Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations
Abstract
:1. Introduction
2. Properties of the Weights
3. Estimate for the Error
4. Numerical Solution of Two-Term Equation
4.1. Convergence and Error Estimates
4.2. Numerical Examples
5. Time Fractional Black–Scholes Equation
5.1. Convergence and Error Estimate
5.2. Numerical Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acay, B.; Bas, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solit. Fract. 2020, 130, 109438. [Google Scholar] [CrossRef]
- Cardone, A.; Donatelli, M.; Durastante, F.; Garrappa, R.; Mazza, M.; Popolizio, M. Fractional Differential Equations “Modeling, Discretization, and Numerical Solvers”; Springer: Singapore, 2023. [Google Scholar]
- Singh, H.; Kumar, D.; Baleanu, D. Methods of Mathematical Modelling “Fractional Differential Equations”; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2019. [Google Scholar]
- Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications. Fractals 2023, 31, 2340075. [Google Scholar] [CrossRef]
- Sun, D.; Liu, J.; Su, X.; Pei, G. Fractional differential equation modeling of the HBV infection with time delay and logistic proliferation. Front. Public Health 2022, 10, 1036901. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Li, C. Numerical approaches to fractional integrals and derivatives: A review. Mathematics 2020, 8, 43. [Google Scholar] [CrossRef]
- Jin, B.; Lazarov, R.; Zhou, Z. An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 2016, 36, 197–221. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Mascarenhas, P.V.S.; Moraes, R.M.; Cavalcante, A.L.B. Using a shifted Grünwald–Letnikov scheme for the Caputo derivative to study anomalous solute transport in porous medium. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 1956–1977. [Google Scholar] [CrossRef]
- Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
- Nasir, H.M.; Nafa, K. A new second order approximation for fractional derivatives with applications. SQUJS 2018, 23, 43–55. [Google Scholar]
- Zeng, F.; Li, C.; Liu, F.; Turner, I. Numerical algorithms for time fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 2015, 37, A55–A78. [Google Scholar] [CrossRef]
- Dimitrov, Y. A second order approximation for the Caputo fractional derivative. J. Fract. Calc. Appl. 2016, 7, 175–195. [Google Scholar]
- Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef]
- Gao, G.-H.; Sun, Z.-Z.; Zhang, H.-W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Apostolov, S.; Dimitrov, Y.; Todorov, V. Constructions of second order approximations of the Caputo fractional derivative. Lect. Notes Comput. Sci. 2022, 13127, 31–39. [Google Scholar]
- Alikhanov, A.A.; Huang, C. A high-order L2 type difference scheme for the time fractional diffusion equation. Appl. Math. Comput. 2021, 411, 1–19. [Google Scholar] [CrossRef]
- Lv, C.; Xu, C. Error analysis of a high order method for time fractional diffusion equations. SIAM J. Sci. Comput. 2016, 38, A2699–A2724. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Ren, L. A high-order L2-compact difference method for Caputo-type time fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 342, 71–93. [Google Scholar] [CrossRef]
- Chen, M.H.; Deng, W.H. Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 2014, 52, 1418–1438. [Google Scholar] [CrossRef]
- Cao, J.; Cai, Z. Numerical analysis of a high-order scheme for nonlinear fractional differential equations with uniform accuracy. Numer. Math. Theory Methods Appl. 2020, 14, 71–112. [Google Scholar] [CrossRef]
- Dehghan, M.; Safarpoor, M.; Abbaszadeh, M. Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 2015, 290, 174–195. [Google Scholar] [CrossRef]
- Li, L.; Zhao, D.; She, M.; Chen, X. On high order numerical schemes for fractional differential equations by block-by-block approach. Appl. Math. Comput. 2022, 425, 127098. [Google Scholar] [CrossRef]
- Lubich, C. Discretized fractional calculus. SIAM J. Math. Anal. 1986, 17, 704–719. [Google Scholar] [CrossRef]
- Ramezani, M.; Mokhtari, R.; Haase, G. Some high order formulae for approximating Caputo fractional derivatives. Appl. Numer. Math. 2020, 153, 300–318. [Google Scholar] [CrossRef]
- Roul, P.; Rohil, V. A novel high-order numerical scheme and its analysis for the two-dimensional time fractional reaction-subdiffusion equation. Numer. Algor. 2022, 90, 1357–1387. [Google Scholar] [CrossRef]
- Wu, R.F.; Ding, H.F.; Li, C.P. Determination of coefficients of high-order schemes for Riemann–Liouville derivative. Sci. World J. 2014, 2014, 402373. [Google Scholar] [CrossRef] [PubMed]
- Navot, I. An extension of the Euler-Maclaurin summation formula to functions with a branch singularity. J. Math. Phys. 1961, 40, 271–276. [Google Scholar] [CrossRef]
- Navot, I. A further extension of the Euler–Maclaurin summation formula. J. Math. Phys. 1962, 41, 155–163. [Google Scholar] [CrossRef]
- Dimitrov, Y. Approximations of the fractional integral and numerical solutions of fractional integral equations. Commun. Appl. Math. Comput. 2021, 3, 545–569. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Baleanu, D.; Ezz-Eldien, S.S. On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 2013, 219, 8042–8056. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Abd-Elhameed, W.M.; Ahmed, H.M. New fractional derivative expression of the shifted third-kind Chebyshev polynomials: Application to a type of nonlinear fractional pantograph differential equations. J. Funct. Spaces 2022, 2022, 3966135. [Google Scholar] [CrossRef]
- Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 1985, 45, 463–469. [Google Scholar] [CrossRef]
- Marasi, H.; Derakhshan, M.H.; Joujehi, A.S.; Kumar, P. Higher-order fractional linear multi-step methods. Phys. Scr. 2023, 98, 024004. [Google Scholar] [CrossRef]
- Abbas, M.; Bibi, A.; Alzaidi, A.S.M.; Nazir, T.; Majeed, A.; Akram, G. Numerical solutions of third-order time fractional differential equations using cubic B-spline functions. Fractal Fract. 2022, 6, 528. [Google Scholar] [CrossRef]
- Duan, J.-S.; Li, M.; Wang, Y.; An, Y.-L. Approximate solution of fractional differential equation by quadratic splines. Fractal Fract. 2022, 6, 369. [Google Scholar] [CrossRef]
- Ray, S.S.; Gupta, A.K. Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ur Rehman, M.; Baleanu, D.; Alzabut, J.; Saeed, I. Green–Haar wavelets method for generalized fractional differential equations. Adv. Differ. Equ. 2020, 515, 2020. [Google Scholar] [CrossRef]
- Dimitrov, Y. Approximations for the Caputo derivative (I). J. Fract. Calc. Appl. 2018, 9, 15–44. [Google Scholar]
- Matsuoka, Y. On the power series coefficients of the Riemann zeta function. Tokyo J. Math. 1989, 12, 49–58. [Google Scholar] [CrossRef]
- Edwards, H.M. Riemann’s Zeta Function; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Weideman, J.A.C. Numerical integration of periodic functions: A few examples. Am. Math. Mon. 2002, 109, 21–36. [Google Scholar] [CrossRef]
- Anjara, F.; Solofoniaina, J. Solution of general fractional oscillation relaxation equation by Adomian’s method. Gen. Math. Notes 2014, 20, 1–11. [Google Scholar]
- Güulsu, M.; Öztürk, Y.; Anapalı, A. Numerical approach for solving fractional relaxation-oscillation equation. Appl. Math. Model. 2013, 37, 5927–5937. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, Y.; Lu, Z. Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 2008, 215, 220–229. [Google Scholar] [CrossRef]
- Odibat, Z.M.; Momani, S.M. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26, 15–27. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Ray, S.S.; Bera, R.K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Appl. Math. Comput. 2005, 168, 398–410. [Google Scholar] [CrossRef]
- Nuugulu, S.M.; Gideon, F.; Patidar, K.C. A robust numerical solution to a time fractional Black–Scholes equation. Adv. Differ. Equ. 2021, 2021, 123. [Google Scholar] [CrossRef]
- Cen, Z.; Huang, J.; Xu, A.; Le, A. Numerical approximation of a time fractional Black–Scholes equation. Comput. Math. Appl. 2018, 75, 2874–2887. [Google Scholar] [CrossRef]
- Abdi, N.; Aminikhah, H.; Sheikhani, A.H.R. High-order compact finite difference schemes for the time fractional Black–Scholes model governing European options. Chaos Solit. Fract. 2022, 162, 112423. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Zhu, S.-P. Analytically pricing double barrier options based on a time fractional Black–Scholes equation. Comput. Math. Appl. 2015, 69, 1407–1419. [Google Scholar] [CrossRef]
- Wang, X.-T. Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model. Phys. A Stat. Mech. 2010, 389, 438–444. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Singh, J. Numerical computation of fractional Black–Scholes equation arising in financial market. Egypt. J. Basic Appl. Sci. 2014, 1, 177–183. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Turner, I.; Yang, Q. Numerical solution of the time fractional Black–Scholes model governing European options. Comput. Math. Appl. 2016, 71, 1772–1783. [Google Scholar] [CrossRef]
- Grzegorz Krzyżanowski, G.; Magdziarz, M.; Plociniczak, L. A weighted finite difference method for subdiffusive Black–Scholes model. Comput. Math. Appl. 2020, 80, 653–670. [Google Scholar] [CrossRef]
- Dimitrov, Y.; Vulkov, L. Three-point compact finite difference scheme on non-uniform meshes for the time fractional Black–Scholes equation. AIP Conf. Proc. 2015, 1690, 040022. [Google Scholar]
- Song, L.; Wang, W. Solution of the fractional Black–Scholes option pricing model by finite difference method. Abstr. Appl. Anal. 2013, 2013, 194286. [Google Scholar] [CrossRef]
- Deming, W.; Colcord, C. The minimum in the gamma function. Nature 1935, 135, 917. [Google Scholar] [CrossRef]
- Kolotilina, L.Y. Bounds for the infinity norm of the inverse for certain M- and H-matrices. Linear Algebra Appl. 2009, 430, 692–702. [Google Scholar] [CrossRef]
- Nilson, E.N.; Ahlberg, J.H. Convergence properties of the spline fit. J. SIAM 1963, 11, 95–104. [Google Scholar]
Error | Order | Error | Order | Error | Order | |
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
---|---|---|---|---|---|---|
h | ||||||
---|---|---|---|---|---|---|
Error | Order | Error | Order | Error | Order | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, Y.; Georgiev, S.; Todorov, V. Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations. Fractal Fract. 2023, 7, 750. https://doi.org/10.3390/fractalfract7100750
Dimitrov Y, Georgiev S, Todorov V. Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations. Fractal and Fractional. 2023; 7(10):750. https://doi.org/10.3390/fractalfract7100750
Chicago/Turabian StyleDimitrov, Yuri, Slavi Georgiev, and Venelin Todorov. 2023. "Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations" Fractal and Fractional 7, no. 10: 750. https://doi.org/10.3390/fractalfract7100750
APA StyleDimitrov, Y., Georgiev, S., & Todorov, V. (2023). Approximation of Caputo Fractional Derivative and Numerical Solutions of Fractional Differential Equations. Fractal and Fractional, 7(10), 750. https://doi.org/10.3390/fractalfract7100750