, from the proof of our results, we know that the conclusions of this paper
are still valid when the Laplace operator is replaced by the fractional Laplace operator
supplemented with the exterior Dirichlet condition on RN \Ω. On the other hand, ones
may be concerned with the sup-diffusion case of problem (1), i.e., 1 < α < 2 or 1 < β < 2.
However, it will be definitely more challenging. For example, the nonnegativity of the
Mittag–Leffler function Eα,α(t) is invalid in the case 1 < α < 2, and thus the method used
in this paper can not be applied to study the sup-diffusion case. Nevertheless, we are still
considering this more generalized case, and we expect to establish parallel results.
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