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Abstract: With the advancement of information technology, the security of digital images has become
increasingly important. To ensure the integrity of images, a novel color image-encryption algorithm
based on extended DNA coding, Zig-Zag transform, and a fractional-order laser system is proposed in
this paper. First, the dynamic characteristics of the fractional-order laser chaotic system (FLCS) were
analyzed using a phase diagram and Lyapunov exponent spectra. The chaotic sequences generated by
the system were used to design image-encryption algorithms. Second, a modified Zig-Zag confusing
method was adopted to confuse the image. Finally, in the diffusion link, the DNA encoding scheme
was extended to allow for a greater number of DNA encoding rules, increasing the randomness of
the matrix and improving the security of the encryption scheme. The performance of the designed
encryption algorithm is analyzed using key space, a histogram, information entropy, correlation
coefficients, differential attack, and robustness analysis. The experimental results demonstrate that
the algorithm can withstand multiple decryption methods and has strong encryption capability. The
proposed novel color image-encryption scheme enables secure communication of digital images.

Keywords: image encryption; fractional-order laser chaotic system; Zig-Zag transform; extended
DNA coding

1. Introduction

With advances in network communications technology, data can now be shared over
open public networks and stored on a variety of platforms. As a result, ensuring the security
and confidentiality of data has become critical. Any unauthorized access, appropriation,
or destruction of network information can not only cause financial losses for computer
users but also pose a major threat to the security of whole societies or even countries.
Cryptography is a well-known technique for hiding secret information. In cryptography,
images and text are encrypted before being transmitted over a network. The inherent
characteristics of images, such as tight correlation, high redundancy, and block data capacity
between adjacent pixels, distinguish image encryption from text encryption. Encryption is
the process of hiding secret information by converting it into an unrecognizable form [1-5].
Therefore, network information security has become an important area of scientific research.
Among all types of information in the form of data, images are the most important media
for information exchange, and their security is particularly important.

Chaotic systems have been widely used in image encryption due to their excellent
properties, such as ergodicity, pseudo-randomness, and sensitivity to system parameters
and initial conditions. Ma et al. [6] investigated a fast encryption algorithm based on a 5D
chaotic system. Qu et al. [7] proposed a color image-encryption method based on Hadamard
single-pixel imaging and Arnold transform. Kumar et al. [8] applied the generalized heat
equation for image encryption. Patro et al. [9,10] used chaotic maps to design an image-
encryption algorithm. Khalid et al. [11] designed a color image-encryption algorithm based
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on fractional shifted Gegenbauer moments and a 2D logistic sine map. Gao et al. [12]
designed a color image-encryption algorithm using a hyperchaotic map. Arpaci et al. [13]
studied a color image-encryption algorithm based on Chua’s circuit. Yu et al. [14] designed
an image-encryption application for the multiscroll memristive Hopfield neural network.
Ren et al. [15] designed an image-encryption algorithm using a hyperchaotic map with
a memristor. Laser-generated chaos can break the electronic bottleneck of traditional
chaos, offering the advantages of high bandwidth, complexity, and propagation rates.
These advantages have led to laser chaos systems’ widespread use in the field of image
encryption and confidential communication. Wang et al. [16] proposed a color image-
encryption strategy based on a double-layer Josephus scramble and a laser chaotic system.
Fractional-order calculus is an extension of integer-order calculus based on the advantages
of fractional-order chaotic systems, which are closer to self-bounded theoretical properties
and have more complex dynamics than integer-order chaotic systems [17-19]. Li et al. [20]
designed an image-encryption algorithm based on a fractional-order laser hyperchaotic
system. In this study, we designed image-encryption algorithms based on fractional-order
laser systems due to their complex dynamics. Although some results have been achieved
in the study of image encryption using chaotic systems, the security of individual image-
encryption methods using only chaotic systems depends on the complexity of chaotic
systems. Therefore, the combination of chaos theory with other theories should be explored
to improve the security of image encryption.

The Zig-Zag transform is a simple and effective method of rearranging the pixels
of an image. Essentially, this method consists of scanning the elements of a matrix in
a specific order, called the Zig-Zag order, starting from the top left corner and moving
toward the bottom right corner to scramble the data. The Zig-Zag transform has been
widely used in the field of image and video encryption due to its simplicity and low time
complexity. Guo et al. [21] proposed an image-encryption algorithm using the reverse
Zig-Zag transformation method. Gao et al. [22] applied a dynamic Zig-Zag transform and
row-scrambling method in image encryption. In addition, DNA computing has received
extensive attention from domestic and foreign researchers due to its high parallelism, low
energy consumption, and massive storage capacity. Digital image-encryption methods
based on DNA computing entail the use of the rules of DNA coding to convert digital
images into DNA sequences according to certain coding rules and then operate on them
according to the rules of DNA computing [23-26]. More secure and efficient encryption
algorithms can be designed by combining chaotic systems with DNA encoding techniques.
Yildirim [27] designed a method for color image encryption based on chaotic circuits and
extended DNA encoding. Wang et al. [28] presented an image-encryption method using
DNA encoding and compressed sensing. Yan et al. [29] proposed an image-encryption
algorithm based on DNA coding sequences and a 1D logistic map. Wang et al. [30] applied
Fisher—Yates scrambling and a DNA subsequence operation to carry out image encryption.
Zhang et al. [31] combined DNA encoding, phase-truncated FRFT, a hyperchaotic system,
and Arnold transform to apply an image-encryption method. Based on the existing refer-
ences in the literature, most of the image-encryption algorithms based on DNA coding are
combined with integer-order chaotic systems, which are known to have richer dynamic
characteristics due to their highly nonlinear and nonlocal properties [32-36].

It is worth noting that by observing the current technology, most algorithms for
DNA coding are based on the four-gene model, and most encryption algorithms based on
laser chaotic systems are integer-order models. However, there is not much research on
encryption algorithms that combine extended DNA coding methods with a fractional-order
laser system, constituting a very valuable direction of research. Therefore, the primary
contribution of this paper is the design of a new Zig-Zag transform method, combined with
the extension of a DNA encoding method from four bases to eight bases and a fractional-
order laser system, leading to the development of a new image-encryption algorithm. The
main highlights of this work are summarized as follows.
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(1) A block Zig-Zag transform method is designed to increase the complexity of im-
age scrambling.

(2) The nonlinear dynamical characteristics of FLCS are analyzed using bifurcation dia-
grams, Lyapunov exponents, and phase diagrams.

(3) Based on the sensitivity of the initial value of FLCS and the complex chaotic dynamics
properties, a new color image-encryption algorithm based on block Zig-Zag transform,
extended DNA coding, and FLCS is designed.

(4) The comprehensive performance analysis and statistical analysis results show that
the proposed encryption algorithm is highly secure.

This paper is structured as follows: Section 2 outlines the preliminary material and
mathematical models used in this study. Section 3 gives the detailed procedure of the
color image-encryption algorithm based on block Zig-Zag transform and extended DNA
coding combined with FLCS. The experimental simulation results are described in Section 4.
Section 5 verifies the comprehensive performance analysis of the proposed encryption
algorithm. Finally, some conclusions are given in Section 6.

2. Preliminary Materials

This section analyses the dynamics characteristics of FLCS and designs the block
Zig-Zag transform method for later investigation of color image encryption and decryp-
tion algorithm.

2.1. Fractional-Order 4D Chaotic Laser System

The four-dimensional chaotic laser system derives from the famous Lorenz-Haken
equations [37], which can be expressed as:

i = —o(y— x) + igx|x|?
y=—-(1-ib)y+(r—z)x, 1)
z = —bz+ Re(xxy)

where x is proportional to the electric field, y is proportional to the induced macroscopic
polarization, Ty denotes the inversion parameter, 7p is the induced polarization, g repre-
sents the optical field, ¢ = 1p/ 7, b = Tp/ 7N, (r — z) denotes the inversion. Meanwhile,
the parameter g is known as the linewidth enhancement factor, § governs the coupling
between phase variations and amplitude.

Since the x and z are chosen as real parts, the dynamics of the original laser equation
are studied by the following linear transformation: x = x1, ¥ = xp +ix3, z = x4. The
modified laser system is defined as:

X1 = 0(x2 — x1)

Xé = —Xp — (53(3 + (7’ - X4)X1 (2)
xé = (SXZ — X3 ’
Xq4 = —bxg + x12%2

where 0, ¥, b, 0 are system parameters, and x; are system state variables.

Fractional calculus is an extension of integer calculus. Dynamic systems calculated
using fractional differential equations have more complex dynamic properties, leading to
the generation of more complicated chaotic sequences. The Caputo-type fractional-order
differential equation is defined as:

DIf(t) = ! )./J T G 3)

w—q o T)q7w+1 /

where I'(+) is the gamma functionand t > 0,w € Z*, w—1 < g < w.
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According to the definition of a fractional-order differential equation, the FLCS is
defined in Equation (4).

Dfx(t) = o(xa(t) — 21 (1)
Dixat) = ~32(t) ~0x2(8) + (r—xa(t) (1) @
xs(t) = oxa(t) —3(1) '
D) = b+ 1)

where « represents the order.

A Lyapunov exponent diagram, bifurcation diagram, and phase diagram of the
time series of FLCS variables can indicate the chaotic dynamical behaviors of the sys-
tem. We set the initial values and the parameters of FLCS as (x19, X0, X30, X10) =
(0.2,-0.1, 0.1,-0.2), r =18, b = 0.5, g = 0.97. Figure 1la,b represent the bifurcation and
Lyapunov exponential diagrams when the system parametersare2 < o < 6,6 = 1.5, respec-
tively, and in Figure 1c,d are the diagrams when the system parameters o = 6, —2 < J < 2.
Figure 2 depicts its phase diagrams, in which the parameters are ¢ = 2, § = 1.5. FLCS
exhibits complex chaotic dynamical behavior.
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Figure 1. Bifurcation diagrams and Lyapunov exponent diagrams of FLCS. (a,b) are Lyapunov
exponent and Bifurcation diagrams when 2 < ¢ < 6, § = 1.5; (c,d) are Lyapunov exponent and
Bifurcation diagrams when o = 6, —2 < § < 2, colors navy, orange, yellow and magenta represent
the Lyapunov exponent of variables x1, x3, X3, x4, respectively in (a,c), color navy represent the max
value of variables x1 in (b,d).
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Figure 2. Phase diagrams of FLCS.
2.2. Block Zig-Zag Transform

The Zig-Zag transformation is a process by which the elements of a two-dimensional
matrix are arranged in an alphabetical “Z” pattern and stored in a one-dimensional array.
In image-processing techniques, each pixel is stored in a two-dimensional matrix, and then
the Zig-Zag transformation is applied to the columns of the two-dimensional matrix. The
result of the transformation is to update the image by shifting the original image. This
paper extends the Zig-Zag transformation method for color image displacement. The
specific extension method is shown in Figure 3.

Il vl P vt =~ e <N <
Pl b
val

AN 4. <D NI NN - N
(a) Upper Left (b) Upper Right (c) Lower Left

Figure 3. Block Zig-Zag Scrambling Method. (a) Upper left transform; (b) Upper right transform;
(c) Lower left transform.

In the design of the image-encryption algorithm, the image is first divided and num-
bered according to equal blocks, and further Zig-Zag transformation is applied to different
blocks based on chaotic sequences using the extended Zig-Zag method. The detailed image
transformation process is shown in Figure 4.
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Figure 4. Block Zig-Zag transform scrambling process.

3. Image Encryption and Decryption Scheme

This section explains the 8-bit extended DNA coding and operation rules and details
the process of color image encryption and decryption algorithms combined with the block
Zig-Zag transform method and FLCS.

3.1. DNA Coding and Operations

The DNA sequence is made up of four bases: Adenine (A), Cytosine (C), Thymine (T),
and Guanine (G). Adenine pairs with Thymine (A-T), and Cytosine pairs with Guanine
(C-G). In this paper, four lowercase letters (a, t, ¢, and g) have been introduced to denote
additional bases in addition to the original four uppercase letters. In the expanded repre-
sentation, a is paired with t (a—t), and c is paired with g (c—g). To convert a color image
into an extended DNA sequence for encoding and decoding, the following operations are
performed. Then, a three-digit binary number in the form of a gene is used. Based on
the complementary relationship between DNA bases, as the number of nucleotide bases
increases from 4 to 8 bits, 384 of the 40,320 coding combinations allow complementary base
pairing within the 8 bases. The coding rules for these 384 types are shown in Table 1.

Table 1. DNA coding rules.

1 2 3 4 5 6 7 8 9 10 11 12 13 384
0o A A A A A A A A A A A A A t
001 a a a a a a a a C C G G c g
010 C C c c G G g g a a a a a T
011 ¢ g C G g c G C c g c g G G
100 ¢ c G C c g C G g c g c C C
101 G G g g C C c c t t t t t A
110 t t t t t t t t G G C C g C
11 T T T T T T T T T T T T T a

Each pixel of a color image is made up of three components, R, G, and B, each of
which can be converted to 8 bits, and the three components combined to 24 bits. For
example, a pixel of a color image consists of three components, C_R =134, C_G =120, and
C_B = 38, which are combined and then coded in the 10th coding mode in Table 1, where
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each component can be converted to 8 bits, and then the three components can be combined
to 24 bits, C_RGB = [10000110, 01111000, 00100110]. By selecting the 10th encoding method
in Table 1, C_RGB (10) = [c, C, ¢, T, ¢, A, ¢, G]. With this method, the color image can be
converted into an extended DNA coding form.

The calculation of DNA sequences is achieved by bitwise operations, with four meth-
ods of bitwise operations, after encoding eight bases for addition, subtraction, XOR, and
XNOR operations. Tables 2-5 show the four bitwise operations of addition, subtraction,
XOR, and XNOR when [A, a, C, ¢, g, G, t, T] is represented by [000, 001, 010, 011, 100, 101,
110, 111], respectively.

Table 2. DNA addition operation.

+ A a C c g G t T
T T A a C c g G t
t t T A a C c g G
G G t T A a C c g
g g G t T A a C c
c c g G t T A a C
C C c g G t T A a
a a C c g G t T A
A A a C c g G t T
Table 3. DNA subtraction operation.
— A a C c g G t T
T T t G g c C a A
t t G g c C a A T
G G g c C a A T t
g g c C a A T t G
c c C a A T t G g
C C a A T t G g c
a a A T t G g c C
A A T t G g c C a
Table 4. DNA XOR operation.
@ A a C c g G t T
T T t G g c C a A
t t T g G C c A a
G G g T t a A c C
g g G t T A a C c
c c C a A T t G g
C C c A a t T g G
a a A c C G g T t
A A a C c g G t T
Table 5. DNA XNOR operation.
(O] A a C c g G t T
T A a C c g G t T
t a A c C G g T t
G C c A a t T g G
g c C a A T t G g
c g G t T A a C c
C G g T t a A c C
a t T g G C c A a
A T t G g c C a A
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Based on the DNA encoding, decoding, and operation strategies, when the attacker
tries to find the phase that matches the DNA encoding rules in the proposed algorithm,
the probability of finding the correct encoding rule is 1/384 compared to the previous
research results [28-31]. Additionally, DNA encoding and decoding operation rules such as
addition, subtraction, XOR, and XNOR further enhance decoding possibilities to (1/ 384)4.
Therefore, the eight-base DNA coding method can be demonstrated to increase the security
of image encryption.

3.2. Encryption Algorithm

The flowchart of the color image-encryption process based on Zig-Zag transformation,
extended DNA coding, and FLCS is shown in Figure 5, and the detailed implementation
steps of the encryption algorithm are as follows:

)
: . |
. N ZigZag :
R(8 bits) I "|  transform
|
.. ! - Merge Divide
Original . S ZigZag DNA
imgage G(8 bits) : transform RGB > blocks encoding
| (24 bits) (24 bits)
|
| R
. S ZigZag
B(8 bits) "] transform i
I-; ..... p— . — — /
\ A 4
y
Secret .
ecre > FLCS > Chaotic sequences > DNA
key operation
—_———— - /
Row&Column | I R Ciphertext
transform ; (8 bits)
| ..
Encrypted ; | Row&Column | _ ! G Ciphertext ]?;gge < gﬁiiz < DNA
image : transform | ! (8 bits) (24 bits) (24 bits) decoding
: |
|
Row&Column | _ | B Ciphertext
transform I (8 bits)

Figure 5. Flowchart of the encryption algorithm.

Step 1: Input the primitive plaintext image C of dimension M x N x 3 and divide the
image into Cg, Cg, Cp components.
Step 2: Compute the initial value ¢ of FLCS as follows:

_ Sum(C)
‘7_2+70””d<M><N><3x255’ 8) ©)
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Step 3: Set the initial values x19, X20, X30, x40, 7, b, 4, 0, 6 of FLCS as the secret key.
The chaotic sequences Sx1, Sxa, Sx3, Sxy are generated by FLCS.

Step 4: The chaotic sequences are calculated by Equation (6) to obtain
Sx_z,Sx_e, Sx_o, Sx_d,Sx_b.

Sx_z = (round(|Sx;| x 10%))mod 3
Sx_e = (round(|Sx;| x 10%))mod 384 + 1
Sx_d = (round(|Sxz| x 10%))mod 384 + 1 (6)
Sx_o = (round(|Sxs| x 10%))mod 4
Sx_b = (round(|Sxy| x 108))mod 256

Step 5: The extended Zig-Zag transform is applied to the pixels in Cg, Cg, Cp using
the three methods of chaotic sequence Sx_z representation, as shown in Figures 3 and 4,
respectively.

Step 6: Merge the 8-bit binary pixel values of Cr, Cg, Cp into the 24-bit binary pixel
values Cggp.

Step 7: The chaotic sequence Sx_e represents the 384 DNA coding methods in Table 1.
Divide Cggp into equal blocks Crgp (i) and code each block separately according to Sx_e.

Step 8: The chaotic sequence Sxy is converted into equal chaotic block Sx_b and coded
blocks, which are equal to Crgp (7).

Step 9: The chaotic sequence Sx_o represents the four DNA operations of addition,
subtraction, XOR, and XNOR. The Cggp (i) is calculated with Sx_b(i) according to the
DNA calculation operations defined by Sx_o to obtain Eggp (i).

Step 10: Merge matrix block Ergp (i) into Ergg and decode Ergp according to Sx_d.

Step 11: Convert 24-bit binary Egrgp to 8-bit binary Eg, Eg and Ep.

Step 12: Arrange x; and x, in descending order according to the following formula
to obtain the sequence of positions Px; and Px; before the ordering of each element in
the sequence.

{[w, Px1] = sort(Sx1(1: M) mod 1, descend") @)
[~, Pxy] = sort(Sxz(1: N) mod 1, descend’)

Perform row substitution and column substitution on the matrices of Eg, Eg, and Ep
using the sequence values of Px; and Px; as the corresponding indices of the row and
column exchange coordinates.

Step 13: Merge the R, G, and B components to obtain a ciphertext image.

3.3. Decryption Algorithm

Image decryption involves recovering the original image using the same key used for
encryption. It is the inverse process of the image-encryption process. First, the R, G, and B
components of the ciphertext image are inverted by row—column conversion, respectively,
and the converted R, G, and B components are merged and divided into blocks. Second,
encryption and decryption operations are performed on each piece of data using DNA
operation rules that are the opposite of the encryption process. Then, the DNA-decoded
data blocks are merged and divided into R, G, and B components. Each component is
subjected to a Zig-Zag inverse transformation operation. Finally, the three components
are merged into the initial image. The detailed flowchart of the decryption algorithm is
presented in Figure 6.
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Figure 6. Flowchart of the decryption algorithm.

4. Experimental Simulation Results

In this paper, all the experiments are performed on a computer with an Intel Core
i7-10710U 6-Core 1.10 Ghz and 32 GB of memory. The operating system is Windows 10,
and the software is MATLAB R2020b. For the experiments and performance analyses, test
images were selected from the web and publicly available databases such as the USC-SIPI
database [38]. This section tests the effectiveness of encryption algorithms and decryption
algorithms for different sizes and types of color images.

Lena image (Figure 7(al), size 256 x 256), Fruits image (Figure 7(b1), size 512 x 480),

Tree image (Figure 7(c1), size 256 x 256), and Peppers image (Figure 7(d1), size 512 x 512)
were used to test the feasibility of the proposed algorithm. The secret key was set to
r=18,b =105 g =097, ¢ = 25046, 6 = 1.5, x19 = 0.2, xp0 = —0.1, x30 = 0.1,
x40 = —0.2. As can be seen from the experimental results, the encrypted images do
not correlate with the original image, and there is no obvious difference between the
reconstructed image and the original image visually, which indicates that the encryption
scheme has produced good results.

(al) Original Lena (a2) Encrypted Lena (a3) Decrypted Lena

Figure 7. Cont.
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(b1) Original Fruits _. . : _ 1 :

(c2) Encrypted Tree

| (d1) Original Peppers (d2) Encrypted Peppers | (d3) Decrypted Peppers

Figure 7. Experimental results of encryption and decryption. (al-d1) are the original images;
(a2-d2) are the encrypted images; (a3—d3) are the decrypted images.

5. Performance Analyses

Good encryption algorithms require good security performance. This section mainly
measures the security performance of the proposed algorithm using key security anal-
ysis, histogram analysis, correlation analysis, information entropy analysis, differential
attack analysis, robustness analysis, classical attack analysis, and time complexity analysis.
The experimental results show that the encryption algorithm designed in this paper can
withstand various types of attacks.

5.1. Key Analysis

Key analysis includes key space analysis and key sensitivity testing. The encryption
algorithm designed in this paper uses four initial values and five parameters of FLCS as
the secret key. Assuming that the computational accuracy of the computer is 1078, the
secret key space is 108%9 ~ 223 This is a huge key capacity and is sufficient to resist the
exhaustive key-based approach to cracking the image.

To test the key sensitivity, the Lena image (256 x 256) is adopted, each of five control
parameters b, g, o, 6, x; of FLCS is modified by adding 1 x 10~% and only one parameter
is changed at a time.

In the simulation test, the original image Lena is encrypted using both the correct and
modified keys. The encrypted images are shown in Figure 8, and the ratio of pixel changes
between the encrypted images using the correct and incorrect keys are calculated and listed
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in Table 6. It is obvious that these encrypted images are dissimilar to each other, and more
than 99.5% of the pixels have been changed.

(b) b+1x1078 (c) g +1x107°

(d) o +1x10" (e) §+1x10" (f) x; +1x10~

Figure 8. Key sensitivity test of encryption stage.

Table 6. Pixel change ratio between the correct and wrong keys.

Pixel Change Ratio
Encryption Key

Red Green Blue Average
Correct key 0% 0% 0% 0%
b+1x1078 99.635% 99.574% 99.609% 99.586%
g+1x1078 99.635% 99.66% 99.553% 99.624%
c+1x1078 99.623% 99.608% 99.626% 99.614%
5+1x1078 99.577% 99.574% 99.664% 99.604%
xp+1x1078 99.594% 99.611% 99.623% 99.615%

In addition, decryption was performed with the correct key and the slightly incorrect
keys to evaluate the key sensitivity of the decryption process. The experimental results in
Figure 9 show that even with a slight change in the key, the correct plaintext image cannot
be decrypted, indicating that the algorithm is highly sensitive to the key.

(a) Correct key (b) b+1x1078 () g+1x1078

Figure 9. Cont.
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(d) o+1x1078 () §+1x1078 (f) x;, +1x 1078

Figure 9. Key sensitivity test of decryption stage.

5.2. Histogram Analysis

The histogram of pixels reveals the distribution of all the pixels in an image. An
efficient encryption algorithm can encrypt the pixels by altering the distribution of the
pixels and obliterating the statistical features of the image. Figure 10 shows the histograms
of the original and encrypted images of the Lena, Fruits, Tree, and Peppers images. As
can be seen from the figure, the frequency distribution of the pixel values of the ciphertext
image after encryption is very different from that of the plaintext image. Additionally,
the pixel values in the original plaintext image are unevenly distributed, while those in
the ciphertext image appear with equal probability. These observations suggest that the
encryption process can alter the distribution of the pixel information in the plaintext image,
enabling it to be obscured within the ciphertext image to a greater extent.

1500 6000 3000 6000
1000 4000 2000 4000
500 2000 1000 2000
:”'1.
i ¥ \
0" 0 = 0 i i \ 0 |
0 100 200 0 100 200 0 100 200 0 100 200
(a) Original Lena (b) Original Fruits (c) Original Tree (d) Original Peppers
400 1200 400 1200
350 1100 30
200 1100
300 1000 k|
250 250 e 1000
900 200
0 100 200 0 100 200 0 100 200 0 100 200
(e) Encrypted Lena (f) Encrypted Fruits (g) Encrypted Tree (h) Encrypted Peppers

Figure 10. Histogram Analysis Test. (a—d) are the histograms of the original images; (e-h) are the
histograms of the encrypted images, Colors Red, Green and Blue represent the R, G and B components
of the image respectively.

Furthermore, we quantitatively assessed the homogeneity of the histograms using the
variance and chi-square (x?), respectively. The variance of the histogram is calculated as:

1 n n 1
Var(C) = ﬁZizl ijl > (ci — cj)z, (8)

where ¢ is the vector of histogram values, ¢; and c; are the gray values i and j, respectively.
Table 7 shows the variance of the plaintext and ciphertext images of the test images.
According to the experimental data, it can be seen that the variance value of the image
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changes drastically before and after encryption; the lower the variance value, the better the
consistency of the image.

Table 7. Histogram variance test.

Original Image Encrypted Image
Image
Red Green Blue Red Green Blue
Lena 71,807.81 35,955.32 94,033.58 246.64 225.65 276.99
Fruits 500,913.19 711,257.72 1,691,169.31 1087.46 984.19 997.47
Tree 81,690.41 57,232.69 130,333.24 336.59 264.72 253.50
Peppers 856,092.98  1,278,525.96 1,973,421.39 849.86 1055.53 794.71

The chi-square (x?) of the histogram is calculated by

5 255 (C; — FR)?
X =300 lTr )

where FR = (M x N)/256 is the expected frequency of each gray value, and c; is the gray
value i. The chi-square (x?) values of the histogram for the test images are shown in Table 8.
The data in the table are less than the critical value of A, which means that the histogram of
the encrypted images is uniform.

Table 8. Histogram chi-square (x2) test.

Encrypted Image x2 x>
Image
Red Green Blue 1% 5%
Lena 245.68 224.77 275.91
Fruits 288.86 261.43 264.95
Tree 335.27 263.69 252,51 31046 293.25
Peppers 221.63 262.85 197.90

Therefore, the encryption algorithm proposed in this paper is better able to resist
histogram attacks.

5.3. Correlation Analysis

Digital images typically have a high degree of data redundancy, and there can be
extremely high correlations between adjacent pixels. Image-encryption algorithms should
effectively break the correlation between pixels to minimize their correlation and improve
the security of image encryption. The formula for calculating the correlation coefficient is
defined as:

N 1 vN 1 vN
Zi:1 (mi - W2i21 mi) (”i - N2i21 ni>,
1N 1N 2 1N 1N 2
N liz1 (mi — NXi=1 mi) XA/ Nliz1 (”i — NXi=1 ni)

where m; and n; are the neighboring pixel values, and N is the number of selected pixel
pairs. In this experiment, test images were computed for 6000 pairs of randomly selected
adjacent points in the horizontal, vertical, and diagonal directions. Figure 11 shows the
neighboring pixel distribution of the original and encrypted images of the Lena image.
The correlation data for the test images are given in Table 9. The results show that the
correlation coefficients of the plaintext images of the four types of images are very high,
indicating that the pixel values of the adjacent pixels are very different and lack pixel
independence, while the correlation coefficients of the encrypted ciphertext images are
almost close to zero, proving that the scrambling method and the diffusion method of the
images are very good and the correlation between the pixels can be effectively broken.

Cmn =

, (10)
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Figure 11. Distribution of adjacent pixels. (a—c) are the horizontal, vertical, and diagonal of Lena;
(d—f) are horizontal, vertical, and diagonal of encrypted Lena.

Table 9. The results of correlation analysis.

I Original Image Encrypted Image
mage
& Horizontal Vertical Diagonal Horizontal Vertical Diagonal
R 0.95091 0.97427 0.92734 0.034691 —0.0057101 0.0058595
Lena G 0.93313 0.96627 0.91133 —0.005392 —0.006838 —0.0010488
B 0.90297 0.93938 0.87786 0.042085 0.014217 0.0067408
R 0.99213 0.99218 0.9853 —0.011436 0.0091462 —0.014984
Fruits G 0.98765 0.98552 0.97358 0.005756 0.0005085 —0.014769
B 0.95337 0.92875 0.89063 —0.028683 —0.023687 —0.007692
R 0.94871 0.95743 0.91769 0.0076669 —0.017613 0.0048572
Tree G 0.93514 0.94017 0.88554 —0.0069922 0.0034771 —0.0023768
B 0.96856 0.96686 0.94028 0.0031961 0.0024717 —0.020046
R 0.9589 0.96447 0.9527 0.0081944 0.0017356 0.0061784
Peppers G 0.98078 0.98024 0.96711 —0.0083731 —0.0084463 0.014309
B 0.9652 0.96509 0.94383 —0.014572 0.0039651 0.019823
R 0.97286 0.96355 0.94836 0.028503 0.0050138 —0.014723
4.1.01 G 0.97139 0.96366 0.9462 0.0007874 0.016867 —0.006223
B 0.95672 0.95208 0.9345 0.00027603 —0.025448 0.0068728
R 0.97769 0.92788 0.91315 —0.029438 —0.000063 0.005256
4.1.03 G 0.97624 0.91268 0.89888 —0.02618 —0.010079 0.0047882
B 0.97391 0.91506 0.9007 0.0019779 0.015966 —0.01633
R 0.96806 0.93586 0.91441 0.010278 —0.016679 —0.012654
4.1.05 G 0.98081 0.94518 0.92949 —0.011318 0.010572 0.0051661
B 0.98181 0.97654 0.96298 0.0072627 0.012419 0.0017892
R 0.99382 0.99484 0.9895 0.0006253 0.008218 0.01858
4.2.01 G 0.98232 0.98963 0.97436 0.0046303 0.010198 0.014741
B 0.98499 0.98034 0.96777 —0.008814 —0.023014 —0.020686
R 0.92155 0.86798 0.8538 0.0003608 0.000302 0.0022013
4.2.03 G 0.86477 0.77449 0.74542 —0.0057717 0.012188 —0.01448
B 0.90892 0.88541 0.84698 0.013629 0.018246 0.002772
R 0.97152 0.95631 0.93385 —0.0082287 0.004509 —0.006422
4.2.05 G 0.95994 0.96712 0.93407 —0.0072216 —0.012066 0.0076239
B 0.96319 0.93949 0.91802 —0.0020481 —0.034602 —0.0043855




Fractal Fract. 2023, 7, 795

16 of 22

5.4. Information Entropy Analysis

Information entropy is a crucial metric for measuring the randomness of encryption. It
is a physical quantity that reflects the level of confusion in the pixels of a ciphertext image.
The degree of order within a system is inversely proportional to its information entropy.
The more ordered the system, the lower the information entropy; conversely, the higher the
information entropy, the more chaotic the system. Information entropy is a measure used
to quantify the level of organization in a complex system and is defined as follows:

255 1
H(x) =) "0 P(xi)log2m / (11)
where x; is the pixel value, P(x;) is the probability of a pixel occurring. If the information
entropy of an encrypted image is closer to 8, the arrangement of pixels in the ciphertext
image is more random, and therefore, the encryption effect is better. By comparing the data
in Table 10, the information entropy of the encryption algorithm designed in this paper
is closer to 8. Furthermore, the average result of information entropy result for the Lena
image is superior to that of other algorithms [2,8,13,26]. Additionally, it can be observed
that the color images encrypted using the algorithm proposed in this paper exhibit a high
level of randomness.

Table 10. Information entropy test.

Image Red Blue Green Average
Lena 7.9974 7.9972 7.9974 7.9973
Fruits 7.9992 7.9992 7.9992 7.9992
Tree 7.9973 7.9976 7.9974 7.9974
Peppers 7.9993 7.9992 7.9992 7.9992
4.1.01 7.9971 7.9967 7.9972 7.9970
4.1.03 7.9969 7.997 7.9972 7.9970
4.1.05 7.9973 7.9973 7.9972 7.9973
4.2.01 7.9993 7.9994 7.9994 7.9994
4.2.03 7.9993 7.9993 7.9993 7.9993
4.2.05 7.9993 7.9994 7.9992 7.9993
Lena in Ref. [2] 7.9565 7.9880 7.9828 7.9758
Lena in Ref. [8] 7.9912 7.9914 7.9915 7.9914
Lena in Ref. [13] 7.9949 7.9945 7.9941 7.9945
Lena in Ref. [26] 7.9973 7.9965 7.9969 7.9969

5.5. Differential Attack Analysis

A differential attack is a type of selective plaintext attack that looks for a link between
plaintext and ciphertext by tracking the effect of small changes in the plaintext on the
ciphertext and using the established link to recover the ciphertext without a key. To resist
differential analysis, encryption algorithms are highly sensitive to the plaintext image, and
small changes in the plaintext image encrypted by the encryption algorithm will produce
a completely different ciphertext image. The algorithm’s resistance to differential attacks
is typically assessed using two key measures: NPCR is the ratio of pixels with different
pixel values at the corresponding positions of two images to the total number of pixels,
which has a theoretical value of 99.6094%, and UACI is the average of the ratios of the
difference of the pixels at the corresponding positions of the two images to the ratio of
255. UACI is the average value of the ratio of the difference of all pixels at corresponding
positions between two images to 255, which calculates the extent to which the pixels at the
corresponding positions of two images are not the same, and its ideal value is 33.4635%.
Their formulae are as follows:

1 MyN,| . - . o
NPCR(Cy,Cy) = mzi Z], |Sign(Cy(i, ) — Ca(i,§))| x 100%, (12)
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1 v G0 j) = Caiv )
M x N&ij 255
where M and N represent the size of the image, C; and C, are two compressed and
encrypted images that differ from the original image by only one pixel. As shown in
Table 11, the test results closely match the ideal values. This indicates that the ciphertext
image obtained from two plaintext images with a difference of only one pixel is significantly
varied. Therefore, the algorithm proposed in this paper is sensitive to plaintext changes
and provides better resistance against differential attacks.

UACI(Cy,Cy) =

x 100%, (13)

Table 11. NPCR and UACI evaluation.

NPCR (%) UACI (%)
Image
Red Green Blue Red Green Blue
Lena 99.6078 99.5926 99.6063 33.4571 33.4529 33.6494
Fruits 99.5959 99.62 99.6236 33.4779 33.4249 33.4115
Tree 99.646 99.6185 99.6048 33.1465 33.3823 33.389
Peppers 99.6006 99.6082 99.6021 33.5401 33.4724 33.3762
4.1.01 99.617 99.5956 99.5941 33.5234 33.2569 33.343
4.1.03 99.6368 99.5987 99.6399 33.5643 33.3784 33.5677
4.1.05 99.6094 99.5895 99.6155 33.5724 33.4664 33.3415
4.2.01 99.6086 99.6006 99.6109 33.406 33.4824 33.466
4.2.03 99.6063 99.6086 99.6086 33.4551 33.4352 33.4769
4.2.05 99.6052 99.5956 99.6143 33.4651 33.534 33.3952

5.6. Robustness Analysis

Ciphertext images can be contaminated by different types of noise during transmission,
making it difficult to correctly recover the original image. Typically, noise attacks and
occlusion attacks are used to test the robustness of the system. The anti-noise capability
of the encryption algorithm can be assessed by utilizing the Peak Signal-to-Noise Ratio
(PSNR). PSNR is calculated mathematically using the following equations:

1 M N .. ..
MSE = M x NZi:l 2]‘:] (Cl(l’]) - C2(11]>)2’ (14)
PSNR = 10 x | 255" (15)
- 8\ MsE )’

where M and N refer to the height and width of the image, C;(i,j) and Cy(i,j) are the
respective pixels located at (i, ) in the original image and the ciphertext image. Taking
the color Lena image (512 x 512) as an example, the robust performance of the proposed
algorithm is analyzed.

5.6.1. Noise Attack Analysis

In this subsection, the noise attacks are tested using a Salt and Pepper Noise (SPN)
attack. First, SPN with different densities are added to the Lena ciphertext image. Then, the
proposed encryption algorithm is applied for decryption. Figure 12a—c shows the images
after the SPN attack with noise densities of 0.01, 0.1, and 0.2, while Figure 12d—f displays
the corresponding decrypted images. As shown in the figure, with the addition of varying
densities of SPN to the encrypted image, most of the information in the original image
can be decrypted, although the decrypted image is affected to different degrees. Table 12
lists the PSNR comparison results of the decrypted images with other color encryption
algorithm, which show that the proposed algorithm in this paper is noise-resistant.
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~ (a) Encryption 0.01 (b) Encryption 0.1 (c) Encryption 0.2

(d) Decryption 0.01 - (e) Decryption‘O.l (f) Decryption 0.2

Figure 12. Decrypted image of Lena after adding different noise SPN attacks. (a) SPN 0.01; (b) SPN
0.1; (c) SPN 0.2; (d—f) are the corresponding decryption images.

Table 12. PSNR comparison after SPN attacks.

Attack Noise Proposed Ref. [11]
ttacks Intensity Red Green Blue Red Green Blue
0.01 32.6758 31.9424 32.8227 28.1835 27.8353 27.9265
SPN 0.1 22.7248 22.0869 22.8662 18.1019 17.8744 17.9727
0.2 19.6647 19.1715 20.0988 - - -

5.6.2. Occlusion Attack Analysis

A cropping attack is a type of covert attack. When a ciphertext image is targeted by
a cropping attack, it is necessary to retain as much detailed information as possible to
reduce the effect of cropping on the whole image. Figure 13 depicts the Lena ciphertext
image being cropped to 64 x 64, 128 x 128, and 256 x 256, along with the corresponding
decrypted images. As can be seen from the resultant graph, the decrypted image is slightly
blurred, yet the visual content remains discernible, indicating that the algorithm can avoid
the impact of some data loss and restore the original image significantly. Table 13 exhibits
the PSNR values of the original and decrypted images and the comparison with the existing
color encryption algorithm. Therefore, the proposed encryption technique in this paper
shows high resilience against data loss attacks.

Table 13. PSNR comparison after cropping attacks.

. Proposed Ref. [11]
Block Size Red Green Blue Red Green Blue
64 x 64 30.6714 32.0929 32.5968 26.1764 25.8628 25.9477
128 x 128 24.7154 25.7805 26.5331 20.1912 19.8101 20.0184

256 x 256 18.7519 19.6379 20.5043 14.1626 13.8269 13.9961
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(a) Cropping 64 x 64 (b) Cropping 128 x 128 () Cropping 256 x 256

(d) Decryption 64 x 64 (e) Decryption 128 x 128 (f) Decryption 256 x 256

Figure 13. Cropping attack on Lena image with different cropping block sizes. (a) 64 x 64;
(b) 128 x 128; (c) 256 x 256; (d—f) are the corresponding decryption images.

5.7. Classical Types of Attacks Analysis

This section demonstrates the ability of encryption systems to withstand classic kinds
of attacks, including chosen plaintext attacks, chosen ciphertext attacks, ciphertext-only
attacks, and known plaintext attacks. Objective evidence is crucial, as attackers typically
select all-black or all-white original images to expose vulnerabilities in the cryptosystem.
Figure 14 shows the corresponding encrypted images and histograms for both the all-white
and all-black images, each sized 256 x 256. Experimental results show that the encryption
method can resist chosen plaintext attacks and known plaintext attacks.

In addition, it is worth noting that FLCS is highly sensitive to initial values. In the
encryption algorithm designed in this paper, a portion of the initial values of FLCS is
generated using the original image. This generates chaotic sequences that are highly
sensitive to the original image and are subsequently used for the Zig-Zag transform and
extended DNA coding encoding. Therefore, during the process of image scrambling, each
pixel is associated with other pixels, and small changes in the pixel values can produce
an avalanche effect. The proposed algorithm can withstand ciphertext-only attacks and
chosen ciphertext attacks.

[i] 50 100 150 200 250

(a) Black image (b) Black ciphertext image (c) Black ciphertext Histogram

Figure 14. Cont.
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Figure 14. Plaintext attack test. (a) Black image; (b) Ciphertext image of black image; (c) Histogram of
ciphertext image of black image; (d) White image; (e) Ciphertext image of white image; (f) Histogram
of ciphertext image of white image.

5.8. Time Complexity

In the proposed encryption algorithm, the most time-consuming procedures include
generating chaotic sequences via FLCS, performing Zig-Zag transformation, and conduct-
ing extended DNA computation. To encrypt an image with size M x N, the initial step
involves attaining the chaotic sequences x1, X2, X3, x4, with a time complexity of ©(M x N).
The time complexity for the Zig-Zag transformation is also @(M x N). Meanwhile, the
time complexity of extended DNA computation equates to @(3 x M x N). Hence, the
final time complexity of the proposed algorithm is ©(3 x M x N). The encryption and
decryption time for a color Lena image of size 256 x 256 is 1.911 s and 1.946 s, respectively,
under this computer configuration.

6. Conclusions

In this paper, the complex dynamic characteristics of FLCS were analyzed, demonstrat-
ing its chaotic phenomena and consequent generation of chaotic sequences. The traditional
Zig-Zag transform method and DNA coding rule were then extended, resulting in the
creation of the block Zig-Zag transform method and 8-bit DNA coding rule for image
scrambling. To enhance the security of the algorithm, the two methods were combined with
the chaotic sequences produced by FLCS to create a new color image encryption algorithm.
Finally, the results of experiments and security analyses indicate that the algorithm has a
large secret key space and strong sensitivity to secret keys. The information entropy, NPCR,
UACI, and correlation coefficients of the encrypted images are nearly equivalent to their
theoretical values. Therefore, the encryption algorithm designed in this paper demonstrates
a better ability to resist statistical attacks, differential attacks, and noise attacks, and can
effectively safeguard the security of transmitted image information.
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