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Abstract: In this study, we delve into the general theory of operator kernel functions (OKFs) in
operational calculus (OC). We established the rigorous mapping relation between the kernel function
and the corresponding operator through the primary translation operator e−pt, which bears a striking
resemblance to the Laplace transform. Our research demonstrates the uniqueness of the kernel
function, determined by the rules of operational calculus and its integral representation. This
discovery provides a novel perspective on how the operational calculus can be understood and
applied, particularly through convolution with kernel functions. We substantiate the accuracy of the
proposed method by demonstrating the consistency between the operator solution and the classical
solution for the heat conduction problem. Subsequently, on the fractal tree, fractal loop, and fractal
ladder structures, we illustrate the application of operational calculus in viscoelastic constitutive and
hemodynamics confirming that the method proposed unifies the OKFs in the existing OC theory
and can be extended to the operator field. These results underscore the practical significance of our
results and open up new possibilities for future research.

Keywords: operational calculus; operator kernel function; physical fractal; integral transform;
fractional operator

1. Introduction

Operational calculus (OC), a critical pillar in mathematical physics [1–6], has seen
remarkable advancements since Heaviside first introduced the concept of differential opera-
tor notation p [7]. Yet, it has never ceased to evolve and provoke intellectual curiosity [8–12],
especially with its application in fractional calculus including various types [13–15] and
even fractional order derivatives to functions [16]. These new concepts have renewed
interest and deepened the connotation of OC. With the advent of physical fractal spaces and
the fractal operators concept introduced recently, OC has attracted attention again [17–21].

Historically, Heaviside’s operator algebraization has been controversial and consid-
ered by many to be fundamentally flawed [22]. While the method is overwhelmingly
straightforward, it makes people figure it out mathematically [3,23–29]. The current con-
sensus leans towards an intriguing relation between OC and integral transform [22,30], yet
the nature of this relation, particularly whether a one-to-one mapping exists between the
operator and the function, remains under-explored and ambiguous.

The application of OC in solving scientific and technical differential equations has
been challenging, prompting a shift towards integral transformation techniques [31]. It was
not until the mid-20th century that Jan Mikusiński [32] revitalized OC by treating functions
and operators akin to algebraic expressions, divorcing it from integral transformations.

Despite its novelty, Mikusiński’s approach had limitations, particularly its confine-
ment to certain operators and the need for separate analysis for different operator types.
The typical operator and their corresponding kernel functions are listed in Table 1. The re-
quirement to scrutinize each operator individually precludes his theory from evolving into
a comprehensive system. This modus operandi mandates embarking on fresh research for
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each newly encountered operator to determine its kernel function. Considering that the
operator field is uncountable, exhaustively identifying all operator kernel functions is an im-
practical endeavor. Occasionally, the kernel function of an operator may not be discernible
within the theoretical framework, necessitating reliance on external factors. For instance,
in addressing the operator e−ax√p implicated in heat conduction problems [32], the author
’guessed’ by juxtaposing this operator with known classical solutions, rather than deriving
it computationally from his theory. This diverges considerably from the foundational
premise expected of a robust theoretical system.

Table 1. Typical operator kernel functions in Mikusiński’s theory.

Operator Kernel Function
1
pn

1 tn−1

(n−1)!
1

(p−α)n
tn−1

(n−1)! eαt

1
p2+β2

1
β sin βt

p
p2+β2 cos βt[

(p− α)2 + β2]−n eat

(2β2)n−1

[
An(β2t2) 1

β sin βt− Bn(β2t2)t cos βt
]

2

(
√

p2+α2−p)n
√

p2+α2
αn Jn(αt) 3

cos 1
p2

∞
∑

i=0

(−1)it(2i+1−1)

(2i)!(2i+1−1)!

1
p e−

λ
p J0(2

√
λt)

1√
p e−

λ
p 1√

πt
cosh 2

√
λt

1
p2 e−

λ
p

√
t
λ J2(2

√
λt)

eλ(p−
√

p2+α2) 1− λ√
t2+2λt

αJ1(α
√

t2 + 2λt)

e−λ
√

p2+α2
/
√

p2 + α2 J0(α
√

t2 − λ2) (0 ≤ λ < t)
1 n > 0 and n ∈ Z. 2 An and Bn are parameters. 3 Jn represents the Bessel function of order n.

The origins of these two limitations can be traced back to the existing operational
calculus theory, which is exclusively rooted in algebra and exhibits relative autonomy
from integral transformations. Our research addresses this issue, merging it with integral
transformations to yield a unified operator form expressed via kernel functions. We aim
to further bridge this gap by setting definitive transform mapping relations between
operators and kernel functions, thereby generalizing Mikusiński’s method. Moreover, we
apply the OC to the classic heat conduction problem and three distinct fractal structures,
demonstrating the method’s simplicity and efficiency. The proposed OKF method for OC
elucidates the expression of the operator, offering a novel paradigm for future research in
this domain.

The structure of this paper is as follows: Section 2 introduces the necessary preliminar-
ies and symbolic notation. Section 3 dedicates to proving the uniqueness of the operator
satisfying given conditions, discussing the equivalence between exponential and transla-
tion operators, and substantiating the equivalence between the integral transform and OC.
Finally, Section 4 demonstrates the practical application of the OKF method to the classic
heat conduction problem and three distinct fractal structures, i.e., fractal tree, fractal loop
and fractal ladder.

2. Preliminaries

In this section, we revisit some fundamental concepts of algebraic theory and then
clarify the notation to be used in this paper. Although the content in this section is not
novel, it is instrumental in assisting the reader to establish a conceptual foundation for the
algebra of operational calculus.
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2.1. Function Space

In establishing the theoretical framework, it is crucial to select a function set that strikes
a balance between practicality and inclusiveness. Ideally, one might consider introducing a
space as comprehensive as possible, such as an L-integral function set [33]. Or, considering
the involvement of derivative operations, one would introduce Cn–continuous functions.
However, introducing the Lebesgue integral would introduce complexities and potential
challenges that might hinder the overall analysis, and the choice of Cn–continuous functions
would impose limitations on its range of application.

Hence, it becomes necessary to identify a suitable function subset that is both practical
and sufficiently expansive. We have selected the Mikusiński function set K , which pos-
sesses specific properties and has demonstrated its relevance and effectiveness in similar
contexts [32].

Definition 1. A function f (t)(t ≥ a) belongs to the space K , if the function (real or complex-
valued) satisfies:

(i) The function f (t) has, at most, a finite number of discontinuity points in any finite interval.
(ii) For arbitrary t > a, the integration of f (t) is bounded, i.e.,

∫ t
a f (τ)dτ < ∞.

The space K contains the functions that possess finite discontinuous points in any
finite interval, e.g., the δ-function, which is essential in the OKF theory.

2.2. Ring and Field

We begin by introducing several basic concepts in modern algebra [34,35].

Definition 2. A Commutative ring Z without zero divisors is termed a integral domain, i.e., if
ab = 0, there must be either a = 0 or b = 0.

Definition 3. A set Q is called the field generated by the integral domains if the inverse operation
of multiplication is defined on Z by: whatever a, b ∈ Z and a 6= 0, there is and only is one
solution x ∈ Q that satisfies ax = b, denoted as x = b

a .

The modern algebra has shown that each commutative ring can be included by its
generating field, i.e., Z ⊂ Q. Take the set of integers Z as an example. By taking the
usual division as the inverse of multiplication, one would generate the rational numbers Q,
and Z ⊂ Q. In each field, there is an identical element I satisfying aI = a or I = a

a .

2.3. Notation of Operators

In this section, we introduce conventions for the terminology and notations used
throughout the paper. Functions are denoted by lowercase letters and their corresponding
variables, e.g., f (t), δ(t). If a specific expression is given, the variables will be omitted,
e.g., e−t. Operators are represented by bolded letters, e.g., f , p, l, T, with parameters ex-
plicitly included when necessary, e.g., f (λ, µ). The operator field generated by Mikusiński
space K was denoted as O . The correspondence between the elements in the function ring
K and their respective operator is represented as

f ' f (t), f ∈ O , f (t) ∈ K . (1)

Here the symbol ' only indicates that the function element K is correlated with the
operator O . The specific mapping relations will be established later in Section 3.

Definition 4. The addition of operators is the summation of the corresponding functions, i.e.,

f + g ' f (t) + g(t), f , g ∈ O , f (t), g(t) ∈ K . (2)
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Definition 5. The multiplication of operators is the convolution of the corresponding functions, i.e.,

f · g = f (t) ◦ g(t) =
∫ t

0
f (t− τ)g(τ)dτ, f , g ∈ O , f (t), g(t) ∈ K . (3)

It can be demonstrated that the triple ( f ,+, ·) fulfills all the necessary conditions for a
field, where the Definition 2 being supported by Titchmarsh’s theory [32,34]. Without con-
fusion, the multiplicative notation (·) can be omitted, i.e., f · g = f g.

The corresponding function of the operator l is given by the constant value function
1(t) ≡ 1 (note the distinction between constant value functions and numbers; a number
cannot convolve with a function and can only perform multiplication operation in the
algebraic sense). The action of operator l on the function f (t) ∈ K results in

l f =
∫ t

0
f (τ)dτ, l, f ∈ O , f (t) ∈ K . (4)

According to Equation (4), the operator l is referred to as the integral operator, and

l ∆
= 1(t).

Remark 1. According to Definition 3, there exists an element p ∈ O such that pl = I, where I is
the identical element, and the operator p is the dual operator to l. From Equation (4), we obtain
pl f = I f = f ; therefore, the operator p is commonly referred to as the derivative operator. Note
that the operator p is not precisely equivalent to d

dt , but rather, p f = d
dt f (t) + p f (0). There is no

Cn-continuous function related to the operator p [15,28].

Remark 2. From Equation (3), the convolution of two constant value functions does not result in
another constant value function, e.g., C1(t) ◦ C2(t) = C1C2t. To draw an analogy between opera-
tions on constants in the algebraic sense, the concept of a numerical operator was introduced [32],
defined as C = pC(t). The relations between a constant C, a constant valve function C(t) and a
numerical operator C are: C = pC(t), C(t) ≡ C.

Remark 3. The number multiplication operation can also be defined in the operator field, where
the multiplier is not a number in the algebraic sense but a numerical operator in the operator sense,
i.e., C f = pC(t) ◦ f (t) = C f (t). Consequently, the numerical operator can freely move between
the operator field and the function ring. The symbol C should be regarded as a numerical operator on
the left-hand side (LHS), while C should be considered as a constant instead of a function on the right-
hand side (RHS). Because of this feature, where it is clear, we can also write C f = C f = C f (t).
Thus, we have I = 1 = 1 and p = I

l = 1
l .

3. Operator Kernel Function Method

The operator field is generated by the function ring, where the elements can be
interpreted as generalized functions. A fundamental question arises: Is there a definitive
mapping relation between operators and functions that specifies how operators act on
functions? The method employed by Mikusiński is not applicable when dealing with the
set of infinitely many elements in the operator field. Furthermore, for operators that cannot
be represented by basic operators, e.g., the operator e−λ

√
p and 1√

p e−ax√p, a universal
method for finding the kernel function remains elusive. In such cases, the kernel function
can only be determined by comparing it with specific practical problems.

In the upcoming section, we will present the transform relation between kernel
functions and operators in a general sense, building upon several lemmas to facilitate
our discussion.

3.1. Uniqueness of Solutions of Operator Differential Equations

In the theory of differential equations, the uniqueness of solutions for linear ordinary
differential equations satisfying definite conditions is well-established. Similarly, this
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principle extends to the realm of operators, albeit with the added complexity of distinct
operation rules. In the operator field, where the multiplication of operators is considered as
the convolution of corresponding functions, ensuring uniqueness is not a trivial proposition.
The following lemma provides crucial insights into the operator differential equations
under consideration.

Lemma 1. The operator x(λ) satisfy x′(λ) = ωx(λ) is unique given that x(λ0) = k.

The proof of Lemma 1 aligns with the proof presented by Ref. [32], which is provided
in the Appendix. In the theory of differential equations, it is well-known that the general
solution of the differential equation y′(t) = ωy(t) takes on an exponential form y = eωt,
providing further insights into the behavior of the operator differential equation.

3.2. Translation Operator

Dirac delta functions play an essential role in mathematical physics, such as Green’s
function method, the electric imaging method, etc. [22]. The delta function is defined by

δλ(t) = δ(t− λ) = δ(λ− t) =
{

∞, t = λ
0, t 6= λ

. (5)

The δ-function has the integral property∫ ∞

−∞
δλ(t)dt =

∫ λ+ε

λ−ε
δλ(t)dt = 1. (6)

For a function f (t) defined on the real semi-axis, we have the following convolution
integral

δλ(t) ◦ f (t) =
∫ t

0
δ(t− τ − λ) f (τ)dτ =

∫ t

0
δ(τ − t + λ) f (τ)dτ = f (t− λ). (7)

Equation (7) shows that the physical meaning of the convolution of the delta function
δλ(t) as a kernel with f (t) is to translate the function to the right by the length λ, which
is why the operator δλ is termed as the translation operator. According to the physical
meaning, we have

δλ+µ f = δλ+µ(t) ◦ f (t) = δλ(t) ◦ δµ(t) ◦ f (t) = f (t− λ− µ). (8)

The corresponding operator δλ has the important property

δλ+µ = δλδµ. (9)

Equation (9) has the same properties as the exponential function ex in algebra

eλ+µ = eλeµ. (10)

Remark 4. Distinction arises between the multiplication operations defined in Equations (9) and
(10). In Equation (9) the operator multiplication is characterized by the convolution of the correspond-
ing function, while in Equation (10) the multiplication follows the conventional algebraic sense.

Despite this difference, the striking similarity between these two operations prompts
an intriguing question: Could an equivalence relation exist between them, bridging the
function ring and the operator field? To explore this question further, we require an
additional lemma that will shed light on their connection and potential equivalence.

Lemma 2. The delta operator δλ satisfy δ′λ = −pδλ.
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Proof. The Heaviside step function Hλ(t) and the Delta function δλ(t) have the following
property

Hλ(t) = lδλ(t), or δλ(t) = pHλ(t). (11)

Integration on the step function gives

lHλ(t) =
{

0, 0 ≤ t < λ
t− λ, 0 ≤ λ < t

, (12)

l2Hλ(t) =
{

0, 0 ≤ t < λ
1
2 (t− λ)2, 0 ≤ λ < t

. (13)

Using the derivative of the Dirac operator, we obtain

(δλ)
′ =

(
p3l2(Hλ(t))

)′
= p3

(
∂

∂λ
l2Hλ(t)

)
= p3

{
0, 0 ≤ t < λ

−(t− λ), 0 ≤ λ < t
. (14)

Further, by substituting Equations (11) and (12) into Equation (14)

(δλ)
′ = p3(−lHλ(t)) = −pδλ. (15)

The symbol ()′ in Equations (14) and (15) denotes the derivative with respect to the
parameter λ.

The previous section has proved the uniqueness of the operator. Comparing Equa-
tions (9), (10) and (15), we can formally define

e−pλ = δλ ' δλ(t), e−pλ, δλ ∈ O , δλ(t) ∈ K . (16)

Equation (16) characterizes the time-differentiable operator p, which manifests as an
exponential operator. The LHS of Equation (16) represents the displacement operator, while
the RHS defines the corresponding kernel function.

3.3. The Equivalence of Operational Calculus and Integral Transformations

The OC could be founded on a solid mathematical basis using the equivalence relation
Equation (16) between the fundamental operator e−pλ and the function δλ(t). The follow-
ing theorem shows that the Laplace transform establishes a mapping relation across the
operator field and the function ring.

Theorem 1. The operators are given by the Laplace transform of the kernel function to the differen-
tial operator p.

Proof. The identical transformation is obtained by taking λ = 0 in Equation (7)

δ0 f = δ0(t) ◦ f (t) =
∫ t

0
δ(t− τ) f (τ)dτ =

∫ t

0
δτ(t) f (τ)dτ = f (t). (17)

By substituting Equation (16) into Equation (17)

f =
∫ ∞

0
e−pτ f (τ)dτ. (18)

Equation (18) connects the operator field and the function ring: the LHS of the equation
is the operator, and the RHS of the equation is the integral of the product of the function
and the operator in the algebraic sense. This formula answers the fundamental question of
constructing the corresponding operator in the operator field given a function f (t) in the
function ring.
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Notice that Equation (18) is formally identical to the Laplace transform [22], which is
given by

F(p) = L[ f (t)] ∆
=
∫ ∞

0
e−pτ f (τ)dτ. (19)

Although Equations (18) and (19) are similar in form, their starting point and physical
meaning are entirely different. In Equation (18) the formulas on the LHS are operators in
O , while those on the RHS are functions in K . In Equation (19), the formulas on the LHS
and RHS are all functions. The rules for operators in the operator field and the Laplace
transform have the following formal similarities:

f ' f (t) ⇔ F(p) = L[ f (t)](p), (20)

f + g ' f (t) + g(t) ⇔ L[ f (t) + g(t)] = L[ f (t)] + L[g(t)], (21)

C f ' C f (t) ⇔ L[C f (t)] = CL[ f (t)], (22)

f · g = f (t) ◦ g(t) ⇔ L[ f (t)]L[g(t)] = L[ f (t) ◦ g(t)], (23)

p f = f ′(t) + f (0) ⇔ pL[ f (t)] = L[ f ′(t)] + f (0). (24)

The translation operator relates the OC to the integral transform and assigns them
the same rules. This also proves that the OC is a formal symbolic operation based on
the Laplace transform. This assertion provides a theoretical basis for the OC. The formal
simplicity of the symbolic operations of the OC compared to the integral transform makes
us focus more on the algebraic computations in the operator field rather than on the partial
derivative procedures coupled in time and space.

3.4. The Uniqueness of Operational Calculus and Integral Transformations

The previous section established the equivalence between OC and integral transform,
which arises from the form of the chosen transform and the defined operation rules. This
equivalence implies that OC, based on the fundamental transform, is also equivalent to the
integral transform. A complete theory should be existence and uniqueness, and the equiv-
alence gives the existence of the theoretical basis of the operator calculus. The following
theorem guarantees the uniqueness of the integral transformations [33].

Theorem 2. The integral transformation kernel function required to make the operator have the
property (20)–(24) is unique, the kernel function is K(p, t) = e−pt, and the integral transform
constituted is the Laplace transform.

Proof. Consider the integral transform given by the kernel function K(p, t):

`[ f ](p) =
∫ ∞

0
K(p, t) f (t)dt. (25)

The transform given by Equation (25) needs to satisfy all the rules for an operator,
i.e., (20)–(24). Considering the differential property Equation (24), integral f ′(t) by part

`[ f ′](p) =
∫ ∞

0
K(p, t) f ′(t)dt = (K(p, t) f (t))|∞0 −

∫ ∞

0

∂K(p, t)
∂t

f (t)dt. (26)

Equation (26) should have the same form as Equation (24), so we have

`[ f ′] = p`[ f ]− f (0). (27)

Comparing Equations (26) and (27), the kernel function K(p, t) should satisfy

∂K(p, t)
∂t

= −pK(p, t), (28)
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and

lim
t→0+

K(p, t) = 1, lim
t→∞

K(p, t) = 0. (29)

The particular unique solution of this differential equation is

K(p, t) = e−pt. (30)

Lastly, bringing Equation (30) back into Equation (25), we obtain the transform

`[ f ](p) = L[ f ](p) =
∫ ∞

0
e−pt f (t)dt. (31)

So far, we have proved that the kernel function is unique based on integral trans-
form.

Comparing Equations (18) and (19), we immediately deduce from the uniqueness of
the Laplace transform that

Theorem 3. If there exists an inverse Laplace transform of the operator f for the differential
operator p on the operator field, then the kernel function in the function ring exists and is given by
the inverse Laplace transform of f for the differential operator p, i.e.,

f (t) =
1

2πi

∫
c

ept f dp. (32)

Readers are encouraged to independently confirm that all operators listed in Table 1
comply with the relation illustrated in Equation (32). This eliminates the necessity for
cumbersome individual analyses for each new operator encountered, as the transformation
relationship readily provides the expression for the OKF. The theorem further suggests that
the presence of an operator kernel function necessitates the existence of its inverse Laplace
transformation. A necessary condition for the inverse transformation is the equation
lim

p→∞
f (p) = 0.

3.5. Relationship with Carson-Laplace Transform

In this paper, the convolution of constant value functions is not again a constant func-
tion. There are two ways to resolve this contradiction, either by defining the concept of nu-
merical operator here or by introducing a different definition of operator multiplication [24,33]

f ∗ g ∆
=

d
dt

∫ t

0
f (t− τ)g(τ)dτ. (33)

In the operator multiplication defined by Equation (33), the behavior of a constant
operator is identical to that of a number in the algebraic sense. According to the relation
between the differential operator and the derivative, there is

f ∗ g = p f · g. (34)

Compared with the definition given by Equation (3), the differentiation in Equation (33)
make one factor more in the RHS of Equation (34). At this point, the operator corresponds to
the kernel function, also with an additional factor p, which is given by the Carson-Laplace
transform [22]

f̃ = p
∫ ∞

0
e−pτ f (τ)dτ. (35)

And the corresponding inverse transform is given by
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f (t) =
1

2πi

∫
c

ept f̃
p

dp. (36)

Equation (36) is consistent with the results obtained by Refs. [22,23]. The multiplication
definition used in this paper gives a more direct and clear correspondence between the
operator and the kernel function, although the introduction of the number operator is
somewhat counterintuitive. Based on such correspondence, one can realize the operator’s
actions on the function directly employing the kernel function method without probing
into its intrinsic details.

4. Applications of Operator Kernel Function Method
4.1. The Heat Conduction Problem

As the first example of the OKF method, let us consider the heat conduction boundary
value problem. This problem was selected as our research subject based on a dual rationale:
primarily, by juxtaposing the results to those yielded by classic problems, the accuracy of
our proposed method can be ascertained; secondly, the OKFs implicated in this problem
elude Mikusiński’s theoretical constructs, whereas our approach elucidates a lucid and
succinct logical basis for these kernel functions. The governing equations and boundary
conditions for this problem are [22]:

uxx = a2ut; u(0, t) = u0(t), lim
x→∞

u(x, t) = 0. (37)

In the operator field, the controlling equation is rewritten as

uxx = a2 pu. (38)

Equation (38) is an operator differential equation; the result is given by

u = C1e−ax√p + C2eax√p. (39)

Since the second and the third equation in Equation (37), we have

u = e−ax√pu0(t). (40)

In Mikusiński’s theoretical framework, the kernel function of e−ax√p remains unin-
terpretable. As a workaround, Ref. [32] equated this operator with a pre-existing concrete
solution, thereby inferring the operator’s kernel function. However, this approach is in-
herently specialized and lacks broad applicability. Our goal is consistently to employ
theoretical understanding to unravel unknown issues, rather than filling theoretical gaps
with solutions already at hand.

According to Theorem 3, the kernel function of the operator is given by the inverse
Laplace transform, that is,

e−ax√p = L−1[e−ax√p] =
ax

2
√

πt3/2 e−
a2x2

4t . (41)

Therefore, the solution is obtained by

u(x, t) =
(

ax
2
√

πt3/2 e−
a2x2

4t

)
◦ u0(t) =

ax
2
√

π

∫ t

0
u0(t− τ)

e−
a2x2

4τ

τ3/2 dτ. (42)

Equation (42) signifies the analytical solution for the classical boundary value problem
concerning heat conduction in an infinitely long rod. Here, operational calculus is utilized
to convert the governing partial differential equation into an operator algebraic or operator
ordinary differential equation within the operator field. More precisely, through the method
proposed herein, the kernel function related to each operator is discerned. Following this,
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the solution to the problem is ascertained via convolution in the function domain, aligning
with the classical solution as outlined in Ref. [36].

Our approach proficiently tackles the issues associated with the construction of opera-
tor kernel functions, an area in which Mikusiński’s theory falls short. Consider another
typical operator, 1√

p e−ax√p, whose kernel function is predicated on the operator e−ax√p.
In this case as well, our method is uniquely capable of deriving the kernel function for this
operator. Following Theorem 3, we have:

1
√

p
e−ax√p = L−1[

1
√

p
e−ax√p] =

ax√
πt

e−
a2x2

4t . (43)

At this juncture, it should be apparent to readers that the series of OKFs, formulated
on the basis of the operator e−ax√p, markedly differ from those presented in Table 1.
The notable distinction lies in the fact that these kernel functions are intuited or ’guessed’,
rather than being systematically constructed. This deviates from the typical aspirations
of scientific theories for universality and objectivity. The OKF method proposed in this
paper not only applies to every operator featured in Table 1 but also extends to operators
encountered in heat conduction problems. As such, we contend that our OKF methodology
possesses wider applicability, serving as an extension, to some extent, of Mikusiński’s
operational calculus.

4.2. Fractional-Order Mechanics on a Fractal Tree

Since Heymans et al. introduced the fractal tree structure [37], fractal models have
continued to evolve. Researchers have developed various hierarchical models to elucidate
the physical properties of complex systems, such as the fractional rheological constitutive
equations of polymeric materials [38,39], spring-dashpot fractal tree networks for viscoelas-
tic materials [17], fractional spiking properties of spiny dendritic structures [19], arterial
self-similar functional circuit models for blood flow simulation [20]. These works share a
common thread of incorporating physical fractal structures and utilizing operator algebraic
equations based on the smallest functional cell element.

However, the operators obtained in these studies are often fractional or irrational,
rendering them incompatible with primary operators in Mikusiński’s theory. To address this
issue, researchers have employed different strategies, such as treating fractional operators as
fractional derivatives (e.g., Riemann-Liouville or Caputo fractional order derivatives) [17],
using series expansion to approximate target operators [19], or utilizing the Babenko
operator and Heaviside translation principle to derive kernel functions [20]. Despite these
efforts, existing methods have their limitations. For example, directly utilizing fractional
order derivatives lacks uniqueness, operator series expansion offers limited approximations
or may even be nonconvergent, and the Heaviside translation principle only works with
specific operators.

To demonstrate the general applicability of the OKF method, this section uses the
fractal-tree structure [17,19] as an example to solve the kernel function of the fractal operator
(see Figure 1). The results reveal how the OKF connects the fractal structure with fractional
order calculus, illustrating its broad potential in addressing complex systems.

.

.

.

T
1

T
2

T T

T

Figure 1. Schematic diagram of the fractal-tree structure and fractal cell elements.
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Based on the mechanical-electrical analogy, the relation between stiffness operator T
of the structure and the component elements satisfy [17,19]

T =
TT1

T + T1
+

TT2

T + T2
. (44)

Solving the operator algebraic Equation (44) gives the stiffness operator as

T =
√

T1T2. (45)

To facilitate the understanding for the readers, we provide a detailed explanation of
this method in Appendix A. Because the stiffness should be positive, only the positive root
remains in Equation (45). By taking T = E1, T2 = ηp, we obtain

T =
√

E1ηp. (46)

The stress of the model is given by

σ(t) =
√

E1ηpε(t). (47)

Guo et al. [19] and Peng et al. [20] utilized the Babenko operator [40]√
p + γ = e−γt(RLD

1
2 )eγt. (48)

to obtain the result of Equation (47), where RLD
1
2 denotes the one-second Riemann-Liouville

fractional derivative. Equation (48) was termed the Heaviside translation principle by
Hilbert and Courant [22].

Here, we do not presuppose the operator p as Riemann-Liouville fractional derivative;
instead, the expression of Equation (47) is obtained using the OKF method. Notice that
the inverse Laplace transform of p does not exist. Thus, we rewrite Equation (47) using
multiplication decomposition as

σ(t) =
√

E1ηp
(

p−
1
2 ε(t)

)
. (49)

In Equation (49), we have p f = d
dt f (t) + p f (0) and p−

1
2 = l

1
2 = 1√

πt
. Substituting

into Equation (47), we obtain the response expression in the function domain

σ(t) =
d
dt

(
1√
πt
◦ ε(t)

)
+ p

(
1√
πt
◦ ε(t)

)∣∣∣∣
t=0

. (50)

Equation (50) includes an improper integral because the integrand of the convolution
might be discontinuous at τ = t. The improper integral of Equation (50) converges if
lim
t→0

lim
τ→t

t
1
2 ε(τ) = 0, and we have

(
1√
πt
◦ ε(t)

)∣∣∣
t=0

= 0, then Equation (50) becomes

σ(t) =
√

E1η
d
dt

∫ t

0

1√
π
√

t− τ
ε(τ)dτ =

√
E1η

(
RLD

1
2 ε(t)

)
. (51)

This result is consistent with Ref. [19]. We next consider the stress relaxation of the
fractal-tree, obtained by setting ε ≡ ε0:

σ(t) =
√

E1η√
πt

ε0. (52)
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Corresponding to the stress relaxation, let us consider its inverse effect, i.e., the strain
creep response given by the flexibility operator 1

T :

1
T

=
1√
E1η

p−
1
2 . (53)

And the expression in the operator field is

ε(t) =
1
T

σ(t) =
1√
E1η

p−
1
2 σ(t). (54)

By using p−
1
2 = l

1
2 = 1√

πt
again, we have

ε(t) =
1
T

σ(t) =
1√

πE1η

∫ t

0

1√
t− τ

σ(τ)dτ. (55)

Similarly, the convergence condition of the integration result of Equation (64) is
lim
t→0

lim
τ→t

t
1
2 σ(τ) = 0. The strain creep is obtained by setting σ ≡ σ0 in Equation (55)

ε(t) =
2σ0t

1
2√

πE1η
. (56)

The fractal stiffness operator T represents a 1/2-order differential operator, while
the fractal flexibility operator 1

T corresponds to a 1/2-order integral operator. Both of
these operators exhibit apparently fractional order characteristics, specifically a 1/2-order
type. Consequently, the kernel function associated with these operators includes a power
function with an order of 1/2. Notably, the stress relaxation and strain creep response
observed in the fractal tree structure demonstrates fractional order behavior. The response
for stress relaxation and strain creep of the fractal tree model, the Kelvin-Voigt model,
and the Maxwell model are shown in Figure 2. Only when the system consists of fractal
systems with infinite components would the irrational fractal-type operator arise [21],
showcasing a profound inherent difference from the traditional Kelvin-Voigt model.
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Figure 2. Response curves for stress relaxation and strain creep of the fractal tree model, the Kelvin-
Voigt, and the Maxwell models. (a) The black line represented in the figure indicates the process of
applying and releasing step stress; (b) The black line shown in the figure denotes the application of
step strain.

4.3. Fractional-Order Mechanics on a Fractal Loop

In addition to the fractal tree-like structure, we further examined another typical
cellular architecture, as described by Yin et al. [21]. A representative 2-loop fractal loop cell
is illustrated in Figure 3.
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Figure 3. Schematic diagram of the fractal loop structure and fractal cell elements.

The fractal loop structure presents a distinct topology in comparison to the fractal
tree. Consequently, this implies that the stress flow dynamics between these two structures
would differ. By employing the analytical methodology delineated in the preceding section,
we derived the stiffness operator algebraic equation as follows:

1
T + T1

+
1

T + T2
=

1
T

. (57)

Solving Equation (57), we established that the integral stiffness is given by:

T =
√

T1T2. (58)

Intriguingly, the 2-loop fractal cell exhibits an identical stiffness to the fractal tree,
as described by Equation (45). Ordinarily, structures with distinct topologies would re-
spond differently to the same input. Nonetheless, both the fractal loop and fractal tree
structures possess the same stiffness operators, suggesting identical responses to arbitrary
input signals. This may seem counterintuitive at first glance. However, this anomaly
can be attributed to the fact that both structures share the same topological invariants.
The topology index for the fractal tree was defined based on its branches, while for the
fractal loop, it was based on its number of loops [21]. For the self-similar 2-branch fractal
tree and fractal loop, one structure can be reorganised into another, demonstrating the flexi-
bility and interchangeability of the two structures. The notion of representing the response
of a structure in terms of operators lends an intuitive understanding to this discussion.
Analogous to the previous section, the response functions for stress relaxation and strain
creep were precisely solved.

4.4. Hemodynamics on a Fractal Ladder

Hemodynamics can be studied in two main ways. The first is the classical continuous
medium hemodynamic model, which uses the principles of mass, momentum, and energy
balance to create a series of partial differential equations based on the Navier-Stokes
equation [41]. The second is the physical circuit simulation method, a systemic approach
to simulating total systemic arterial blood flow. This method has been widely used to
understand various physiological and pathological behaviors of the arterial circulatory
system [42].

One of the physical circuit simulation methods is the Elastic-cavity functional circuit
model, also known as the lumped parameter electrical model or Windkessel model. This
model has evolved over time with different researchers contributing to its development [43–45].
Most recently, Peng et al. [20] expanded the model by increasing the number of elastic cavities
to infinity, creating what is known as a fractal ladder model.

The derivative operator of this model is not an integer-order operator and does
not fit into Mikusiński’s operational calculus theory. To overcome this, we use the OKF
method—an approach that allows us to create an expression for the hemodynamic con-
ductivity operator and identify the kernel function of the operator. The analogue circuit
diagram and fractal operator schematic are shown in Figure 4.
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Figure 4. Schematic diagram of the fractal ladder structure and fractal cell elements.

As depicted in the figure, when the number of stages approaches infinity, a fractal cell
element remains self-similar, even when it is arranged in series with an inductive element
and subsequently in parallel with a capacitive element. This condition gives rise to the
following equation for the fractal operator:

TT1

T + T1
+ T2 = T . (59)

Upon solving the algebraic equation for the operator, we derive the expression for the
fractal step operator as follows:

T =
T2 −

√
T2

2 + 4T1T2

2
. (60)

Within Equation (60), a single solution is retained, which aligns with the physical
interpretation of the structure. The admittance operator T1, which corresponds to the
inductance L element, is defined as:

T1 =
1

Lp
. (61)

The admittance operator T2 corresponding to the capacitance C element is:

T2 = Cp. (62)

By substituting Equations (61) and (62) back into Equation (60), we can derive the
expression for the aortic fractal operator:

T =
Cp−

√
C2 p2 + 4C/L

2
. (63)

The total blood pressure-flow response of the arterial is governed by

Q(t) = T(p)P(t). (64)

Consequently, given the known arterial input pressure signal P(t), the output flow
signal Q(t) can be readily determined through the modulation of the operator T . Employing
the OKF method, as used in this study, we express the kernel function of the fractal ladder
operator as follows:

T =
Cp−

√
C2 p2 + 4C/L

2
= −

√
C
L

1
t

J1(
2t√
LC

). (65)

In Equation (65), J1(x) represents the Bessel function of the first type. This results in
the following pressure-flow relation:

Q(t) = −
√

C
L

∫ t

0

1
τ

J1(
2τ√
LC

)P(t− τ)dτ. (66)
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In this section, we have primarily focused on the application of the operator kernel
function method. We have demonstrated its utility using examples and discussed its
implications for dealing with structures or behaviors exhibiting self-similarity. For a
more comprehensive understanding of the process of establishing the operator algebra
equations and the hemodynamic results, we recommend referring to the seminal work by
Peng et al. [20].

The OKF method in this study provides an effective and straightforward approach to
analyzing systems. Unlike the integral transform method, which requires modifications
to the system’s inputs and outputs, the OKF method treats the system as a distinct object
of study. This approach focuses on the behavior of the system as represented through the
operator, and as a result, the functional response of the system is obtained according to
the OKF method. This advancement in the methodological approach serves to enrich our
understanding and analysis of complex systems.

5. Conclusions

This paper presents a symbolic algebraic operation method based on the OC operator
kernel function, combined with the integral transform but has a wider generality than
the integral transform since it does not need any transform of the input and output. This
approach streamlines the expression form and ensures that the solution process aligns
closely with its physical implications.

Our research establishes a novel correspondence between the exponential operator
and the delta function. Using the fundamental translation operator and the identical
transform, we have established the form of the operator generated by the kernel function
in the function ring. By employing the inverse Laplace transform of the operator, we
were able to obtain the kernel function of the operator. This process verifies the unique
equivalence between the operator and the kernel function under the rules of OC and the
transformed form.

Without exception, every operator implicated in Table 1 can be uniformly tackled
using our approach. The operators discussed in Section 4.1 compellingly illustrate that
the acquisition of OKFs is not contingent upon external factors. These functions can be
computed directly within the theoretical framework, a capability that surpasses the limita-
tions of the current systems. It provides a unified approach to obtaining kernel functions,
thereby eliminating the need to study specific operators individually. Significantly, our
work broadens the scope of Mikusiński’s finite operator expression, extending it to the
entire operator field. This expansion marks a significant contribution to the field, provid-
ing a novel approach to solving differential and integral equations in mechanics. Finally,
through three self-similar fractal structures, we exemplify how OC morphs differential
equation issues into operator algebraic problems, showcasing the clear and concise logic of
OC. Following this, the unidentified operators are resolved using the OKF method.

In our follow-up work, utilizing the OKF method delineated in this paper, we have
successfully represented a series of classical fractional calculus as operators in OC. Fur-
thermore, we have extended this representation to encompass the generalized fractional
calculus theory, as denoted by the Sonine kernel. Looking ahead, we intend to further
apply the OKF method in conducting asymptotic analysis research on operators that are
not amenable to inverse Laplace transformations.

Looking forward, our study paves the way for future research, presenting new ques-
tions about the potential applications of this method in other mathematical or physical
contexts. We anticipate that the operational calculus OKF method can open new avenues
for problem-solving in mechanics and beyond.

Author Contributions: Conceptualization, X.Y. and Y.Y.; methodology, X.Y.; validation, X.Y.; inves-
tigation, X.Y.; writing—original draft preparation, X.Y.; writing—review and editing, Y.Y.; supervi-
sion, Y.Y.; funding acquisition, Y.Y. All authors have read and agreed to the published version of
the manuscript.



Fractal Fract. 2023, 7, 755 16 of 18

Funding: This research was partially supported by the National Natural Science Foundation of China
(Grant: No. 12050001 and No. 11672150).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Gang Peng for the helpful discussion on this topic.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

OKF Operator kernal funtion
OC Operational Calculus
LHS Left hand side
RHS Right hand side

Appendix A

Proof of Lemma 1. Suppose that there exist two different operators x1(λ) and x2(λ) satisfy

x′(λ) = ωx(λ), x(λ0) = k. (A1)

Thus, the operator

x̄λ = x1(λ)− x2(λ), (A2)

also satisfy the equation. The definite condition for x̄λ becomes

x̄(λ0) = x1(λ0)− x2(λ0) = 0. (A3)

We need to prove that x̄λ ≡ 0. Construct an auxiliary operator [32]

y(λ) = x̄(λ)x̄(2µ− λ). (A4)

where the parameter µ is an arbitrary real number. The derivative of y(λ) with respect to λ
gives

y′(λ) = x̄′(λ)x̄(2µ− λ)− x̄(λ)x̄′(2µ− λ)

= ωx̄(λ)x̄(2µ− λ)− x̄(λ)ωx̄(2µ− λ)

= 0. (A5)

The symbol ()′ in Equations (A1) and (A5) denotes the derivative with respect to λ.
The auxiliary operator satisfies

y(λ) = x̄(λ)x̄(2µ− λ) ≡ 0. (A6)

Using Titchmarsh’s theorem, there is no zero factor on the operator field, so there must be
x̄ ≡ 0 for arbitrary µ. This proves that the operator satisfying the conditions of the lemma
is unique.
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31. Flegg, H.G. Mikusiński’s Operational Calculus. Int. J. Educ. Res. 1974, 5, 131–137. [CrossRef]
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