New Explicit Propagating Solitary Waves Formation and Sensitive Visualization of the Dynamical System
Abstract
:1. Introduction
2. Beta-Derivative and Its Properties
3. Representation of the ϕ6-Model Expansion Method
No. | ||||
1 | 1 | |||
2 | ||||
3 | −1 | |||
4 | 1 | |||
5 | ||||
6 | −1 | |||
7 | 1 | |||
8 | 1 | |||
9 | 1 | |||
10 | 1 | |||
11 | ||||
12 | ||||
13 | ||||
14 |
Function | Function | ||||
1 | 1 | ||||
1 | 1 | ||||
4. Appliance of ϕ6-Model Expansion Method
Kerr Law
5. Graphical Demonstration and Explanation
6. Sensitive Visualization
7. Conclusions
- There are 28 analytical solutions discovered with fourteen distinct families.
- The acquired wave patterns are based on Jacobi elliptic functions, with hyperbolic solutions obtained for limiting case and trigonometric solutions developed for limiting case
- Every obtained traveling wave solution has a related condition constructed to guarantee the existence of the solution.
- On suitable values of the involved parameters, which satisfy the specified constraints, 3D and contour real and imaginary profiles of the solutions are shown.
- The fractional order parameter is responsible for controlling the singularity of the soliton solution.
- The sensitivity analysis ensures that the model is sensitive to initial conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, S.U.; Ahmad, J. Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing. Alex. Eng. J. 2020, 60, 1339–1354. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Younis, M.; Bilal, M.; Younas, U.; Rehman, S.U.; Gao, W. Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics. Mod. Phys. Lett. B 2020, 34, 2050404. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Bilal, M.; Younis, M.; Rizvi, S.T.R. Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 2021, 35, 2150044. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Rehman, S.U.; Younis, M.; Rizvi, S.T.R.; Althobaiti, S.; Makhlouf, M.M. Modulation instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Pochhammer-Chree equation. Phys. Scr. 2021, 96, 045202. [Google Scholar] [CrossRef]
- Osman, M.S. One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dyn. 2019, 96, 1491–1496. [Google Scholar] [CrossRef]
- Younis, M.; Younas, U.; Bilal, M.; Rehman, S.U.; Rizvi, S.T.R. Investigation of optical solitons with Chen-Lee-Liu equation of monomode fibers by five free parameters. Indian J. Phys. 2021, 96, 1539–1546. [Google Scholar] [CrossRef]
- Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; El-Rashidy, K.; Mahmoud, S.F. Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms. Results Phys. 2021, 23, 103959. [Google Scholar] [CrossRef]
- Younis, M.; Younas, U.; Rehman, S.R.; Bilal, M.; Waheed, A. Optical bright–dark and Gaussian soliton with third order dispersion. Optik 2017, 134, 233–238. [Google Scholar] [CrossRef]
- Machado, J.T.V.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Bemerkungen zum Begriff des differential quotienten gebrochener Ordnung. Vierteljahrsschr. Der Nat. Ges. Zürich 1917, 62, 296–302. [Google Scholar]
- Riesz, M. L’intégrale de Riemann-Liouville et le problème de Cauchy pour l’équation des ondes. Bull. De La Société Mathématique De Fr. 1939, 67, 153–170. [Google Scholar] [CrossRef]
- Wang, K.L.; Liu, S.Y. He’s fractional derivative and its application for fractional Fornberg-Whitham equation. Ther. Sci. 2016, 1, 54. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, OH, USA, 2009. [Google Scholar]
- Kaikina, E.I. Fractional derivative of Abel-type on a Half-Line. Trans. Am. Math. Soc. 2010, 364, 5149–5172. [Google Scholar] [CrossRef]
- Miller, S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of Fractional differential without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 1–13. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel. Theory and application to Heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Jhangeer, A.; Almusawa, H.; Rahman, R.U. Fractional derivative-based performance analysis to Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Results Phys. 2022, 36, 105356. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, T.C. A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations. J. Phys. A Math. Theor. 2007, 40, 227. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, T.C. A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations. Appl. Math. Comput. 2006, 183, 1190–1200. [Google Scholar] [CrossRef]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Kalimbetov, B.; Abylkasymova, E.; Beissenova, G. On the asymptotic solutions of singulary perturbed differential systems of fractional order. J. Math. Comput. Sci. 2022, 24, 165–172. [Google Scholar] [CrossRef]
- Asjad, M.I.; Ullah, N.; Rehman, H.; Baleanu, D. Optical solitons for conformable space-time fractional nonlinear model. J. Math. Comput. Sci. 2022, 27, 28–41. [Google Scholar] [CrossRef]
- Wang, M.; Li, X. Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 2005, 343, 48–54. [Google Scholar] [CrossRef]
- Razzaq, W.; Zafar, A.; Ahmed, A.M. Construction solitons for fractional nonlinear Schrödinger equation with β-time derivative by the new sub-equation method. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Osman, M.S.; Ghanbari, B.; Machado, J.A.T. New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law non-linearity. Eur. Phys. J. Plus 2019, 134, 20–30. [Google Scholar] [CrossRef]
- Chu, Y.M.; Shallal, M.A.; Alizamini, S.M.M.; Rezazadeh, H.; Javeed, S.; Baleanu, D. Application of modified extended Tanh technique for solving complex Ginzburg-Landau equation considering Kerr law non-linearity. Comput. Mater. Contin. 2020, 66, 1369–1378. [Google Scholar]
- Zhu, W.J.; Xia, Y.H.; Bai, Y.Z. Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law non-linearity. Appl. Math. Comput. 2020, 382, 125342. [Google Scholar]
- Liu, W.; Yu, W.; Yang, C.; Liu, M.; Zhang, Y.; Lei, M. Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers. Nonlinear Dyn. 2017, 89, 2933–2939. [Google Scholar] [CrossRef]
- Inc, M.; Aliyu, A.I.; Yusuf, A.; Baleanu, D. Optical solitons for complex Ginzburg-Landau model in nonlinear optics. Optik 2018, 158, 368–375. [Google Scholar] [CrossRef]
- Arnous, A.H.; Seadawy, A.R.; Alqahtani, R.T.; Biswas, A. Optical solitons with complex Ginzburg-Landau equation by modified simple equation method. Optik 2017, 144, 475–480. [Google Scholar] [CrossRef]
- Khater, A.H.; Callebaut, D.K.; Seadawy, A.R. General soliton solutions of an n-dimensional complex Ginzburg-Landau equation. Phys. Scr. 2000, 62, 353–357. [Google Scholar] [CrossRef]
- Das, A.; Biswas, A.; Ekici, M.; Zhou, Q.; Alshomrani, A.S.; Belic., M.R. Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chin. J. Phys. 2019, 61, 255–261. [Google Scholar] [CrossRef]
- Al-Ghafri, K.S. Soliton Behaviours for the Conformable Space–Time Fractional Complex Ginzburg–Landau Equation in Optical Fibers. Symmetry 2020, 12, 219. [Google Scholar] [CrossRef]
- Huang, C.; Li, Z. New Exact Solutions of the Fractional Complex Ginzburg–Landau Equation. Math. Probl. Eng. 2021, 2021, 6640086. [Google Scholar] [CrossRef]
- Yaşar, E.; Yıldırım, Y.; Zhou, Q.; Moshokoa, S.P.; Ullah, M.Z.; Triki, H.; Biswas, A.; Belic, M. Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlatti. Microstruct 2017, 111, 487–498. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Baskonus, H.M.; Bulut, A. Optical solitons and other solutions to the conformable space-time fractional complex Ginzburg-Landau equation under Kerr law non-linearity. Pramana J. Phys. 2018, 91, 4. [Google Scholar] [CrossRef]
- Abdou, M.A.; Soliman, A.A.; Biswas, A.; Ekici, M.; Zhou, Q.; Moshokoa, S.P. Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation. Optik 2018, 171, 463–467. [Google Scholar] [CrossRef]
- Arshed, S. Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media. Optik 2018, 160, 322–332. [Google Scholar] [CrossRef]
- Ghanbari, B.; Gómez-Aguilar, J.F. Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law non-linearity. Rev. Mex. De Fis. 2019, 65, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.H.; Wang, B.H.; Dai, C.Q. Fractional traveling wave solutions of the (2+1)-dimensional fractional complex Ginzburg-Landau equation via two methods. Math. Meth. Appl. Sci. 2020, 43, 1–9. [Google Scholar] [CrossRef]
- Hussain, A.; Jhangeer, A. Optical solitons of fractional complex Ginzburg-Landau with conformable, beta, and M-truncated derivatives: A comparative study. Adv. Differ. Eqs. 2020, 2020, 612. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Mariyam, H. A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 2020, 256, 168626. [Google Scholar] [CrossRef]
- Sadaf, M.; Akram, G.; Dawood, M. An investigation of fractional complex Ginzburg–Landau equation with Kerr law non-linearity in the sense of conformable, beta and M-truncated derivatives. Opt. Quantum Electron. 2022, 54, 248. [Google Scholar] [CrossRef]
- Zafar, A.; Shakeel, M. Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes. Opt. Quantum Electron. 2022, 54, 5. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A.G.; Elshater, M.E.M. New ϕ6-model expansion method and its applications to the resonant nonlinear Schrodinger ¨ equation with parabolic law non-linearity. Eur. Phys. J. Plus 2018, 133, 417. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A.G. New generalized ϕ6-model expansion method and its applications to the (3+1) dimensional resonant nonlinear Schrodinger ¨ equation with parabolic law non-linearity. Optik 2020, 214, 164702. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A.G. Jacobi elliptic solutions, solitons and other solutions for the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic non-linearity. Eur. Phys. J. Plus 2017, 132, 475. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A.G. The ϕ6-model expansion method for solving the nonlinear conformable time-fractional Schrodinger ¨ equation with fourth-order dispersion and parabolic law non-linearity. Opt. Quant. Electron. 2018, 50, 164. [Google Scholar] [CrossRef]
- Zayed, E.M.; Al-Nowehy, A.G. Many new exact solutions to the higher-order nonlinear Schrodinger equation with derivative non-Kerr nonlinear terms using three different techniques. Optik 2017, 143, 84–103. [Google Scholar] [CrossRef]
- Biswas, A.; Konar, S. Introduction to Non-Kerr Law Optical Solitons; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulqarnain, R.M.; Ma, W.-X.; Eldin, S.M.; Mehdi, K.B.; Faridi, W.A. New Explicit Propagating Solitary Waves Formation and Sensitive Visualization of the Dynamical System. Fractal Fract. 2023, 7, 71. https://doi.org/10.3390/fractalfract7010071
Zulqarnain RM, Ma W-X, Eldin SM, Mehdi KB, Faridi WA. New Explicit Propagating Solitary Waves Formation and Sensitive Visualization of the Dynamical System. Fractal and Fractional. 2023; 7(1):71. https://doi.org/10.3390/fractalfract7010071
Chicago/Turabian StyleZulqarnain, Rana Muhammad, Wen-Xiu Ma, Sayed M. Eldin, Khush Bukht Mehdi, and Waqas Ali Faridi. 2023. "New Explicit Propagating Solitary Waves Formation and Sensitive Visualization of the Dynamical System" Fractal and Fractional 7, no. 1: 71. https://doi.org/10.3390/fractalfract7010071
APA StyleZulqarnain, R. M., Ma, W. -X., Eldin, S. M., Mehdi, K. B., & Faridi, W. A. (2023). New Explicit Propagating Solitary Waves Formation and Sensitive Visualization of the Dynamical System. Fractal and Fractional, 7(1), 71. https://doi.org/10.3390/fractalfract7010071