Controllability Analysis of Impulsive Multi-Term Fractional-Order Stochastic Systems Involving State-Dependent Delay
Abstract
:1. Introduction
2. Problem Formulation
- If the function is continuous for every , such that , then(i) ;(ii) ;(iii) ;holds, where , is independent of y. Here, is continuous, and is locally bounded.
- (i)
- For all , ;
- (ii)
- is continuous and compact;
- (iii)
- is a contraction mapping.
- (i)
- -adapted measurable ;
- (ii)
- satisfying
3. Main Result
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, S.; Benchohra, M.; Nakata, G.M. Advanced Fractional Differential and Integral Equations; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publisher: Singapore, 2000. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Wang, K.J.; Xu, P. Generalized variational structure of the fractal modified KdV–Zakharov–Kuznetsov equation. Fractals 2023, 31, 2350084. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Shi, F. The pulse narrowing nonlinear transmission lines model within the local fractional calculus on the Cantor sets. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2023. [Google Scholar] [CrossRef]
- Saifullah, S.; Ali, A.; Khan, A.A.; Shah, K.; Abdeljawad, T. A Novel Tempered Fractional Transform: Theory, Properties and Applications to Differential Equations. Fractals 2023. [Google Scholar] [CrossRef]
- Balachandran, K.; Dauer, J.P. Controllability of nonlinear systems via fixed point theorems. J. Optim. Theory Appl. 1983, 53, 345–352. [Google Scholar] [CrossRef]
- Ankit, K.; Ramesh, V.K.; Kanika, D.; Avadhesh, K. Approximate controllability of delay nonautonomous integro-differential system with impulses. Math. Methods Appl. Sci. 2022, 45, 7322–7335. [Google Scholar]
- Arora, U.; Vijayakumar, V.; Shukla, A.; Sajid, M.; Nisar, K.S. A discussion on controllability of nonlocal fractional semilinear equations of order 1 < r < 2 with monotonic nonlinearity. J. King Saud Univ. Sci. 2022, 34, 102295. [Google Scholar]
- Camacho, O.; Leiva, H.; Riera-Segura, L. Controllability of semilinear neutral differential equations with impulses and nonlocal conditions. Math. Methods Appl. Sci. 2022, 45, 9826–9839. [Google Scholar] [CrossRef]
- Hakkar, N.; Dhayal, R. A Debbouche and DFM Torres, Approximate controllability of delayed fractional stochastic differential systems with mixed noise and impulsive effects. Fractal Fract. 2023, 7, 104. [Google Scholar] [CrossRef]
- Huang, J.; Luo, D. Relatively exact controllability of fractional stochastic delay system driven by Levy noise. Math. Methods Appl. Sci. 2023, 46, 11188–11211. [Google Scholar] [CrossRef]
- Nawaz, M.; Wei, J.; Jiale, S. The controllability of fractional differential system with state and control delay. Adv. Differ. Equ. 2020, 30. [Google Scholar] [CrossRef]
- Wei, J. The controllability of fractional control systems with control delay. Comput. Math. Appl. 2012, 64, 3153–3159. [Google Scholar] [CrossRef]
- Yan, L.; Fu, Y. Approximate controllability of fully nonlocal stochastic delay control problems driven by hybrid noises. Fractal Fract. 2021, 5, 30. [Google Scholar] [CrossRef]
- Fatima, B.; Rahman, M.U.; Althobaiti, S.; Althobaiti, A.; Arfan, M. Analysis of age wise fractional order problems for the COVID-19 under non-singular kernel of Mittag–Leffler law. Comput. Methods Biomech. Biomed. Eng. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Pak, S.; Rahman, M.U.; Al-Bossly, A. On the analysis of a fractional tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag–Leffler kernel. Fractal Fract. 2023, 7, 526. [Google Scholar] [CrossRef]
- Shah, K.; Ali, A.; Zeb, S.; Khan, A.; Alqudah, M.A.; Abdeljawad, T. Study of fractional order dynamics of nonlinear mathematical model. Alex. Eng. J. 2022, 61, 11211–11224. [Google Scholar] [CrossRef]
- Ma, Y.K.; Johnson, M.; Vijayakumar, V.; Radhika, T.; Shukla, A.; Nisar, K.S. A note on approximate controllability of second-order impulsive stochastic Volterra-Fredholm integrodifferential system with infinite delay. J. King Saud Univ. Sci. 2023, 35, 102637. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Zorlu, S. Controllability of non-linear stochastic systems. Int. J. Control 2003, 76, 95–104. [Google Scholar] [CrossRef]
- Ain, Q.T.; Nadeem, M.; Akgul, A.; la Sen, M.D. Controllability of impulsive neutral fractional stochastic systems. Symmetry 2022, 14, 2612. [Google Scholar] [CrossRef]
- Bainov, D.; Simeonov, P. Impulsive Differential Equations: Periodic Solutions and Applications; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Arora, S.; Mohan, M.T.; Dabas, J. Approximate controllability of fractional order non-instantaneous impulsive functional evolution equations with state-dependent delay in Banach spaces. IMA J. Math. Control Inf. 2022, 39, 1103–1142. [Google Scholar] [CrossRef]
- Debbouche, A.; Vadivoo, B.S.; Fedorov, V.E.; Antonov, V. Controllability criteria for nonlinear impulsive fractional differential systems with distributed delays in controls. Math. Comput. Appl. 2023, 28, 13. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Trujillo, J.J. Controllability of fractional damped dynamical systems. Appl. Math. Comput. 2015, 257, 66–73. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X. Existence of solutions and controllability for impulsive fractional order damped systems. J. Integral Equ. Appl. 2016, 28, 551–579. [Google Scholar] [CrossRef]
- Nawaz, M.; Wei, J.; Sheng, J.; Khan, A.U. The controllability of damped fractional differential system with impulses and state delay. Adv. Differ. Equ. 2020, 337. [Google Scholar] [CrossRef]
- Arthi, G.; Park, J.H.; Suganya, K. Controllability of fractional order damped dynamical systems with distributed delays. Math. Comput. Simul. 2019, 165, 74–91. [Google Scholar] [CrossRef]
- Arthi, G.; Suganya, K. Controllability of non-linear fractional-order systems with damping behaviour and multiple delays. IMA J. Math. Control Inf. 2021, 38, 794–821. [Google Scholar] [CrossRef]
- He, B.B.; Zhou, H.C.; Kou, C.H. The controllability of fractional damped dynamical systems with control delay. Commun. Nonlinear Sci. Numer. Simul. 2016, 32, 190–198. [Google Scholar] [CrossRef]
- Dos Santos, J.P.; Cuevas, C.; de Andrade, B. Existence results for a fractional equation with state-dependent delay. Adv. Differ. Equ. 2011, 2011, 642013. [Google Scholar] [CrossRef]
- Agarwal, R.P.; de Andrade, B.; Siracusa, G. On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 2011, 62, 1143–1149. [Google Scholar] [CrossRef]
- Arthi, G.; Balachandran, K. Controllability of second-order impulsive functional differenial equations with state dependent delay. Bull. Korean Math. Soc. 2011, 48, 1271–1290. [Google Scholar] [CrossRef]
- Hernandez, E.; Azevedo, K.A.; O’Regan, D. On second order differential equations with state-dependent delay. Appl. Anal. 2018, 97, 2610–2617. [Google Scholar] [CrossRef]
- Yan, Z. Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces. IMA J. Math. Control Inf. 2013, 30, 443–462. [Google Scholar] [CrossRef]
- Hino, Y.; Murakami, S.; Naito, T. Functional Differential Equations with Infinite Delay; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hernandez, E.; Prokopczyk, A.; Ladeira, L. A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 2006, 7, 510–5199. [Google Scholar] [CrossRef]
- Burton, T. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthi, G.; Vaanmathi, M.; Ma, Y.-K. Controllability Analysis of Impulsive Multi-Term Fractional-Order Stochastic Systems Involving State-Dependent Delay. Fractal Fract. 2023, 7, 727. https://doi.org/10.3390/fractalfract7100727
Arthi G, Vaanmathi M, Ma Y-K. Controllability Analysis of Impulsive Multi-Term Fractional-Order Stochastic Systems Involving State-Dependent Delay. Fractal and Fractional. 2023; 7(10):727. https://doi.org/10.3390/fractalfract7100727
Chicago/Turabian StyleArthi, G., M. Vaanmathi, and Yong-Ki Ma. 2023. "Controllability Analysis of Impulsive Multi-Term Fractional-Order Stochastic Systems Involving State-Dependent Delay" Fractal and Fractional 7, no. 10: 727. https://doi.org/10.3390/fractalfract7100727
APA StyleArthi, G., Vaanmathi, M., & Ma, Y. -K. (2023). Controllability Analysis of Impulsive Multi-Term Fractional-Order Stochastic Systems Involving State-Dependent Delay. Fractal and Fractional, 7(10), 727. https://doi.org/10.3390/fractalfract7100727