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Abstract: This paper presents an adaptive fixed-time fractional integral control for externally dis-
turbed Euler–Lagrange systems. In the first step of the control design, the approach of fractional-order
fixed-time integral nonsingular terminal sliding mode control (FoIFxTSM) is introduced. This scheme
combines the benefits of fractional calculus with integral sliding mode control, resulting in fast conver-
gence, smooth nonsingular control inputs, and fixed-time stability. By integrating an adaptive scheme,
the proposed method is used to control the dynamical system in the presence of uncertainty and
external perturbations. The findings of the fixed-time stability using Lyapunov analyses are provided
for the closed-loop system. The simulation results are compared with the adaptive fractional-order
sliding mode control scheme, and they show the better tracking and convergence performance of the
proposed method.

Keywords: adaptive integral sliding mode control; fixed-time convergence; Euler–Lagrange system;
fractional-order control

1. Introduction

The Euler–Lagrange equation, which describes the dynamics of a broad class of en-
gineering systems, is applied to the study and modeling of nonlinear systems. In recent
years, there has been an increased level of interest in the study of Euler–Lagrange systems.
Generally, Euler–Lagrange systems are representations of a variety of real-world practical
systems, such as mobile robot platforms [1,2], helicopter [3,4], oscillatory systems [5], air-
craft [6,7], pneumatic muscles [8], bipedal robots [9], robotic manipulators [10], cranes [11],
spacecraft [12], etc. These technologies have enormous potential uses in a variety of fields,
including military operations, the automation industry, surveillance, and space exploration.
Since this is a nonlinear system with a significant degree of mechanical instability, it necessi-
tates a high level of control and stability. As a result, it must be carefully controlled. Several
workable strategies have been presented for uncertain Euler–Lagrange systems that are
influenced by environmental disturbances. Therefore, in order to ensure that the system
continues to perform its intended functions in spite of the existence of unknown dynamics,
a robust adaptive control mechanism is constructed. One of the benefits of the methodology
that lies behind robust and adaptive schemes is that the control system becomes robust and
updates control parameters according to the current situation to ensure appropriate degree
of stability [13].

Intensive research attention focuses on the control of Euler–Lagrange systems [1].
Various methods in the literature have been proposed to handle the tracking problem, such
as disturbance observer [11], sliding-mode approach [12], expanded proportional–integral
controller [14], and adaptive fuzzy control [15]. Adaptive control, a well-recognized and
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widely used control method, is becoming increasingly prevalent in control engineering
applications. It exhibits exceptional potential for adjusting to different environments under
unknown and uncertain dynamics, hence enhancing the tracking performance of closed-
loop systems [16]. Performance degradation and instability may result from parametric
and non-parametric uncertainties; therefore, further developments in control theory are
introduced to use adaptive control to deal with unknown uncertainties [13]. Moreover,
sliding mode control (SMC) is a type of nonlinear robust control strategy. It is able to
successfully control uncertain nonlinear systems with bounded disturbances and minimal
sensitivity to changes in the system’s characteristics. Various advancements have been
made for SMC, such as terminal SMC (TSMC), nonsingular TSMC, fast TSMC, integral
TSMC, and fast nonsingular TSMC [17–20]. Furthermore, fractional-order (Fo) control
has been incorporated with SMC to improve the performance of the controller [21–23].
Fractional-order control, which has been in use for the last three centuries and is concerned
with derivatives and integrals of a non-integer order, was recently rediscovered by scientists
and engineers and is being put to use in a variety of different fields [24–28].

Setting up a nonlinear system with appropriate initial conditions has a substantial
influence on how long it takes to converge in finite time, and this time changes as the
nonlinear system’s initial conditions change. A fixed-time control scheme is consequently
a substitute that is applied to exactly calculate the convergence time and does not rely
on the initial values [29–31]. Various fractional-order TSMC (FoSMC) schemes have been
designed and applied to several Euler–Lagrange systems. In [32,33], a finite-time linear–
quadratic regulator with the FoSMC method and a fixed-time nonsingular FoSMC scheme
have been developed, respectively, for the known dynamics of nonlinear robotic systems.
To deal with unknown dynamics, there are several adaptive FoSMC strategies that may
be used with Euler–Lagrange systems, and these techniques take into consideration the
presence of unknown uncertainties and disturbances as well. In [34], adaptive finite-
time FoSMC scheme is designed for robotic manipulators, which provides fast finite-time
convergence; however, finite-time control depends on the initial values of states, and its
convergence varies with the initial positions. A robust adaptive finite-time FoSMC using
time delay control was constructed for the nonlinear robotic system [14]. This method
provides robust performance; however, the constant delay inserted may cause instability
in the system. Moreover, using an adaptive controller to estimate the behaviors of the
unknowable dynamics contained within the model, a finite-time FoSMC was used to
provide robustness for a nonlinear robot, and this adaptive scheme was designed using a
radial basis function neural network [35]. However, the disadvantage of the neural network
schemes is that they require heavy online calculation in the training of unknown system
parameters and controller gains.

Using a finite-time sliding mode approach to estimate the bounded unknown and
uncertain dynamics, each of the aforementioned papers placed a strong emphasis on the
adaptive approach. Therefore, the main advantage of the proposed FoIFxTSM control is that
it eliminates the possibility of nonsingularity, makes the system resilient against unknown
dynamics and external disturbances, and ensures that the convergence rate is independent
of the initial conditions. According to the study, adaptive FoIFxTSM control has not been
investigated, and only a small number of studies have given adaptive fractional-order
FxTSM control. So, this research examines the fixed-time scheme for externally perturbed
Euler–Lagrange systems. More specifically, this research explores the effects of system
dynamics that are unknown. Hence, an investigation is carried out to design the adaptive
fractional-order integral nonsingular TSMC (AFoIFxTSM) for the uncertain Euler–Lagrange
system subject to unknown external disturbances.

The significant contributions provided by this study are described as follows:

1. Based on the characteristics of fixed-time integral nonsingular TSMC, a sliding surface
is designed that provides excellent tracking performance, minimal chattering in
control inputs, nonsingularity, and a fast rate of convergence.
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2. The fractional-order technique is used to enhance the performance of the closed
system.

3. Adaptive control using FoIFxTSM is presented for the Euler–Lagrange system to
provide robust and sustainable performance by mitigating the effects of unknown
uncertainties in the system’s dynamics.

4. The Lyapunov synthesis is employed to investigate the fixed-time stability of the
proposed system, and it also provides fixed-time formulations.

The remaining sections of this work are organized in the following way: The pre-
liminaries and notations are given in Section 2. The system’s modeling, control scheme,
and stability are all covered in Section 3. The adaptive control approach and the proof of
stability are given in Section 4. The numerical results and discussions of the suggested
technique are shown in Section 5. Section 6 contains the conclusion.

2. Preliminaries and Notations

Definition 1. The definition given by Riemann–Liouville (RL) is widely used in fractional calcu-
lus [36,37]. The derivative of the βth-order as a function of time, f (t), and the constant a can be
calculated using the following equation, which also provides the RL fractional integral:

aI
β
t f (t) =

1
Γ(β)

∫ t

a

f (τ)

(t− τ)1−β
dτ (1)

aD
β
t f (t) =

dβ f (t)
dtβ

=
1

Γ(1− β)

d
dt

∫ t

a

f (τ)

(t− τ)β
dτ (2)

where m− 1 < β < m, m ∈ N. Γ(β) is the Euler gamma function, defined as

Γ(β) =
∫ ∞

0
e−ttβ−1dt

The fractional integral and derivative in the above equations are represented by the symbols I
and D, respectively.

Lemma 1 ([38]). Consider the following nonlinear model:

ẋ(t) = f (t, x), x(0) = x0 (3)

where the function f (t, x) is continuous. The Lyapunov function V(x) fulfills the following
requirements for fixed-time stability with fast convergence:

i. V(x) = 0 ⇔ x = 0
ii. V̇(x) ≤ −ϕ1Vφ1(x)− ϕ2V(x)φ2

with ϕ1, ϕ2 > 0, 0 < φ1 < 1 and φ2 > 1. After that, the system is said to be stable in fixed time,
and the time required for convergence is upper-bounded as

T ≤ 1
ϕ1(1− φ1)

+
1

ϕ2(φ2 − 1)
(4)

Notations.

The power of vectors is defined as

[[x]]y =
[
|x1|ysign(x1), |x2|ysign(x2), . . . , |xn|ysign(xn)

]T

and
|x|y−1 = diag

(
|x1|y−1, |x2|y−1, . . . , |xn|y−1

)
where x is considered as a variable and y is a constant.
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3. Designing Adaptive Fixed-Time Fractional Integral SMC Scheme

This section starts with an explanation of the dynamics of the Euler–Lagrange system.
It then investigates a fixed-time fractional-order integral nonsingular sliding surface and
concludes with the design of the proposed scheme.

The dynamic equation of an Euler–Lagrange system is given by [14]

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ(t) + τd(t) (5)

where M(θ) = M0(θ) + M̂(θ), C(θ, θ̇) = C0(θ, θ̇) + Ĉ(θ, θ̇) and G(θ) = G0(θ) + Ĝ(θ).
Moreover, M0, C0, G0 and M̂, Ĉ, Ĝ are nominal and uncertain parameters, respectively.
θ ∈ Rn denotes the angular position, θ̇ ∈ Rn represents the angular velocity, and θ̈ ∈ Rn

is the angular acceleration. M(θ) ∈ Rn×n is the inertia matrix and meets the condition
that M1(M(θ)) ≤ ‖M(θ)‖ ≤ M2(M(θ)), where M1 > 0 and M2 > 0 are respectively
the minimum and maximum eigenvalues of M(θ), C(θ, θ̇) ∈ Rn×n is the coriolis and
centripetal force, G(θ) ∈ Rn is the gravitational force, τd(t) ∈ Rn represents the external
disturbances, and τ(t) ∈ Rn is the control input torque.

Rewriting the dynamic Equation (5) yields

θ̈ = M−1
0 (θ)τ −M−1

0 (θ)[C0(θ, θ̇)θ̇ + G0(θ)] + U(θ, θ̇, θ̈, τd) (6)

where U(θ, θ̇, θ̈, τd) = M−1
0 (θ)

[
τd(t)− M̂(θ)θ̈ − Ĉ(θ, θ̇)θ̇ − Ĝ(θ)

]
represents the uncertain-

ties and external disturbances in the Euler–Lagrange system.
In order to derive the tracking error, we use (6) as follows:

ë1 = M−1
0 (θ)τ +N(θ, θ̇) + U(θ, θ̇, θ̈, τd) (7)

where N(θ, θ̇) = −M−1
0 (θ)[C0(θ, θ̇)θ̇ + G0(θ)]− θ̈d is the nominal dynamics and θd is the

joint’s desired angular position. The tracking error is then defined as e1 = θ − θd.

Assumption 1. The expression (8), which can be seen below, provides the bounded condition of
uncertain dynamics [39] ∥∥U(θ, θ̇, θ̈, τd)

∥∥ ≤ ξ1 + ξ2‖θ‖+ ξ3
∥∥θ̇
∥∥2 (8)

where ξ1, ξ2 and ξ3 are unknown bound constants of uncertainties and disturbances.

3.1. Fractional Integral Sliding Manifold

In this subsection, the fixed-time integral fractional-order sliding surface is designed,
which gives the nonlinear system’s accurate and precise tracking performance in fixed time:

s(t) = e2(t) + σ1

∫ t

0
[[e2(ζ)]]

α1 dζ + σ2

∫ t

0
[[e2(ζ)]]

α2 dζ + σ3D
β−1[[e2(t)]] (9)

where e2(t) = ė1(t) + µ1[[e1(t)]]
µ11 + µ2[[e1(t)]]

µ22 , s(t) ∈ Rn represents the sliding sur-
face, σ1 > 0, σ2 > 0, σ3 > 0, µ1 > 0 and µ2 > 0. Moreover, exponential values are 0 < α1 < 1,
1 < α2, 0 < µ11 < 1, 1 < µ22 and the fractional order has 0 < β < 1:

ṡ(t) = ė2(t) + σ1[[e2(t)]]
α1 + σ2[[e2(t)]]

α2 + σ3D
β[[e2(t)]]

= ë1(t) + µ1µ11|e1(t)|µ11−1 ė1(t) + µ2µ22|e1(t)|µ22−1 ė1(t)
+σ1[[e2(t)]]

α1 + σ2[[e2(t)]]
α2 + σ3D

β[[e2(t)]]
(10)

with |e1(t)|µ11−1 = 0 if e1(t) = 0.
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Substituting (7) into (10) yields

ṡ(t) = M−1
0 (θ)τ +N(θ, θ̇) + U(θ, θ̇, θ̈, τd)

+µ1µ11|e1(t)|µ11−1 ė1(t) + µ2µ22|e1(t)|µ22−1 ė1(t)
+σ1[[e2(t)]]

α1 + σ2[[e2(t)]]
α2 + σ3D

β[[e2(t)]]
(11)

Now that the sliding manifold is finalized, the proposed FoIFxTSM method for uncer-
tain Euler–Lagrange systems is designed so that the goal of achieving robust performance
with external disturbances can be reached.

3.2. FoIFxTSM Control Design

The FoIFxTSM control law can be designed as follows, with the objective of controlling
the nonlinear Euler–Lagrange system under known bounded uncertainties and disturbances:

τ(t) = τ1(t) + τ2(t) (12)

where τ1(t) and τ2(t) are used for control, with the nominal and uncertain system. The pro-
posed τ1(t) and τ2(t) are given as

τ1(t) = −M0(θ)


N(θ, θ̇) + σ1[[e2(t)]]

α1

+σ2[[e2(t)]]
α2 + σ3D

β[[e2(t)]]
+µ1µ11|e1(t)|µ11−1 ė1(t)
+µ2µ22|e1(t)|µ22−1 ė1(t)

 (13)

τ2(t) = −M0(θ)

{
(ξ1 + ξ2‖θ‖+ ξ3

∥∥θ̇
∥∥2
)sign(s)

+σ4[[s(t)]]
γ1 + σ5[[s(t)]]

γ2

}
(14)

where σ4 > 0 and σ5 > 0 are constants. γ1 and γ2 have ranges as 0 < γ1 < 1 and 1 < γ2,
respectively.

3.3. Stability Analysis

Within this subsection, to figure out the stability of a closed-loop system, the Lyapunov
analysis will be used.

Theorem 1. We take into account the Euler–Lagrange system that is described in (5), the sliding
manifold that is suggested in (9) and the FoIFxTSM controller that is designed in (12) for the uncertain
dynamics intended angular position in a fixed amount of time to converge under Assumption 1 (8).

Proof. The following Lyapunov functional candidate is given as

V1 =
1
2

n

∑
i=1

s2
i (t) (15)

Then, V̇1(t) is derived as

V̇1 =
n

∑
i=1

si(t)ṡi(t) (16)

From (10), ṡ(t) is substituted into the Equation (16), and we obtain

V̇1 =
n

∑
i=1

si(t)
[

ė2i(t) + σ1[[e2i(t)]]
α1 + σ2[[e2i(t)]]

α2

+σ3D
β[[e2i(t)]]

]
(17)



Fractal Fract. 2023, 7, 712 6 of 20

The substitution of ë1(t) derived from (7) into (17) yields

V̇1 =
n

∑
i=1

si(t)



M−1
0i (θ)τi +Ni(θ, θ̇) + Ui(θ, θ̇, θ̈, τd)

+σ1[[e2i(t)]]
α1 + σ2[[e2i(t)]]

α2

+σ3D
β[[e2i(t)]]

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)


(18)

With the substitution of τ(t) obtained from (12) into (18), we have

V̇1 =
n

∑
i=1

si(t)



−



(ξ1 + ξ2‖θ‖+ ξ3
∥∥θ̇
∥∥2
)sign(si)

+Ni(θ, θ̇) + σ3D
β[[e2i(t)]]

+σ1[[e2i(t)]]
α1 + σ2[[e2i(t)]]

α2

+σ4[[si(t)]]
γ1 + σ5[[si(t)]]

γ2

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)


+Ni(θ, θ̇) + Ui(θ, θ̇, θ̈, τd)
+σ1[[e2i(t)]]

α1 + σ2[[e2i(t)]]
α2

+σ3D
β[[e2i(t)]]

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)



(19)

With the simplification of (19), we obtain

V̇1 =
n

∑
i=1

si(t)

 −
{

(ξ1 + ξ2‖θ‖+ ξ3
∥∥θ̇
∥∥2
)sign(si)

+σ4[[si(t)]]
γ1 + σ5[[si(t)]]

γ2

}
+Ui(θ, θ̇, θ̈, τd)

 (20)

Based on Assumption 1, we have

V̇1 ≤ −
n
∑

i=1
si(t)

[
σ4[[si(t)]]

γ1 + σ5[[si(t)]]
γ2
]

≤ −σ4
n
∑

i=1
|si(t)|γ1+1 − σ5

n
∑

i=1
|si(t)|γ2+1

≤ −σ4
n
∑

i=1

(∣∣si(t)
∣∣2) γ1+1

2 − σ5
n
∑

i=1

(∣∣si(t)
∣∣2) γ2+1

2

(21)

In accordance with the inequality presented in [40], we obtain

V̇1 ≤ −σ4

(
n
∑

i=1

∣∣si(t)
∣∣2) γ1+1

2
− σ5n

1−γ2
2

(
n
∑

i=1

∣∣si(t)
∣∣2) γ2+1

2

≤ −σ4(2V1)
γ1+1

2 − σ5n
1−γ2

2 (2V1)
γ2+1

2

≤ −2
γ1+1

2 σ4V1
γ1+1

2 − 2
γ2+1

2 σ5n
1−γ2

2 V1
γ2+1

2

(22)

Consequently, in a fixed amount of time, the system’s states reach s(t). Based on
Lemma 1, the fixed settling time is formulated as

T1 =
1

2
γ1+1

2 σ4

(
1− γ1+1

2

) +
1

2
γ2+1

2 n
1−γ2

2 σ5

(
γ2+1

2 − 1
) (23)

The total settling can be obtained using the relation Ts1 = T1 + T2 + T3, where T2 can be
formulated when e2(t) = 0; therefore, it is written as ė1(t) = −µ1[[e1(t)]]

µ11 − µ2[[e1(t)]]
µ22 .
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Furthermore, T3 can be computed when the sliding surface s(t) = 0. Therefore, using (9),
the following expression is obtained:

ė2(t) = −σ1[[e2(t)]]
α1 − σ2[[e2(t)]]

α2 − σ3D
β[[e2(t)]] (24)

It can be deduced from Lemma 1 that the tracking errors are stable in fixed time. Thus,
the constant T2 can be formulated so that the error eventually converges to zero for Ts1.

4. Adaptive FoIFxTSM Control Design

The following equations provide a description of how the control input is designed,
making use of an adaptive scheme to tackle the unknown and uncertain dynamics:

τ(t) = τ1(t) + τ3(t) (25)

where τ1(t) is same as (13) and

τ3(t) = −M0(θ)

{
(ξ̂1 + ξ̂2‖θ‖+ ξ̂3

∥∥θ̇
∥∥2
)sign(s)

+σ4[[s(t)]]
γ1+σ5[[s(t)]]

γ2

}
(26)

whereas ξ̂1, ξ̂2 and ξ̂3 denote the estimation variable of ξ1, ξ2 and ξ3, respectively.
The following adaptive laws are presented as potential solutions to deal with the

unknown dynamics

˙̂ξ1 = η̄1‖s‖, ˙̂ξ2 = η̄2‖s‖‖θ‖, ˙̂ξ3 = η̄3‖s‖
∥∥θ̇
∥∥2 (27)

where η̄1, η̄2 and η̄3 > 0, and the proposed model is given in Figure 1.

Figure 1. Block diagram of the proposed method.

The problem of compensating for the unknown dynamics can be solved using (25).
As a result, the AFoIFxTSM approach ultimately obtains the tracking performance when
an uncertain dynamical system is subject to unknown disturbances.

Theorem 2. We consider the Euler–Lagrange system (5) and the degree to which it is susceptible
to problems, including uncertainty and external disturbances. As a consequence of this, the desired
states converge in a fixed time under Assumption 1 because of the proposed sliding surface (9),
the designed AFoIFxTSM control (25), and adaptive control laws (27).
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Proof. The selected Lyapunov function is as follows:

V2 =
1
2

n

∑
i=1

s2
i (t) +

1
2η1

ξ̃2
1 +

1
2η2

ξ̃2
2 +

1
2η3

ξ̃2
3 (28)

where ξ̃1 = ξ̂1 − ξ1, ξ̃2 = ξ̂2 − ξ2, ξ̃3 = ξ̂3 − ξ3 represent the estimation errors. V̇2(t) is
given as

V̇2 =
n

∑
i=1

si(t)ṡi(t) +
1
η1

ξ̃1
˙̂ξ1 +

1
η2

ξ̃2
˙̂ξ2 +

1
η3

ξ̃3
˙̂ξ3 (29)

With the substitution of ṡ(t) derived from (10) into (29), we obtain

V̇2 =
n
∑

i=1
si(t)



M−1
0i (θ)τi +Ni(θ, θ̇) + Ui(θ, θ̇, θ̈, τd)
+σ1[[e2i(t)]]

α1 + σ2[[e2i(t)]]
α2

+σ3D
β[[e2i(t)]]

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)


+ 1

η1
ξ̃1

˙̂ξ1 +
1
η2

ξ̃2
˙̂ξ2 +

1
η3

ξ̃3
˙̂ξ3

(30)

By substituting (25) into (30), we obtain

V̇2 =
n
∑

i=1
si(t)



−



(ξ̂1 + ξ̂2‖θ‖+ ξ̂3
∥∥θ̇
∥∥2
)sign(si)

+Ni(θ, θ̇) + σ3D
β[[e2i(t)]]

+σ1[[e2i(t)]]
α1 + σ2[[e2i(t)]]

α2

+σ4[[si(t)]]
γ1 + σ5[[si(t)]]

γ2

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)


+Ni(θ, θ̇) + Ui(θ, θ̇, θ̈, τd)
+σ1[[e2i(t)]]

α1 + σ2[[e2i(t)]]
α2

+σ3D
β[[e2i(t)]]

+µ1µ11|e1i(t)|µ11−1 ė1i(t)
+µ2µ22|e1i(t)|µ22−1 ė1i(t)


1
η1

ξ̃1
˙̂ξ1 +

1
η2

ξ̃2
˙̂ξ2 +

1
η3

ξ̃3
˙̂ξ3

(31)

Simplifying the above equation yields

V̇2 =
n
∑

i=1
si(t)

 −
{

(ξ̂1 + ξ̂2‖θ‖+ ξ̂3
∥∥θ̇
∥∥2
)sign(si)

+σ4[[si(t)]]
γ1 + σ5[[si(t)]]

γ2

}
+Ui(θ, θ̇, θ̈, τd)


1
η1

ξ̃1
˙̂ξ1 +

1
η2

ξ̃2
˙̂ξ2 +

1
η3

ξ̃3
˙̂ξ3

(32)

According to (27) and Assumption 1, we can express (32) as

V̇2 ≤ −
n
∑

i=1
si(t)

[
σ4[[si(t)]]

γ1 + σ5[[si(t)]]
γ2
]
+ ( η̄1

η1
− 1)

∥∥ξ̃1
∥∥‖s(t)‖

+( η̄2
η2
− 1)

∥∥ξ̃2
∥∥‖θ‖‖s(t)‖+ ( η̄3

η3
− 1)

∥∥ξ̃3
∥∥∥∥θ̇

∥∥2‖s(t)‖
(33)

Since η̄i < ηi, (33) can be rewritten as

V̇2 ≤ −
n
∑

i=1
si(t)

[
σ4[[si(t)]]

γ1 + σ5[[si(t)]]
γ2
]
− (1− η̄1

η1
)
∥∥ξ̃1
∥∥‖s(t)‖

−(1− η̄2
η2
)
∥∥ξ̃2
∥∥‖θ‖‖s(t)‖ − (1− η̄3

η3
)
∥∥ξ̃3
∥∥∥∥θ̇

∥∥2‖s(t)‖
(34)
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To calculate the fixed convergence time, (34) is deduced as

V̇2 ≤ −
n
∑

i=1
si(t)σ4[[si(t)]]

γ1 − (1− η̄1
η1
)
‖ξ̃1‖‖s(t)‖

2

−(1− η̄2
η2
)
‖ξ̃2‖‖θ‖‖s(t)‖

2 − (1− η̄3
η3
)
‖ξ̃3‖‖θ̇‖2‖s(t)‖

2

−
n
∑

i=1
si(t)σ5[[si(t)]]

γ2 − (1− η̄1
η1
)
‖ξ̃1‖‖s(t)‖

2

−(1− η̄2
η2
)
‖ξ̃2‖‖θ‖‖s(t)‖

2 − (1− η̄3
η3
)
‖ξ̃3‖‖θ̇‖2‖s(t)‖

2

(35)

Multiplying and dividing by ηi

(∥∥ξ̃i
∥∥√ 1

2ηi

)γ1
and ηi

(∥∥ξ̃i
∥∥√ 1

2ηi

)γ2
, (35) can be formu-

lated as
V̇2 ≤ −

n
∑

i=1
si(t)σ4[[si(t)]]

γ1

−(1− η̄1
η1
)η1‖s(t)‖

√
1

2η1

∥∥ξ̃1
∥∥√ 1

2η1

(
‖ξ̃1‖

√
1

2η1

)γ1(
‖ξ̃1‖

√
1

2η1

)γ1

−(1− η̄2
η2
)η2‖θ‖‖s(t)‖

√
1

2η2

∥∥ξ̃2
∥∥√ 1

2η2

(
‖ξ̃2‖

√
1

2η2

)γ1(
‖ξ̃2‖

√
1

2η2

)γ1

−(1− η̄3
η3
)η3
∥∥θ̇
∥∥2‖s(t)‖

√
1

2η3

∥∥ξ̃3
∥∥√ 1

2η3

(
‖ξ̃3‖

√
1

2η3

)γ1(
‖ξ̃3‖

√
1

2η3

)γ1

−
n
∑

i=1
si(t)σ5[[si(t)]]

γ2

−(1− η̄1
η1
)η1‖s(t)‖

√
1

2η1

∥∥ξ̃1
∥∥√ 1

2η1

(
‖ξ̃1‖

√
1

2η1

)γ2(
‖ξ̃1‖

√
1

2η1

)γ2

−(1− η̄2
η2
)η2‖θ‖‖s(t)‖

√
1

2η2

∥∥ξ̃2
∥∥√ 1

2η2

(
‖ξ̃2‖

√
1

2η2

)γ2(
‖ξ̃2‖

√
1

2η2

)γ2

−(1− η̄3
η3
)η3
∥∥θ̇
∥∥2‖s(t)‖

√
1

2η3

∥∥ξ̃3
∥∥√ 1

2η3

(
‖ξ̃3‖

√
1

2η3

)γ2(
‖ξ̃3‖

√
1

2η3

)γ2

(36)

For brevity, (36) is rewritten as

V̇2 ≤ −σ4
n
∑

i=1
|si(t)|γ1+1 −Θ1

(∥∥ξ̃1

∥∥√ 1
2η1

)γ1+1

−Θ2

(∥∥ξ̃2

∥∥√ 1
2η2

)γ1+1
−Θ3

(∥∥ξ̃3

∥∥√ 1
2η3

)γ1+1

−σ5
n
∑

i=1
|si(t)|γ2+1 −Θ4

(∥∥ξ̃1

∥∥√ 1
2η1

)γ2+1

−Θ5

(∥∥ξ̃2

∥∥√ 1
2η2

)γ2+1
−Θ6

(∥∥ξ̃3

∥∥√ 1
2η3

)γ2+1

(37)

where

Θ1 =
(1− η̄1

η1
)η1‖s(t)‖

√
1

2η1(
‖ξ̃1‖

√
1

2η1

)γ1 , Θ2 =
(1− η̄2

η2
)η2‖θ‖‖s(t)‖

√
1

2η2(
‖ξ̃2‖

√
1

2η2

)γ1 ,

Θ3 =
(1− η̄3

η3
)η3‖θ̇‖2‖s(t)‖

√
1

2η3(
‖ξ̃3‖

√
1

2η3

)γ1 , Θ4 =
(1− η̄1

η1
)η1‖s(t)‖

√
1

2η1(
‖ξ̃1‖

√
1

2η1

)γ2 ,

Θ5 =
(1− η̄2

η2
)η2‖θ‖‖s(t)‖

√
1

2η2(
‖ξ̃2‖

√
1

2η2

)γ2 , Θ6 =
(1− η̄3

η3
)η3‖θ̇‖2‖s(t)‖

√
1

2η3(
‖ξ̃3‖

√
1

2η3

)γ2
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And (37) can be expressed as

V̇2 ≤ −σ4
n
∑

i=1

(∣∣si(t)
∣∣2) γ1+1

2 −Θ1

(
‖ξ̃1‖

2

2η1

) γ1+1
2

−Θ2

(
‖ξ̃2‖

2

2η2

) γ1+1
2

−Θ3

(
‖ξ̃3‖

2

2η3

) γ1+1
2

−σ5
n
∑

i=1

(∣∣si(t)
∣∣2) γ2+1

2 −Θ4

(
‖ξ̃1‖

2

2η1

) γ2+1
2

−Θ5

(
‖ξ̃2‖

2

2η2

) γ2+1
2

−Θ6

(
‖ξ̃3‖

2

2η3

) γ2+1
2

(38)

According to the inequality given in [40], one obtains

V̇2 ≤ −σ4

(
n
∑

i=1

∣∣si(t)
∣∣2) γ1+1

2
−Θ1

(
‖ξ̃1‖

2

2η1

) γ1+1
2

−Θ2

(
‖ξ̃2‖

2

2η2

) γ1+1
2

−Θ3

(
‖ξ̃3‖

2

2η3

) γ1+1
2

−σ5n
1−γ2

2

(
n
∑

i=1

∣∣si(t)
∣∣2) γ2+1

2
−Θ4

(
‖ξ̃1‖

2

2η1

) γ2+1
2

−Θ5

(
‖ξ̃2‖

2

2η2

) γ2+1
2

−Θ6

(
‖ξ̃3‖

2

2η3

) γ2+1
2

(39)

V̇2 ≤ −Θ̄1



 n
∑

i=1
|si(t)|2

2


γ1+1

2

+

(
‖ξ̃1‖

2

2η1

) γ1+1
2

+

(
‖ξ̃2‖

2

2η2

) γ1+1
2

+

(
‖ξ̃3‖

2

2η3

) γ1+1
2



−Θ̄2



 n
∑

i=1
|si(t)|2

2


γ2+1

2

+

(
‖ξ̃1‖

2

2η1

) γ2+1
2

+

(
‖ξ̃2‖

2

2η2

) γ2+1
2

+

(
‖ξ̃3‖

2

2η3

) γ2+1
2



(40)

where Θ̄1 = min
(√

2
γ1+1

σ4, Θ1, Θ2, Θ3

)
, Θ̄2 = min

(√
2

γ2+1
n

1−γ2
2 σ5, Θ4, Θ5, Θ6

)
.

⇒ V̇2

≤ −Θ̄1


 n

∑
i=1
|si(t)|2

2

+

(
‖ξ̃1‖

2

2η1

)
+

(
‖ξ̃2‖

2

2η2

)
+

(
‖ξ̃3‖

2

2η3

)
γ1+1

2

−Θ̄24
1−γ2

2


 n

∑
i=1
|si(t)|2

2

+

(
‖ξ̃1‖

2

2η1

)
+

(
‖ξ̃2‖

2

2η2

)
+

(
‖ξ̃3‖

2

2η3

)
γ2+1

2

(41)

⇒ V̇2 ≤ −Θ̄1(t)V2
γ1+1

2 − Θ̄24
1−γ2

2 V2
γ2+1

2 (42)
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Using Lemma 1, T4 is calculated as

T4 = 1
Θ̄1

(
1− γ1+1

2

) + 1

Θ̄24
1−γ2

2
(

γ2+1
2 −1

)
= 2

Θ̄1(1−γ1)
+ 2

Θ̄24
1−γ2

2 (γ2−1)

(43)

The total settling can be computed using Ts2 = T2 + T3 + T4. Hence, the Euler–
Lagrange system is controlled by the proposed scheme to track a precise trajectory and
keep its stability for a fixed amount of time. Furthermore, a comprehensive investigation of
the proof of stability is carried out.

Remark 1. If the fractional integral sliding surface (9), robust adaptive control design (25),
and adaptive control rules (27), all of which make up the proposed AFoIFxTSM method, are
applied to the uncertain dynamics of the Euler–Lagrange system (5), it is deduced that the tracking
error goes to zero in fixed time. This is due to the fact that the strategy being presented employs
a method of adaptive fixed-time fractional-order integral sliding mode control to achieve superior
performance. The results of the numerical simulation are presented in the next section.

Remark 2. Lemma 1 states that the fixed time, which is determined by Ts2, can have a considerable
impact on the selection made using the parameters σ1, σ2, σ3, σ4 and σ5. When these parameters are
given a substantial value, the convergence speed increases as a result.

5. Results and Discussions

In order to show the simulation performance and test the suggested AFoIFxTSM
technique, a two degree-of-freedom (DOF) manipulator is used to implement the Euler–
Lagrange system. A 2-DOF robotic manipulator is utilized in the existence of disturbances
and uncertainties depicted in Figure 2. The simulations are given here in order to show
how well the AFoIFxTSM works with uncertainties and disturbances. Therefore, MAT-
LAB/Simulink simulations are utilized to explain the outcomes of these analyses. The de-
scription of the dynamics of robotic manipulators with 2-DOF is given, together with
the control and model parameters (Tables 1 and 2), projected trajectories, uncertainties,
and disturbances [38]:

r1

l1

r2

m2

m1m1

l2

1

2

Figure 2. The 2-DOF robotic manipulator.
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M(θ) =

[
M11 M12
M21 M22

]
, C(θ, θ̇) =

[
C1
C2

]
, G(θ) =

[
G1
G2

]
,

τ(t) =
[

u1
u2

]
, θd =

[
1.45− 1.4e−t + 0.6e−4t

1.25 + e−t − 0.5e−4t

]
, τd =

[
0.2 sin(t) + 0.5 sin(10t)

0.2 cos(2t) + 0.5 sin(10t)

]
.

where M11 = m1r2
1 +m1(r2

1 + l2
1)+ 2 cos(θ2)m2l1r2 + J1 + J2, M12 = m2r2

2 + cos(θ2)m2r2l1 +
J2, M21 = M12, M22 = m2r2

2 + J2, C1 = − sin(θ2)m2r2l1θ̇1θ̇2 − sin(θ2)m2r2l1(θ̇1 + θ̇2)θ̇2,
C2 = sin(θ2)m2r2l1θ̇1θ̇1, G1 = cos(θ1)(m1r1 + m2l1)g + cos(θ1 + θ2)m2r2g, G2 = cos(θ1 +
θ2)m2r2g.

Table 1. Parameters of AFoIFxTSM.

Parameter Values

σ1 5

σ2 25

σ3 1

α1 0.9

α2 1.1

β 0.99

µ1 10

µ2 10

µ11 0.9

µ22 1.01

σ4 10

σ5 100

γ1 0.5

γ2 1.1

η1 0.1

η2 0.1

η3 0.1

θ1(0) 0.5

θ2(0) 2

For the purpose of determining the appropriate value of β, the angular position
performance at the best value of β is shown in Figure 3. It demonstrates that the appro-
priate fractional-order value, which can be chosen with ease, is 0.99 because the intended
trajectories do not reach zero tracking errors at fractional-order values of 0.9 and 0.8.
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Table 2. Parameters of 2-DOF robotic manipulator.

Parameter Description Value

m01 nominal mass of link 1 0.4 kg

m02 nominal mass of link 2 1.2 kg

m̂1 mass of link 2 0.5 kg

m̂2 mass of link 2 1.5 kg

l1 length of the link l 1 m

l2 length of the link 2 1 m

r1 centroid length of joint 1 0.5 m

r2 centroid length of joint 2 0.85 m

J1 moment of inertia 1 5 kg·m2

J2 moment of inertia 2 5 kg·m2

g gravitational constant 9.8 m/s2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3. Tracking error at different fractional-order parameters.

In this paragraph, the proposed AFoIFxTSM method is designed to adjust the uncer-
tain dynamics of the 2-DOF robotic manipulator under unknown external disturbances.
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This is done in order to ensure that the robot is able to successfully complete its task.
The compared simulations are performed with adaptive fractional-order sliding mode
control (AFTFOSMC) [34] in order to provide more evidence of the viability of the designed
technique. The values for (25) are chosen to be the same as (12), and the parameters of
(27) are chosen as η̄1 = 20, η̄2 = 20, and η̄3 = 20. The results are compared between the
suggested AFoIFxTSM scheme and the AFTFOSMC method in the presence of unknown
dynamics to verify the performance of the desired trajectory tracking, tracking error, con-
trol torque inputs, and sliding surfaces presented in Figures 4–7, respectively. Moreover,
the quantitative results of the tracking errors in terms of the root mean square (RMS) are
given in Table 3. And the depiction of the adaptive gains of the unknown parameters is
shown in Figure 8.

Table 3. Quantitative tracking error performance.

AFTFOSMC Proposed Method

e11RMS 0.0093 0.0079

e12RMS 0.0153 0.0136

∑2
1 e1iRMS 0.0246 0.0125

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

0.7

0.9

1.1

1.3

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 4. Position tracking.
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0
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0 1 2 3 4 5 6 7 8 9 10
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Figure 5. Tracking error.
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Figure 6. Cont.
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Figure 6. Control input.
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Figure 7. Sliding surface.
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Figure 8. Adaptive parameter estimation.

According to the findings from Figures 4–8 that are compared and demonstrated,
the AFoIFxTSM possesses better tracking capability, non-chatter control inputs, and precise
adaptive compensation despite the existence of unknown and uncertain dynamics.

Here is an explanation of the simulated results of the suggested AFoIFxTSM scheme.
Following the completion of the comparison of the proposed AFoIFxTSM scheme and AFT-
FOSMC, the constant parameters are adjusted in a manner that is considered appropriate.
Looking at Figures 4 and 5 makes it quite clear that the proposed scheme gives less angular
position error with the small convergence time that is required. Furthermore, Figure 6
depicts the control performance, and it can easily be observed that the provided method
renders the non-chatter and practical control input possible. The adaptive estimation can
be seen in Figure 8, which demonstrates that the adaptive rules do not suffer from the issue
of drifting.

Now, a concise analysis of the limitations imposed by the proposed controller is
presented. These limitations are discussed regarding the proposed controller gain values
and stability investigations. The appropriate parameters of the proposed scheme are the
ones that are picked within the range that was specified accordingly as σ1 > 0, σ2 > 0,
σ3 > 0, 0 < α1 < 1, α2 > 1, 0 < β < 1, σ4 > 0, σ5 > 0, 0 < γ1 < 1 and γ2 > 1. If these
concerns are disregarded, then the proposed scheme will not be affected, and the system
will no longer demonstrate fixed-time stability. It is abundantly obvious, in light of the
findings of (23) and (43), that σi is not directly related to T1 and T4 besides the fact that σi
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is directly to τ(t) in (12) and (25). Thus, to simultaneously achieve error convergence in
a fixed settling time and overall stability of the system, it is necessary to adjust σi to the
appropriate values. Hence, these values are the deciding factor in determining whether
or not the system is stable. Since it is known where each of the individual parameters
falls within their ranges, it is possible to pick the appropriate value to some extent that is
sufficient. This makes the process of choosing the appropriate value feasible.

6. Conclusions

In an attempt to obtain good tracking results for the uncertain Euler–Lagrange sys-
tem under external disturbance, an AFoIFxTSM is put forward as a potential solution.
The proposed scheme converges in a fixed amount of time and obtains the desired tracking
performance as a result of using this method. As one of the applications of the Euler–
Lagrange system, a 2-DOF robotic manipulator is used, and then AFoIFxTSM is developed
for unknown dynamics for the purpose of illustrating the effectiveness of the designed
technique. The compared results indicate that the proposed AFoIFxTSM approach is better
than the AFTFOSMC method and gives faster response time, lower tracking error, and a
greater capacity to ignore sources of uncertainty. Moreover, the study of smooth and non-
smooth nonlinearities may be introduced in this area of research on the Euler–Lagrange
system, such as highly coupled robotic manipulators, parallel robots, mobile robots, and so
on. This would be a significant expansion of the work that was originally proposed.
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