Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus
Abstract
:1. Introduction and Preliminaries
- (i)
- , , , ,or
- (ii)
- , , and
- Required formulas
2. Three General Double-Series Identities
3. Transforming Srivastava-Daoust Functions to Kampé de Fériet Function
4. Application of Fractional Calculus
5. Certain Instances of Transformations (50)–(52)
- (i)
- (ii)
- (i)
- It is interesting to recall a transformation formula for the Kampé de Fériet function (see [67], Equation (3.3)):
- (ii)
6. Summation Formulas for Kampé de Fériet and
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions, Encyclopedia of Mathematics and its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge Math. Tract No. 32; Cambridge University Press: Cambridge, UK, 1935; Reprinted by Stechert-Hafner: New York, NY, USA, 1964. [Google Scholar]
- Lebedev, N.N. Special Functions and their Applications; Silverman, R.A., Translator; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Co., Inc.: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Co.: Bronx, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Appell, P.; de Fériet, J.K. Fonctions Hypergéométriques et Hypersphériques-Polynômes d’ Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. R. Soc. Edinb. 1920, 4, 73–96. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Co., Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- de Fériet, J.K. Les Functions hypergéométriques d’ordre supérieur à deux variables. C. R. Acad. Sci. 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Q. J. Math. 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Q. J. Math. 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Hái, N.T.; Marichev, O.I.; Srivastava, H.M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 1992, 164, 104–115. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. On Eulerian integrals associated with Kampé de Fériet function. Publ. Inst. Math. 1969, 9, 199–202. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. Certain generalized Neumann expansions associated with the Kampé de Fériet’s function. Nederl. Akad. Wetensch. Proc. Ser. A = Indag. Math. 1969, 31, 449–457. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Buschman, R.G.; Srivastava, H.M. Series identities and reducibility of Kampé de Fériet functions. Math. Proc. Camb. Philos. Soc. 1982, 91, 435–440. [Google Scholar] [CrossRef]
- Carlitz, L. Summation of a double hypergeometric series. Mat. Catania 1967, 22, 138–142. [Google Scholar]
- Chan, W.-C.C.; Chen, K.-Y.; Chyan, C.-J.; Srivastava, H.M. Some multiple hypergeometric transformations and associated reduction formulas. J. Math. Anal. Appl. 2004, 294, 418–437. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Srivastava, H.M. Series identities and associated families of generating functions. J. Math. Anal. Appl. 2005, 311, 582–599. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. On the reducibility of Kampé de Fériet function. Honam Math. J. 2014, 36, 345–355. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. Reducibility of the Kampé de Fériet function. Appl. Math. Sci. 2015, 9, 4219–4232. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taures J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Chu, W.-C.; Srivastava, H.M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions. J. Comput. Appl. Math. 2003, 156, 355–370. [Google Scholar] [CrossRef]
- Cvijović, D.; Miller, A.R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef]
- Exton, H. On the reducibility of the Kampé de Fériet function. J. Comput. Appl. Math. 1997, 83, 119–121. [Google Scholar] [CrossRef]
- Jain, R.N. Sum of a double hypergeometric series. Mat. Catania 1966, 21, 300–301. [Google Scholar]
- Karlsson, P.W. Some reduction formulae for double power series and Kampé de Fériet functions. Nederl. Akad. Wetensch. Proc. Ser. A = Indag. Math. 1984, 46, 31–36. [Google Scholar] [CrossRef]
- Kim, Y.S. On certain reducibility of Kampé de Fériet function. Honam Math. J. 2009, 31, 167–176. [Google Scholar] [CrossRef]
- Krupnikov, E.D. A Register of Computer Oriented Reduction of Identities for Kampé de Fériet Function; Novosibirsk, Russia, 1996. [Google Scholar]
- Rakha, M.A.; Awad, M.M.; Rathie, A.K. On a reducibility of the Kampé de Fériet function. Math. Methods Appl. Sci. 2015, 38, 2600–2605. [Google Scholar] [CrossRef]
- Saran, S. Reducibility of generalized Kampé de Fériet function. Ganita 1980, 31, 89–97. [Google Scholar]
- Shanker, O. An integral involving the G-function and Kampé de Fériet function. Proc. Camb. Philos. Soc. 1968, 64, 1041–1044. [Google Scholar] [CrossRef]
- Shanker, O.; Saran, S. Reducibility of Kampé de Fériet function. Ganita 1970, 21, 9–16. [Google Scholar]
- Sharma, B.L. Sum of a double series. Proc. Am. Math. Soc. 1975, 52, 136–138. [Google Scholar] [CrossRef]
- Sharma, B.L.; Abiodun, F.A. Some new summation formulae for hypergeometric series of two variable. Rend. Istit. Mat. Univ. Trieste 1976, 8, 94–100. Available online: http://hdl.handle.net/10077/6500 (accessed on 13 September 2023).
- Singal, R.P. Transformation formulae for the modified Kampé de Fériet function. Math. Stud. 1972, 40, 327–330. [Google Scholar]
- der Jeugt, J.V. Transformation formula for a double Clausenian hypergeometric series, its q-analogue, and its invariance group. J. Comput. Appl. Math. 2002, 139, 65–73. [Google Scholar] [CrossRef]
- der Jeugt, J.V.; Pitre, S.N.; Rao, K.S. Multiple hypergeometric functions and g-j coefficients. J. Phys. A Math. Gen. 1994, 27, 5251–5264. [Google Scholar] [CrossRef]
- der Jeugt, J.V.; Pitre, S.N.; Rao, K.S. Transformation and summation formulas for double hypergeometric series. J. Comput. Appl. Math. 1997, 83, 185–193. [Google Scholar] [CrossRef]
- Srivastava, H.M. A note on certain summation theorems for multiple hypergeometric series. Simon Stevin 1978, 52, 97–109. [Google Scholar]
- Srivastava, H.M. Some generalizations of Carlson’s identity. Boll. Union Mat. Ital. 1981, 18, 138–143. [Google Scholar]
- Whipple, F.J.W. Some transformations of generalized hypergeometric series. Proc. Lond. Math. Soc. 1927, 26, 257–272. [Google Scholar] [CrossRef]
- Karlsson, P.W. Reduction of certain multiple hypergeometric functions. Nederl. Akad. Wetensch. Proc. Ser. A = Indag. Math. 1982, 44, 285–287. [Google Scholar] [CrossRef]
- Karlsson, P.W. Some reducible generalized Kampé de Fériet functions. J. Math. Anal. Appl. 1983, 96, 546–550. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Sheppard, W.F. Summation of the coefficients of some terminating hypergeometric series. Proc. Lond. Math. Soc. 1912, 10, 469–478. [Google Scholar] [CrossRef]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Qureshi, M.I.; Paris, R.B.; Malik, S.H.; Shah, T.R. Two reduction formulas for the Srivastava-Daoust double hypergeometric function. Palest. J. Math. 2023, 12, 181–186. [Google Scholar]
- Gessel, I.; Stanton, D. Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 1982, 13, 295–308. [Google Scholar] [CrossRef]
- Andrews, G.E. Connection coefficient problems and partitions. In AMS Proceedings Symposia in Pure Mathematics 34; Ray-Chaudhuri, D., Ed.; American Mathematical Society: Providence, RI, USA, 1979; pp. 1–24. [Google Scholar]
- Whipple, F.J.W. Well-poised series and other generalized hypergeometric series. Proc. Lond. Math. Soc. 1926, 25, 525–544. [Google Scholar] [CrossRef]
- Bailey, W.N. Products of generalized hypergeometric series. Proc. Lond. Math. Soc. 1928, 28, 242–254. [Google Scholar] [CrossRef]
- Bailey, W.N. Some theorems concerning products of hypergeometric series. Proc. Lond. Math. Soc. 1935, 38, 377–384. [Google Scholar] [CrossRef]
- Exton, H. Multiple Hypergeometric Functions and Applications; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Sydney, Australia; Toronto, ON, Canada, 1976. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gould, G.G., Translator; More Special Functions: Nauka Moscow, Russia, 1986; Volume III, (In Russian). Gordon and Breach Science Publishers: New York, NY, USA; Philadelphia, PA, USA; London, UK; Paris, France; Montreux, Switzerland; Tokyo, Japan; Melbourne, Australia, 1990. [Google Scholar]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Choi, J.; Qureshi, M.I.; Bhat, A.H.; Majid, J. Reduction formulas for generalized hypergeometric series associated with new sequences and applications. Fractal Fract. 2021, 5, 150. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas; CRC Press: Boca Raton, FL, USA; Taylor & Fancis Group: Abingdon, UK; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: North-Holland, The Netherlands, 2006. [Google Scholar]
- Srivastava, H.M. Certain double integrals involving yypergeometric functions. J ˜n¯an¯abha Sect. A 1971, 1, 1–10. [Google Scholar]
- Clausen, T. Ueber die Fälle, wenn die Reihe von der Form y = etc. ein Quadrat von der Form z = etc. hat. J. Reine Angew. Math. 1828, 3, 89–91. [Google Scholar] [CrossRef]
- Orr, W.M.F. Theorems relating to the product of two hypergeometric series. Trans. Camb. Philos. Soc. 1899, 17, 1–15. [Google Scholar]
- Carlitz, L. A summation theorem for double hypergeometric series. Rend. Semin. Mat. Univ. Padova 1967, 37, 230–233. Available online: http://www.numdam.org/item?id=RSMUP_1967__37__230_0 (accessed on 13 September 2023).
- Srivastava, H.M. The sum of a multiple hypergeometric series. Indag. Math. 1977, 80, 448–452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, M.I.; Shah, T.U.R.; Choi, J.; Bhat, A.H. Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus. Fractal Fract. 2023, 7, 700. https://doi.org/10.3390/fractalfract7100700
Qureshi MI, Shah TUR, Choi J, Bhat AH. Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus. Fractal and Fractional. 2023; 7(10):700. https://doi.org/10.3390/fractalfract7100700
Chicago/Turabian StyleQureshi, Mohd Idris, Tafaz Ul Rahman Shah, Junesang Choi, and Aarif Hussain Bhat. 2023. "Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus" Fractal and Fractional 7, no. 10: 700. https://doi.org/10.3390/fractalfract7100700
APA StyleQureshi, M. I., Shah, T. U. R., Choi, J., & Bhat, A. H. (2023). Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus. Fractal and Fractional, 7(10), 700. https://doi.org/10.3390/fractalfract7100700