Next Article in Journal
Exploring Propagating Soliton Solutions for the Fractional Kudryashov–Sinelshchikov Equation in a Mixture of Liquid–Gas Bubbles under the Consideration of Heat Transfer and Viscosity
Next Article in Special Issue
The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions
Previous Article in Journal
Oxidopamine-Induced Nuclear Alterations Quantified Using Advanced Fractal Analysis: Random Forest Machine Learning Approach
Previous Article in Special Issue
An Outlook on Hybrid Fractional Modeling of a Heat Controller with Multi-Valued Feedback Control
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions

1
Laboratory of Analysis and Control of Differential Equations “ACED”, Faculty MISM, Department of Mathematics, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
2
Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 55425, Saudi Arabia
3
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2023, 7(11), 772; https://doi.org/10.3390/fractalfract7110772
Submission received: 4 July 2023 / Revised: 19 October 2023 / Accepted: 19 October 2023 / Published: 24 October 2023

Abstract

:
In this paper, we first prove a new parameterized identity. Based on this identity we establish some parametrized Simpson-like type symmetric inequalities, for functions whose first derivatives are s- t g s -convex via Reimann–Liouville frational operators. Some special cases are discussed. Applications to numerical quadrature are provided.

1. Introduction

Symmetric inequalities often arise in various branches of mathematics, such as algebra, analysis, and optimization. They have numerous applications and play a crucial role in proving theorems and solving problems in areas like number theory, combinatorics, and inequalities themselves. In the study of symmetric inequalities, techniques such as rearrangement inequality, Cauchy–Schwarz inequality, and the method of Lagrange multipliers are commonly employed to establish the validity of the inequalities and find optimal solutions [1,2,3].
Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders and their applications in different fields of sciences and engineering. In real life, fractional calculus is generated from various fractional operators such as Riemann–Liouville, Caputo, Hadamard, and so on; due to its widespread use in different fields, this calculus has attracted many researchers. The most-used operator is that of Riemann-Liouville given by the following definition
Definition 1
([4]). For any integrable function L on [ k , g ] with k 0 , I k + ς L and I g ς L are the Riemann–Liouville fractional integrals of order ς > 0 given by
I k + ς L ( x ) = 1 Γ ς k x x Λ ς 1 L ( Λ ) d Λ , x > k , I g ς L ( x ) = 1 Γ ς x g Λ x ς 1 L ( Λ ) d Λ , g > x ,
respectively, where Γ ( ς ) = 0 e Λ Λ ς 1 d Λ is the gamma function and
I k + 0 L ( x ) = I g 0 L ( x ) = L ( x ) .
The theory of convexity plays a central and attractive role in many fields of research. This theory provides us with a powerful tool for solving a large class of problems that arise in pure and applied mathematics, defined as follows:
Definition 2
([5]). A function L : I R is said to be convex, if
L Λ x + 1 Λ y Λ L x + 1 Λ L ( y )
holds for all x , y I and all Λ [ 0 , 1 ] .
In [6], Awan et al. introduced the class of s- t g s -convex functions.
Definition 3
([6]). We say that a function L : I R R is s- t g s -convex on I, if
L Λ x + 1 Λ y Λ s 1 Λ s L x + L y
holds for all x , y I and Λ [ 0 , 1 ] , with s 0 , 1 .
Convexity has a close relation in the development of the theory of inequalities, of which it plays an important role in the study of qualitative properties of solutions of ordinary, partial, and integral differential equations as well as in numerical analysis, which is used for establishing the estimates of the errors for quadrature rules; see [7,8,9,10,11,12,13,14,15,16,17,18].
The following Newton–Cotes inequality involving four points is known in the literature as the 3 / 8 -Simpson inequality
1 8 L k + 3 L 2 k + g 3 + 3 L k + 2 g 3 + L g 1 g k g k L w d w g k 4 6480 L 4 ,
where L is a four-times continuously differentiable function on k , g and
L 4 = sup x k , g L 4 x .
Recently, Mahmoudi and Meftah [19] discussed more general inequalities of four points and gave the following results
Theorem 1.
Let L : k , g R be a differentiable function on k , g such that L L 1 k , g with 0 k < g . If L is s-convex in the second sense for some fixed s 0 , 1 , then we have
1 2 + 2 ρ L k + ρ L 2 k + g 3 + ρ L k + 2 g 3 + L g 1 g k g k L w d w g k 9 s + 1 s + 2 3 s + 4 2 ρ 2 + 2 ρ + 2 2 ρ 1 2 + 2 ρ s + 2 L k + L g + 3 ρ s + 2 ρ 4 2 + 2 ρ + 1 2 s + 1 + 2 3 2 + 2 ρ s + 2 L 2 k + g 3 + L k + 2 g 3 ,
where ρ is a positive number.
Theorem 2.
Let L : k , g R be a differentiable function on k , g such that L L 1 k , g with 0 k < g . If L q is s-convex in the second sense for some fixed s 0 , 1 , then we have
1 2 + 2 ρ L k + ρ L 2 k + g 3 + ρ L k + 2 g 3 + L g 1 g k g k L w d w g k 18 p + 1 p + 1 3 p + 1 + 2 ρ 1 p + 1 2 1 + ρ p + 1 1 p L k q + L 2 k + g 3 q s + 1 1 q + L 2 k + g 3 q + L k + 2 g 3 q s + 1 1 q + 3 p + 1 + 2 ρ 1 p + 1 2 1 + ρ p + 1 1 p L k + 2 g 3 q + L g q s + 1 1 q ,
where ρ is a positive number and q > 1 with 1 p + 1 q = 1 .
Theorem 3.
Let L : k , g R be a differentiable function on k , g such that L L 1 k , g with 0 k < g . If L q is s-convex in the second sense for some fixed s 0 , 1 , then we have
1 2 + 2 ρ L k + ρ L 2 k + g 3 + ρ L k + 2 g 3 + L g 1 g k g k L w d w g k 9 s + 1 s + 2 1 q 9 + 2 ρ 1 2 8 1 + ρ 2 1 1 q 3 s + 4 2 ρ 2 + 2 ρ + 2 2 ρ 1 2 + 2 ρ s + 2 L k q + 2 ρ 1 s + 2 ρ 4 2 + 2 ρ + 2 3 2 + 2 ρ s + 2 L 2 k + g 3 q 1 q + 1 4 2 s + 1 2 s 1 1 q L 2 k + g 3 q + L k + 2 g 3 q 1 q + 9 + 2 ρ 1 2 8 1 + ρ 2 1 1 q 2 ρ 1 s + 2 ρ 4 2 + 2 ρ + 2 3 2 + 2 ρ s + 2 L k + 2 g 3 q + 3 s + 4 2 ρ 2 + 2 ρ + 2 2 ρ 1 2 + 2 ρ s + 2 L g q 1 q ,
where ρ is a positive number and q 1 .
Motivated by the above results, in this paper we first prove a new parameterized identity. Based on this identity, we establish some new fractional Simpson-like type inequalities for functions whose first derivatives are s- t g s -convex. We end this work with some applications.

2. Main Results

Let us first recall some special functions (see [4]).
The incomplete beta function is given by
B m ξ 1 , ξ 2 = 0 m Λ ξ 1 1 1 Λ ξ 2 1 d Λ ,
where ξ 1 , ξ 2 C such that ξ 1 > 0 , ξ 2 > 0 and 0 m < 1 . The case where m = 1 gives the classical beta function, i.e.,
B ξ 1 , ξ 2 = 0 1 Λ ξ 1 1 1 Λ ξ 2 1 d Λ .
The hypergeometric function is defined for ( c ) > ( b ) > 0 and z < 1 , as follows
2 F 1 a , b , c ; z = 1 B b , c b 1 0 Λ b 1 1 Λ c b 1 1 z Λ a d Λ ,
where B · , · is the beta function.
Lemma 1.
Let L : k , g R be a differentiable function on k , g such that L L 1 k , g , then the following equality holds
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L = g k 9 1 0 Λ α 3 2 + 2 θ L 1 Λ k + Λ 2 k + g 3 d Λ + 1 0 1 2 1 Λ α L 1 Λ 2 k + g 3 + Λ k + 2 g 3 d Λ + 1 0 3 2 + 2 θ 1 Λ α L 1 Λ k + 2 g 3 + Λ g d Λ ,
where θ is positive number, 0 < α 1 , and
R α , L = I 2 k + g 3 α L ( k ) + I 2 k + g 3 + α L k + 2 g 3 + I k + 2 g 3 + α L ( g ) .
Proof. 
Let
I 1 = 1 0 Λ α 3 2 + 2 θ L 1 Λ k + Λ 2 k + g 3 d Λ , I 2 = 1 0 1 2 1 Λ α L 1 Λ 2 k + g 3 + Λ k + 2 g 3 d Λ
and
I 3 = 1 0 3 2 + 2 θ 1 Λ α L 1 Λ k + 2 g 3 + Λ g d Λ .
By using integration by parts in I 1 , we obtain
I 1 = 3 g k Λ α 3 2 + 2 θ L 1 Λ k + Λ 2 k + g 3 Λ = 0 Λ = 1 3 α g k 1 0 Λ α 1 L 1 Λ a + Λ 2 k + g 3 d Λ = 6 θ 3 g k 2 + 2 θ L 2 k + g 3 + 9 g k 2 + 2 θ L k 3 α + 1 α g k α + 1 2 k + g 3 k u a α 1 L u d u = 6 θ 3 g k 2 + 2 θ L 2 k + g 3 + 9 g k 2 + 2 θ L k 3 α + 1 Γ α + 1 g k α + 1 I 2 k + g 3 α L ( k ) .
Similarly, we obtain
I 2 = 3 g k 1 2 1 Λ α L 1 Λ 2 k + g 3 + Λ k + 2 g 3 Λ = 0 Λ = 1 3 α g k 1 0 1 Λ α 1 L 1 Λ 2 k + g 3 + Λ k + 2 g 3 d Λ = 3 2 g k L k + 2 g 3 + 3 2 g k L 2 k + g 3 3 α + 1 α g k α + 1 k + 2 g 3 2 k + g 3 k + 2 g 3 u α 1 L u d u = 3 2 g k L k + 2 g 3 + 3 2 g k L 2 k + g 3 3 α + 1 Γ α + 1 g k α + 1 I 2 k + g 3 + α L k + 2 g 3
and
I 3 = 3 g k 3 2 + 2 θ 1 Λ α L 1 Λ k + 2 g 3 + Λ g Λ = 0 Λ = 1 3 α g k 1 0 1 Λ α 1 L 1 Λ k + 2 g 3 + Λ g d t = 9 2 + 2 θ g k L g + 6 θ 3 g k 2 + 2 θ L k + 2 g 3 3 α + 1 α g k α + 1 g k + 2 g 3 g u α 1 L u d u = 9 g k 2 + 2 θ L g + 6 θ 3 g k 2 + 2 θ L k + 2 g 3 3 α + 1 Γ α + 1 g k α + 1 I k + 2 g 3 + α L ( g ) .
Summing (3)–(5), and then multiplying the resulting equality by g k 9 , we obtain the desired result. □
Theorem 4.
Assume that all the assumptions of Lemma 1 are satisfied. Moreover, if L is s- t g s -convex, then the following inequality holds
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 φ θ s + 1 , s + 1 ; α L k + L g + φ 2 s + 1 , s + 1 ; α + φ θ s + 1 , s + 1 ; α L 2 k + g 3 + L k + 2 g 3 ,
where s 0 , 1 , R α , L is defined by (2),
ϰ θ x , y ; α = B 3 2 + 2 θ 1 α x , y B 1 3 2 + 2 θ 1 α y , x
and
φ θ x , y ; α = 3 2 + 2 θ ϰ θ x , y ; α ϰ θ x + α , y ; α .
Proof. 
By Lemma 1, modulus, and the s- t g s -convexity of L , we determine
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 1 0 Λ α 3 2 + 2 θ L 1 Λ k + Λ 2 k + g 3 d Λ + 1 0 1 2 1 Λ α L 1 Λ 2 k + g 3 + Λ k + 2 g 3 d Λ + 1 0 3 2 + 2 θ 1 Λ α L 1 Λ k + 2 g 3 + Λ g d Λ g k 9 1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s L k + L 2 k + g 3 d Λ + 1 0 1 2 1 Λ α Λ s 1 Λ s L 2 k + g 3 + L k + 2 g 3 d Λ + 1 0 3 2 + 2 θ 1 Λ α Λ s 1 Λ s L k + 2 g 3 + L g d Λ = g k 9 L k 1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s d t + L 2 k + g 3 × 1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s d Λ + 1 0 1 2 1 Λ α Λ s 1 Λ s d Λ + L k + 2 g 3 × 1 0 1 2 1 Λ α Λ s 1 Λ s d t + 1 0 3 2 + 2 θ 1 Λ α Λ s 1 Λ s d Λ + L g 1 0 3 2 + 2 θ 1 Λ α Λ s 1 Λ s d Λ = g k 9 φ θ s + 1 , s + 1 ; α f k + f g + φ 2 s + 1 , s + 1 ; α + φ θ s + 1 , s + 1 ; α f 2 k + g 3 + f k + 2 g 3 ,
where ϰ θ and φ θ are defined as in (6) and (7), respectively, and we have used the fact that
1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s d Λ = 3 2 + 2 θ 1 Λ α Λ s 1 Λ s d Λ = 3 2 + 2 θ B 3 2 + 2 θ 1 α s + 1 , s + 1 B 1 3 2 + 2 θ 1 α s + 1 , s + 1 B 3 2 + 2 θ 1 α s + α + 1 , s + 1 B 1 3 2 + 2 θ 1 α s + 1 , s + α + 1 = 3 2 + 2 θ ϰ θ s + 1 , s + 1 ; α ϰ θ s + α + 1 , s + 1 ; α = φ θ s + 1 , s + 1 ; α
and
1 0 1 2 1 Λ α Λ s 1 Λ s d Λ = 1 0 Λ α 1 2 Λ s 1 Λ s d Λ = φ 2 s + 1 , s + 1 ; α ,
which ends the proof. □
Corollary 1.
Taking α = 1 , Theorem 4 becomes
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 9 φ θ s + 1 , s + 1 ; 1 L k + L g + φ 2 s + 1 , s + 1 ; 1 + φ θ s + 1 , s + 1 ; 1 L 2 k + g 3 + L k + 2 g 3 ,
where
φ θ s + 1 , s + 1 ; 1 = 3 2 + 2 θ B 3 2 + 2 θ s + 1 , s + 1 B 3 2 + 2 θ s + 2 , s + 1 + 2 θ 1 2 + 2 θ B 2 θ 1 2 + 2 θ s + 1 , s + 1 B 2 θ 1 2 + 2 θ s + 2 , s + 1
and
φ 2 s + 1 , s + 1 ; 1 = B 1 2 s + 1 , s + 1 2 B 1 2 s + 2 , s + 1 .
Corollary 2.
Under the assumption of Theorem 4, and if f is P-function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 36 2 θ 2 2 θ + 5 L k + 3 θ 2 + 6 L 2 k + g 3 + 3 θ 2 + 6 L k + 2 g 3 + 2 θ 2 2 θ + 5 L g 1 + θ 2 .
Proof. 
Just replace s with 0 in Theorem 4. □
Remark 1.
In Corollary 2, choosing θ = 3 , we obtain the fractional Simpson’s 3 / 8 formula
1 8 L k + 3 L 2 k + g 3 + 3 L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L 25 g k 144 17 L k + 33 L 2 k + g 3 + 33 L k + 2 g 3 + 17 L g 100 .
Remark 2.
In Corollary 2, choosing θ = 27 13 , we obtain the fractional corrected Simpson’s 3 / 8 formula
1 80 L k + 27 L 2 k + g 3 + 27 L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L 2401 g k 14400 1601 L k + 3201 L 2 k + g 3 + 3201 L k + 2 g 3 + 1601 L g 9604 .
Corollary 3.
In Corollary 2, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 36 2 θ 2 2 θ + 5 L k + 3 θ 2 + 6 L 2 k + g 3 + 3 θ 2 + 6 L k + 2 g 3 + 2 θ 2 2 θ + 5 L g 1 + θ 2 .
Corollary 4.
Under the assumptions of Theorem 4, and if L is t g s -function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 1728 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L k + L g + 4 1 + θ 4 + 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L 2 k + g 3 + L k + 2 g 3 .
Proof. 
Just replace s with 1 in Theorem 4. □
Corollary 5.
Taking α = 1 in Corollary 4 gives
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 1728 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L k + L g + 4 1 + θ 4 + 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L 2 k + g 3 + L k + 2 g 3 .
Theorem 5.
Assume that all the assumptions of Theorem 4 are satisfied. Moreover, if L ζ is s- t g s -convex, where ζ > 1 with 1 τ + 1 ζ = 1 , then the following inequality
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 B s + 1 , s + 1 1 ζ × B 1 α , τ + 1 α 3 2 + 2 θ τ + 1 α + 2 F 1 α 1 α , 1 , τ + 2 ; 2 θ 1 2 + 2 θ α τ + 1 2 θ 1 2 + 2 θ τ + 1 α 1 τ × f k ζ + f 2 k + g 3 ζ 1 ζ + f k + 2 g 3 ζ + f g ζ 1 ζ + B 1 α , τ + 1 2 τ + 1 α α + 2 F 1 α 1 α , 1 , τ + 2 ; 1 2 2 τ + 1 α τ + 1 1 τ f 2 k + g 3 ζ + f k + 2 g 3 ζ 1 ζ
holds, where R α , L is defined by (2) B and 2 F 1 are beta and hypergeometric functions, respectively.
Proof. 
By Lemma 1, modulus, Hölder’s inequality, and the s- t g s -convexity of L ζ , we obtain
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 1 0 Λ α 3 2 + 2 θ τ d Λ 1 τ 1 0 L 1 Λ k + Λ 2 k + g 3 ζ d Λ 1 ζ + 1 0 1 2 1 Λ α τ d Λ 1 τ 1 0 L 1 Λ 2 k + g 3 + Λ k + 2 g 3 ζ d Λ 1 ζ + 1 0 3 2 + 2 θ 1 Λ α τ d Λ 1 τ 1 0 L 1 Λ k + 2 g 3 + Λ g ζ d Λ 1 ζ g k 9 1 0 Λ α 3 2 + 2 θ τ d Λ 1 τ 1 0 Λ s 1 Λ s L k ζ + L 2 k + g 3 ζ d Λ 1 ζ + 1 0 1 2 Λ α τ d Λ 1 τ 1 0 Λ s 1 Λ s L 2 k + g 3 ζ + L k + 2 g 3 ζ d Λ 1 ζ + 1 0 Λ α 3 2 + 2 θ τ d Λ 1 τ 1 0 Λ s 1 Λ s L k + 2 g 3 ζ + L g ζ d Λ 1 ζ = g k 9 B s + 1 , s + 1 1 ζ × 1 α 3 2 + 2 θ τ + 1 α B 1 α , τ + 1 + 2 F 1 α 1 α , 1 , τ + 2 ; 2 θ 1 2 + 2 θ α τ + 1 2 θ 1 2 + 2 θ τ + 1 α 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + B 1 α , τ + 1 2 τ + 1 α α + 2 F 1 α 1 α , 1 , τ + 2 ; 1 2 2 τ + 1 α τ + 1 1 τ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ ,
where we used
1 0 Λ α 3 2 + 2 θ τ d Λ = 3 2 + 2 θ 1 α 0 3 2 + 2 θ Λ α τ d Λ + 1 3 2 + 2 θ 1 α Λ α 3 2 + 2 θ τ d Λ = 1 α 3 2 + 2 θ τ + 1 α 1 0 ϑ 1 α 1 1 ϑ τ d ϑ + 1 α 2 θ 1 2 + 2 θ τ + 1 α 1 0 1 ϑ τ 1 2 θ 1 2 + 2 θ ϑ 1 α 1 d ϑ = 1 α 3 2 + 2 θ τ + 1 α B 1 α , τ + 1 + 1 α τ + 1 2 θ 1 2 + 2 θ τ + 1 α . 2 F 1 α 1 α , 1 , τ + 2 ; 2 θ 1 2 + 2 θ
and
1 0 1 2 1 Λ α τ d Λ = 1 1 2 1 α 0 1 Λ α 1 2 τ d Λ + 1 1 1 2 1 α 1 2 1 Λ α τ d Λ = 1 2 τ + 1 α 1 0 1 x τ 1 1 2 x 1 α 1 d x + 1 2 τ + 1 α α 1 0 x 1 α 1 1 x τ d x . = 1 2 τ + 1 α τ + 1 . 2 F 1 α 1 α , 1 , τ + 2 ; 1 2 + 1 2 τ + 1 α α B 1 α , τ + 1 ,
which ends the proof. □
Corollary 6.
Taking α = 1 in Theorem 5, it yields
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 18 B s + 1 , s + 1 1 ζ 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Corollary 7.
Under the assumptions of Theorem 5, and if L ζ is P-function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 B 1 α , τ + 1 α 3 2 + 2 θ τ + 1 α + 2 F 1 α 1 α , 1 , τ + 2 ; 2 θ 1 2 + 2 θ α τ + 1 2 θ 1 2 + 2 θ τ + 1 α 1 τ × f k ζ + f 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + B 1 α , τ + 1 2 τ + 1 α α + 2 F 1 α 1 α , 1 , τ + 2 ; 1 2 2 τ + 1 α τ + 1 1 τ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Proof. 
Just replace s with 0 in Theorem 5. □
Corollary 8.
In Corollary 7, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 18 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Corollary 9.
Under the assumptions of Theorem 5, and if L ζ is t g s -function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 1 6 1 ζ B 1 α , τ + 1 α 3 2 + 2 θ τ + 1 α + 2 F 1 α 1 α , 1 , τ + 2 ; 2 θ 1 2 + 2 θ α τ + 1 2 θ 1 2 + 2 θ τ + 1 α 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + B 1 α , τ + 1 2 τ + 1 α α + 2 F 1 α 1 α , 1 , τ + 2 ; 1 2 2 τ + 1 α τ + 1 1 τ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Proof. 
Just replace s with 1 in Theorem 5. □
Corollary 10.
In Corollary 9, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 18 1 6 1 ζ 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Remark 3.
In Corollary 10, choosing θ = 3 , we obtain Simpson’s 3 / 8 formula
1 8 L k + 3 L 2 k + g 3 + 3 L k + 2 g 3 + L g 1 g k g k L u d u g k 72 1 6 1 ζ 1 τ + 1 1 τ 3 τ + 1 + 5 τ + 1 8 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Remark 4.
In Corollary 10, choosing θ = 27 13 , we obtain the corrected Simpson’s 3 / 8 formula
1 80 L k + 27 L 2 k + g 3 + 27 L k + 2 g 3 + L g 1 g k g k L u d u g k 18 1 12 1 ζ 1 τ + 1 1 τ 39 τ + 1 + 41 τ + 1 40 τ + 1 1 τ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Theorem 6.
Assume that all the assumptions of Theorem 5 are satisfied. Moreover, if L ζ is s- t g s -convex, where ζ 1 , then the following inequality
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 2 θ 3 α 1 2 + 2 θ α + 1 + 2 α α + 1 3 2 + 2 θ 1 + 1 α 1 1 ζ φ θ s + 1 , s + 1 ; α 1 ζ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + 1 α + α 2 1 1 α 2 α + 1 1 1 ζ φ 2 s + 1 , s + 1 ; α 1 ζ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ ,
holds, where R α , L and φ θ are defined by (2) and (7), respectively.
Proof. 
By Lemma 1, modulus, power mean inequality, and the s- t g s -convexity of L ζ , we obtain
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 1 0 Λ α 3 2 + 2 θ d Λ 1 1 ζ 1 0 Λ α 3 2 + 2 θ L 1 Λ k + Λ 2 k + g 3 ζ d Λ 1 ζ + 1 0 1 2 1 Λ α d Λ 1 1 ζ × 1 0 1 2 1 Λ α L 1 Λ 2 k + g 3 + Λ k + 2 g 3 ζ d Λ 1 ζ + 1 0 3 2 + 2 θ 1 Λ α d Λ 1 1 ζ × 1 0 3 2 + 2 θ 1 Λ α L 1 Λ k + 2 g 3 + Λ g ζ d Λ 1 ζ g k 9 1 0 Λ α 3 2 + 2 θ d Λ 1 1 ζ L k ζ 1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s d Λ + L 2 k + g 3 ζ 1 0 Λ α 3 2 + 2 θ Λ s 1 Λ s d Λ 1 ζ + 1 0 1 2 Λ α d Λ 1 1 ζ L 2 k + g 3 ζ 1 0 1 2 1 Λ α Λ s 1 Λ s d Λ + L k + 2 g 3 ζ 1 0 1 2 1 Λ α Λ s 1 Λ s d Λ 1 ζ + 1 0 3 2 + 2 θ Λ α d Λ 1 1 ζ L k + 2 g 3 ζ 1 0 3 2 + 2 θ 1 Λ α Λ s 1 Λ s d Λ + L g ζ 1 0 3 2 + 2 θ 1 Λ α Λ s 1 Λ s d Λ 1 ζ = g k 9 2 θ 3 α 1 2 + 2 θ α + 1 + 2 α α + 1 3 2 + 2 θ 1 + 1 α 1 1 ζ φ θ s + 1 , s + 1 ; α 1 ζ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + 1 α + α 2 1 1 α 2 α + 1 1 1 ζ φ 2 s + 1 , s + 1 ; α 1 ζ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ ,
where we have considered (8) and (9). The proof is achieved. □
Corollary 11.
In Theorem 6, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 9 2 θ 2 2 θ + 5 2 + 2 θ 2 1 1 ζ φ θ s + 1 , s + 1 ; 1 1 ζ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + 1 4 1 1 ζ φ 2 s + 1 , s + 1 ; 1 1 ζ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Corollary 12.
Under the assumptions of Theorem 6, and if L ζ is P-function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 2 θ 3 α 1 2 + 2 θ α + 1 + 2 α α + 1 3 2 + 2 θ 1 + 1 α × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + 1 α + α 2 1 1 α 2 α + 1 L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Proof. 
Just replace s with 0 in Theorem 6. □
Corollary 13.
In Corollary 12, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 36 2 θ 2 2 θ + 5 1 + θ 2 L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Corollary 14.
Under the assumptions of Theorem 6, and if L ζ is t g s -function, then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 3 α 1 Γ α + 1 g k α R α , L g k 9 2 θ 3 α 1 2 + 2 θ α + 1 + 2 α α + 1 3 2 + 2 θ 1 + 1 α 1 1 ζ × 4 θ α 2 5 α 2 4 1 + θ α + 2 α + 3 + α α + 2 3 2 + 2 θ 1 + 2 α 2 α 3 α + 3 3 2 + 2 θ 1 + 3 α 1 ζ × L k ζ + L 2 k + g 3 ζ 1 ζ + L k + 2 g 3 ζ + L g ζ 1 ζ + 1 α + α 2 1 1 α 2 α + 1 1 1 ζ 6 5 α α 2 12 α + 2 α + 3 + α 2 α + 2 1 2 2 α α 3 α + 3 1 2 3 α 1 ζ × L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .
Proof. 
Just replace s with 1 in Theorem 6. □
Corollary 15.
In Corollary 14, if we take α = 1 , then we have
1 2 + 2 θ L k + θ L 2 k + g 3 + θ L k + 2 g 3 + L g 1 g k g k L u d u g k 36 2 θ 2 2 θ + 5 1 + θ 2 θ 2 1 + θ 2 3 2 θ 2 2 θ + 5 + 36 1 + θ 27 8 2 θ 2 2 θ + 5 1 + θ 2 1 ζ × L k ζ + f 2 k + g 3 ζ 1 ζ + f k + 2 g 3 ζ + L g ζ 1 ζ + 1 8 1 ζ L 2 k + g 3 ζ + L k + 2 g 3 ζ 1 ζ .

3. Applications

Let Υ be the division of points k = ψ 0 < ψ 1 < < ψ n = g of k , g , and consider the following formula for quadrature
g k L w d w = λ L , Υ + R L , Υ ,
where
λ L , Υ = n 1 ϵ = 0 ψ ϵ + 1 ψ ϵ 2 + 2 θ L ψ ϵ + θ L 2 ψ ϵ + ψ ϵ + 1 3 + θ L ψ ϵ + 2 ψ ϵ + 1 3 + L ψ ϵ + 1
and R L , Υ represents the associated approximation error.
Proposition 1.
Let L be as in Lemma 1 and n N . If L is P-function, we have
R L , Υ n 1 ϵ = 0 ψ ϵ + 1 ψ ϵ 2 36 2 θ 2 2 θ + 5 1 + θ 2 L ψ ϵ + L ψ ϵ + 1 + 3 θ 2 + 6 1 + θ 2 L 2 ψ ϵ + ψ ϵ + 1 3 + L ψ ϵ + 2 ψ ϵ + 1 3 .
Proof. 
Applying Corollary 3 on ψ ϵ , ψ ϵ + 1 ϵ = 0 , 1 , , n 1 of the partition Υ , we determine
L ψ ϵ + θ L 2 ψ ϵ + ψ ϵ + 1 3 + θ L ψ ϵ + 2 ψ ϵ + 1 3 + L ψ ϵ + 1 2 + 2 θ 1 ψ ϵ + 1 ψ ϵ ψ ϵ + 1 ψ ϵ L w d w ψ ϵ + 1 ψ ϵ 36 2 θ 2 2 θ + 5 1 + θ 2 L ψ ϵ + L ψ ϵ + 1 + 3 θ 2 + 6 1 + θ 2 L 2 ψ ϵ + ψ ϵ + 1 3 + L ψ ϵ + 2 ψ ϵ + 1 3 .
The desired inequality follows by multiplying the above inequality by ψ ϵ + 1 ψ ϵ , then adding the result over ϵ = 0 , 1 , , n 1 and using the triangle inequality. □
Proposition 2.
Let L be as in Lemma 1 and n N . If L is t g s -convex, we have
R L , Υ n 1 i = 0 ψ ϵ + 1 ψ ϵ 2 1728 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L ψ ϵ + L ψ ϵ + 1 + 4 1 + θ 4 + 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L 2 ψ ϵ + ψ ϵ + 1 3 + L ψ ϵ + 2 ψ ϵ + 1 3 .
Proof. 
Applying Corollary 5 on ψ ϵ , ψ ϵ + 1 ϵ = 0 , 1 , , n 1 of the partition Υ , we obtain
L ψ ϵ + θ L 2 ψ ϵ + ψ ϵ + 1 3 + θ L ψ ϵ + 2 ψ ϵ + 1 3 + L ψ ϵ + 1 2 + 2 θ 1 ψ ϵ + 1 ψ ϵ ψ ϵ + 1 ψ ϵ L w d w ψ ϵ + 1 ψ ϵ 1728 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L ψ ϵ + L ψ ϵ + 1 + 4 1 + θ 4 + 27 1 + 4 θ + 2 θ 1 4 1 + θ 4 L 2 ψ ϵ + ψ ϵ + 1 3 + L ψ ϵ + 2 ψ ϵ + 1 3 .
The desired inequality follows by multiplying the above inequality by ψ ϵ + 1 ψ ϵ , then adding the result over ϵ =0, 1, , n 1 and using the triangle inequality. □
Proposition 3.
Let L be as in Lemma 1 and n N . If L ζ is P-convex where ζ , τ > 1 with 1 τ + 1 ζ = 1 , we have
R L , Υ n 1 i = 0 ψ ϵ + 1 ψ ϵ 2 18 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L ψ ϵ ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ 1 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ + L ψ ϵ + 1 ζ 1 ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ 1 ζ .
Proof. 
Applying Corollary 8 on ψ ϵ , ψ ϵ + 1 ϵ = 0 , 1 , , n 1 of the partition Υ , we determine
L ψ ϵ + θ L 2 ψ ϵ + ψ ϵ + 1 3 + θ L ψ ϵ + 2 ψ ϵ + 1 3 + L ψ ϵ + 1 2 + 2 θ 1 ψ ϵ + 1 ψ ϵ ψ ϵ + 1 ψ ϵ L w d w ψ ϵ + 1 ψ ϵ 18 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L ψ ϵ ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ 1 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ + L ψ ϵ + 1 ζ 1 ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ 1 ζ .
The desired inequality follows by multiplying the above inequality by ψ ϵ + 1 ψ ϵ , then adding the result over ϵ = 0 , 1 , , n 1 and using the triangle inequality. □
Proposition 4.
Let L be as in Lemma 1 and n N . If L ζ is t g s -convex where ζ , τ > 1 with 1 τ + 1 ζ = 1 , we have
R f , Υ n 1 i = 0 ψ ϵ + 1 ψ ϵ 2 18 1 6 1 ζ 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L ψ ϵ ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ 1 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ + L ψ ϵ + 1 ζ 1 ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ 1 ζ .
Proof. 
Applying Corollary 10 on ψ ϵ , ψ ϵ + 1 ϵ = 0 , 1 , , n 1 of the partition Υ , we obtain
L ψ ϵ + θ L 2 ψ ϵ + ψ ϵ + 1 3 + θ L ψ ϵ + 2 ψ ϵ + 1 3 + L ψ ϵ + 1 2 + 2 θ 1 ψ ϵ + 1 ψ ϵ ψ ϵ + 1 ψ ϵ L w d w ψ ϵ + 1 ψ ϵ 18 1 6 1 ζ 1 τ + 1 1 τ 3 τ + 1 + 2 θ 1 τ + 1 2 1 + θ τ + 1 1 τ × L ψ ϵ ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ 1 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ + L ψ ϵ + 1 ζ 1 ζ + L 2 ψ ϵ + ψ ϵ + 1 3 ζ + L ψ ϵ + 2 ψ ϵ + 1 3 ζ 1 ζ .
The desired inequality follows by multiplying the above inequality by ψ ϵ + 1 ψ ϵ , then adding the result over ϵ = 0 , 1 , , n 1 and using the triangle inequality. □
Let us consider the following means for arbitrary real numbers k , g
The Arithmetic mean: A k , g , n = k + g + n 3 .
The Harmonic mean: H k , g , n = 3 1 k + 1 g + 1 n
The Geometric means: G k , g = k g
The p-Logarithmic mean: L p k , g = g p + 1 k p + 1 p + 1 g k 1 p , k , g > 0 , k g , and p R 1 , 0 .
Proposition 5.
Let k , g R with 0 < k < g , then we have
1 4 2 A g 3 , k 3 + H 1 g , g , k + H 1 g , k , k 4 G 6 k , g L 3 3 k , g g k 12 k g 5 g 2 + 2 k + g k g 2 + k + 2 g k g 2 + 5 k 2 .
Proof. 
The assertion follows from Corollary 2 with α = 1 and θ = 1 , applied to the function L w = w 3 on 1 g , 1 k . □
Proposition 6.
Let k , g R with 0 < k < g , then we have
2 A k 2 , g 2 + 3 A 2 k , k , g + 3 A 2 k , g , g 8 L 2 2 k , g 57 g k 27 13 k 2 + 4 k g + g 2 1 2 + k 2 + 4 k g + 13 g 2 1 2 12 + 5 k 2 + 8 k g + 5 g 2 1 2 3 19 .
Proof. 
The assertion follows from Corollary 8 with θ = 3 and ζ = 2 , applied to the function L w = 1 2 w 2 on k , g , in which L w 2 = w 2 is P-function. □

4. Conclusions

In this study, we have considered the fractional Newton–Cotes type integral inequalities involving four points via a Riemann–Liouville integral operator. We have established for the first time a novel parametrized integral identity. Based on this equality, we have derived several 3 / 8 Simpson-like type inequalities for functions whose first derivatives belongs in the class of s- t g s -convex functions. Some special cases are discussed according to the values of parameters. Some applications to numerical quadratures are presented. The obtained results may lead to additional research in this fascinating field as well as generalizations in other types of calculations, including multiplicative calculus and quantum calculus.

Author Contributions

Conceptualization, M.M., B.M., H.B. and A.M.; Methodology, M.M., B.M., H.B. and A.M.; Writing—original draft, M.M., B.M., H.B. and A.M.; Writing—review and editing, M.M., B.M., H.B., A.M. and M.B.; Project administration, B.M., H.B., A.M. and M.B.; Funding acquisition, A.M. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Deanship of Scientific Research at King Khalid University through large research project under grant number R.G.P.2/252/44.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large research project under grant number R.G.P.2/252/44.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Boulares, H.; Meftah, B.; Moumen, A.; Shafqat, R.; Saber, H.; Alraqad, T.; Ali, E.E. Fractional Multiplicative Bullen-Type Inequalities for Multiplicative Differentiable Functions. Symmetry 2023, 15, 451. [Google Scholar] [CrossRef]
  2. Moumen, A.; Boulares, H.; Meftah, B.; Shafqat, R.; Alraqad, T.; Ali, E.E.; Khaled, Z. Multiplicatively Simpson Type Inequalities via Fractional Integral. Symmetry 2023, 15, 460. [Google Scholar] [CrossRef]
  3. Chiheb, T.; Boulares, H.; Imsatfia, M.; Meftah, B.; Moumen, A. On s-Convexity of Dual Simpson Type Integral Inequalities. Symmetry 2023, 15, 733. [Google Scholar] [CrossRef]
  4. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  5. Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering, 187; Academic Press, Inc.: Boston, MA, USA, 1992. [Google Scholar]
  6. Awan, M.U.; Noor, M.A.; Noor, K.I.; Khan, A.G. Some new classes of convex functions and inequalities. Miskolc Math. Notes 2018, 19, 77–94. [Google Scholar] [CrossRef]
  7. Budak, H.; Yıldırım, S.Y.; Sarıkaya, M.Z.; Yıldırım, H. Some parameterized Simpson-, midpoint- and trapezoid-type inequalities for generalized fractional integrals. J. Inequal. Appl. 2022, 40, 23. [Google Scholar] [CrossRef]
  8. Cao, Y.; Cao, J.; Tan, P.; Du, T. Some parameterized inequalities arising from the tempered fractional integrals involving the (μ,η)-incomplete gamma functions. J. Math. Inequal. 2022, 16, 1091–1121. [Google Scholar] [CrossRef]
  9. Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
  10. Hua, J.; Xi, B.-Y.; Qi, F. Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 2015, 6, 741–752. [Google Scholar] [CrossRef]
  11. Kara, H.; Budak, H.; Hezenci, F. New extensions of the parameterized inequalities based on Riemann–Liouville fractional integrals. Mathematics 2022, 10, 3374. [Google Scholar] [CrossRef]
  12. Kara, H.; Budak, H.; Akdemir, A.O. Some new parameterized inequalities based on Riemann—Liouville fractional integrals. Filomat 2023, 37, 7867–7880. [Google Scholar]
  13. Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y. New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, 2020, 8871988. [Google Scholar] [CrossRef]
  14. Liko, R.; Srivastava, H.M.; Mohammed, P.O.; Kashuri, A.; Al-Sarairah, E.; Sahoo, S.K.; Soliman, M.S. Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions. Axioms 2022, 11, 727. [Google Scholar] [CrossRef]
  15. Noor, M.A.; Noor, K.I.; Iftikhar, S. Newton inequalities for p-harmonic convex functions. Honam Math. J. 2018, 40, 239–250. [Google Scholar]
  16. You, X.; Ali, M.A.; Budak, H.; Kara, H.; Zhao, D. Some parameterized Simpson’s type inequalities for differentiable convex functions involving generalized fractional integrals. Adv. Contin. Discret. Model. 2022, 1, 22. [Google Scholar] [CrossRef]
  17. Yu, Y.; Liu, J.; Du, T. Certain error bounds on the parameterized integral inequalities in the sense of fractal sets. Chaos Solitons Fractals 2022, 161, 112328. [Google Scholar] [CrossRef]
  18. Barsam, H.; Sayyari, Y.; Mirzadeh, S. Jensen’s inequality and tgs-convex functions with applications. J. Mahani Math. Cent. 2023, 12, 459–469. [Google Scholar]
  19. Mahmoudi, L.; Meftah, B. Parameterized Simpson-like inequalities for differential s-convex functions. Analysis 2023, 43, 59–70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Merad, M.; Meftah, B.; Boulares, H.; Moumen, A.; Bouye, M. Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions. Fractal Fract. 2023, 7, 772. https://doi.org/10.3390/fractalfract7110772

AMA Style

Merad M, Meftah B, Boulares H, Moumen A, Bouye M. Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions. Fractal and Fractional. 2023; 7(11):772. https://doi.org/10.3390/fractalfract7110772

Chicago/Turabian Style

Merad, Meriem, Badreddine Meftah, Hamid Boulares, Abdelkader Moumen, and Mohamed Bouye. 2023. "Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions" Fractal and Fractional 7, no. 11: 772. https://doi.org/10.3390/fractalfract7110772

APA Style

Merad, M., Meftah, B., Boulares, H., Moumen, A., & Bouye, M. (2023). Fractional Simpson-like Inequalities with Parameter for Differential s-tgs-Convex Functions. Fractal and Fractional, 7(11), 772. https://doi.org/10.3390/fractalfract7110772

Article Metrics

Back to TopTop